K-MEANS++

Marco Bressan

Università degli Studi di Milano

April 21, 2021

K-means recap

Given a set of n points $X \subset \mathbb{R}^d$, the **optimal k-means clustering** \mathcal{C}^{OPT} is the one given by the set of centroids that minimizes the sum-of-square-residuals ϕ ,

$$oldsymbol{c}_1^{OPT}, \dots, oldsymbol{c}_k^{OPT} = rg \min_{oldsymbol{c}_1, \dots, oldsymbol{c}_k} \phi(oldsymbol{c}_1, \dots, oldsymbol{c}_k)$$

The k-means problem is: given X, compute C^{OPT} .

K-means recap

Recall: Lloyd's algorithm has no approximation guarantee because of outliers.

K-means recap

Recall: Lloyd's algorithm has no approximation guarantee because of outliers.

Idea: find a better initialisation of centers by favoring the outliers.

K