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K-means recap

Given a set of n points X C R?, the optimal k-means clustering C°F7 is the one
given by the set of centroids that minimizes the sum-of-square-residuals ¢,

OoPT OPT _ -
(o RN o) —argqmkagb(cl,...,ck)

The k-means problem is: given X, compute COPT .



K-means recap

Recall: Lloyd's algorithm has no approximation guarantee because of outliers.
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Recall: Lloyd's algorithm has no approximation guarantee because of outliers.
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Idea: find a better initialisation of centers by favoring the outliers.
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K-means++

Introduced by Arthur and Vassilvitskii (ACM-SIAM SODA, 2007).

Algorithm 1: K-means++(X, k)

choose a first center, ¢1, uniformly at random from X;
fori=2,...,k do
draw c; at random from X according to the probability distribution:

P(c; = x) = — M=t X = cjll3
D owex minj—1 i1 x — )13
end
run Lloyd's algorithms with initial centers c1,...,cg;

return the clustering;




K-means++

minj—1,...i-1|Ix — ¢jll3

P(c; =x) = -
(€r=x) Doxex Mini=1 i1 llx — ¢l

You can see that

jomin_ [Ix = cll2

is the cost paid by x in the clustering C;_1 given by the first i — 1 centers, and
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S _minlx— gl

=1,...,i
xEXJ

is ¢(Ci—1).
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K-means++

Theorem. The clustering C found by K-means++ satisfies:

E[6(C)] < 8(In k + 2) 6(Copr)-

In the remainder we prove a simplified version of the theorem.



>
(oY0)
(D}
s
(T
—
)
wn
(.
(@)
(©)
Pk
o

We consider the optimal clustering

= (A1,..., A

COPT

and we look at where the centers chosen
by k-means++ “land”.
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Proof strategy
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Proof strategy

10 o We consider the optimal clustering

COPT = (Ar,..., A)

and we look at where the centers chosen
by k-means++ “land”.

For any cluster A € COPT | we denote

dopT(A) = the cost of A in COPT
$(A) = the cost of Ain C

A OPT k-means++



Proof strategy
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The proof has two parts:

Part 1: For any A € COPT conditioned on
the event that k-means++ chooses a center
from A, we have:

E[¢(A)] < 8¢orT(A)

Part 2: In expectation, k-means++ chooses
centers from many clusters of COP7 .



Claim 1. For any A € COPT, conditioned on the event that k-means++ chooses a
center from A, we have:

E[¢(A)] < 8¢orT(A)



Claim 1. For any A € COPT, conditioned on the event that k-means++ chooses a
center from A, we have:

E[¢(A)] < 8¢orT(A)

Proof.
Let a € A be the random center chosen by k-means++. We consider two cases:
1. ais the first center chosen by k-means++

2. ais not the first center chosen by k-means++



Case 1: a is the first center chosen by k-means++

Then a is uniform over X. Conditioning on the event a € A, a is uniform over A.

E[¢(A)]

< 8¢orT(A)
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Case 1: a is the first center chosen by k-means++

Then a is uniform over X. Conditioning on the event a € A, a is uniform over A.

E[6(A)] = Zﬁ\, S k- 33

acA X€EA
1 ~
~ % o (b )
acA XEA
1 1 .
ZZW-ZHX—MH% + ZWIAI-IIa—#Ilg
acA x€A acA
= lx—pl3 + D la-ul3
x€A acA

=2) |x—pl3 = 260p7(A) < 8oopr(A)
x€A



Case 2: a is not the first center chosen by k-means++

For any x € X let D(x)? be its squared Euclidean distance from the nearest among the
already-chosen centers.
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Case 2: a is not the first center chosen by k-means++

For any x € X let D(x)? be its squared Euclidean distance from the nearest among the
already-chosen centers. Conditioning on the event a € A, we have

D(3)
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If we choose a = a, then the cost of each point x € A will be:

min(D(x)?, ||x — 3|)3)



Case 2: a is not the first center chosen by k-means++

For any x € X let D(x)? be its squared Euclidean distance from the nearest among the
already-chosen centers. Conditioning on the event a € A, we have

D(3)

Fa=2= s " by

If we choose a = a, then the cost of each point x € A will be:

min(D(x)?, ||x — 3|)3)

Therefore:

E[¢(A)] =) Z D zzmm 2, llx —313)
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Now, for any x € A, we have the following bound on D(3)2:
D(3)? < (D(x) + ||x — 3]|2)*> triangle inequality
< 2D(x)? +2||x — 3|3 power-mean ineq: (byi+ ...+ by)? < m(b? + ...+ b2)
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Now, for any x € A, we have the following bound on D(3)2:
D(3)? < (D(x) + ||x — 3]|2)*> triangle inequality
< 2D(x)? +2||x — 3|3 power-mean ineq: (byi+ ...+ by)? < m(b? + ...+ b2)
By averaging over all x € A:

2112
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Thus:

2 X —
E[(Z)(A)] < Z [A| erA (D( ) + H a”

acA
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ZXGA XEA



We're almost done:

&l X€E D(x) + [Ix —
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25 (D)2 + ||x —
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We're almost done:

Blo() < 3 e (P00 Ix = 31%)
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We're almost done:
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Recap: For any A € COPT, conditioned on the event that k-means++ chooses a center
from A, we have:

E[¢(A)] < 8¢orT(A)



For any A € COPT, We say that A is covered if k-means++ has chosen some center in
A. Otherwise we say that A is uncovered.
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A. Otherwise we say that A is uncovered.

Thanks to Part 1, we know that covered clusters are “ok” (on them, we pay an
almost-optimal cost).
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almost-optimal cost).

Therefore we can simplify the model as follows.

SIMPLIFYING ASSUMPTION

For all A € Copr, we have ¢opr(A) = 1.
Moreover, if A is covered then ¢(A) = dopT(A) = 1, otherwise ¢(A) = L > 1.



For any A € COPT, We say that A is covered if k-means++ has chosen some center in
A. Otherwise we say that A is uncovered.

Thanks to Part 1, we know that covered clusters are “ok” (on them, we pay an
almost-optimal cost).

Therefore we can simplify the model as follows.

SIMPLIFYING ASSUMPTION

For all A € Copr, we have ¢opr(A) = 1.
Moreover, if A is covered then ¢(A) = dopT(A) = 1, otherwise ¢(A) = L > 1.

We will prove: E[¢] < ¢opt - O(Ig k)



For i =0,..., k we denote by ¢; the cost of k-means++ after choosing i centers.
By convention E[¢g] = ¢o = kL (think of an initial “external center”).
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For i =0,..., k we denote by ¢; the cost of k-means++ after choosing i centers.
By convention E[¢g] = ¢o = kL (think of an initial “external center”).
Now:
k—1
bk =do+ Y (dir1— &i)
i=0
Taking expectations:
k—1
El¢x] = Elgo] + Y _ (El¢i1] — El¢i])
i=0
k—1
= kL+ ) (E[¢i1] — E[¢1])
i=0
k—1

— k+ . ((L=1) + E[¢i+1] — E[¢i])
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We can see this as charging round 7/ with an initialy penalty of L — 1, which the
algorithm fights by improving by E[¢;1] — E[¢;].

Let u; the number of uncovered clusters after round i. Note that ¢; = u; - L+ (k — u;).

For any uncovered A, the probability that at round / 4+ 1 we choose a center from A is:
®i(A) _ L
bi ui - L+ (k — u;)
So the probability that we choose a center from some uncovered cluster is:
ui - L
ui- L+ (k — uy)
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The probability that we choose a center from some uncovered cluster is:

ui - L (k—1i)-L
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ui-L+(k—u) = (k—1i)- L+

If this happens (choosing a center from some uncovered cluster), then:

piy1=0¢i—L+1=09¢; —(L—-1)

Therefore:
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We're almost done:

(k—i)-L

(L=1)+E[pis1] —E[p:] <(L-1)—-(L—-1)- (k=i)-L+i



We're almost done:

(L—=1)+E[pis1] —E[¢i] <(L—-1)—(L—1)- (/<(/i7)1)l_—LH

:(L—l)(l—m>



We're almost done:

(L—=1)+E[pis1] —E[¢i] <(L—-1)—(L—1)- (/<(/i7)1)l_—LH

:(L‘”(l_M)

-0 ()



We're almost done:

(L—=1)+E[pis1] —E[¢i] <(L—-1)—(L—1)- (/<(/i7)1)l_—LH

:(L‘”(l_M)
=(L— )((k—/)IL-|-/>
<Lm



We're almost done:

(L—=1)+E[pis1] —E[¢i] <(L—-1)—(L—1)- (/<(/i7)1)l_—LH

:(L‘”(l_M)

-0 ()




We're almost done:

(L—=1)+E[pis1] —E[¢i] <(L—-1)—(L—1)- (/<(/i7)1)l_—LH

:(L‘”(l_M)

-0 ()




So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

Elox] = k+ Z — 1) + E[¢i1] — E[¢i])



So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

k-1
Elg] = k + Z — 1) + E[¢i+1] — E[¢i])

k—1
k
< k
S -0—. i
i=0




So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

k-1
Elg] = k + Z — 1) + E[¢i+1] — E[¢i])

k—1
k
< k
S -0—. i
i=0

K1
:k+k27
i=1




So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

k-1
Elge] = k+ D ((L— 1)+ Eléia] — E[6])
i=0
k-1

k
<k+

k—i

Il
o

K1
:k+k27
i=1

= k(1 + Hy) Hy is the k-th harmonic number



So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

k-1
Elge] = k+ D ((L— 1)+ Eléia] — E[6])
i=0
k-1

k
<k+

et fk — |
i=0

K1
:k+k27
i=1

= k(1 + Hy) Hy is the k-th harmonic number
< k(2+1Ink)




So (L —1) + E[¢i41] — E[¢i] < £%. Therefore, recalling from before:

k-1
Elge] = k+ > ((L— 1) + E[¢js1] — E[¢/])
i=0
k-1
k
<k+3

K1
:k+k27
i=1

= k(1 + Hy) Hy is the k-th harmonic number
< k(2+1Ink)

This concludes the (simplified) proof that E[¢] < ¢op7 - O(In k).



K-means++

NOTE!

All the “cleverness” of kmeans++ is in the seeding process: after choosing the centers
using the D? distribution we already have the guarantee E[¢] < ¢opt - O(In k).

Indeed, we even forgot about running Lloyd’s algorithm after choosing the centers!



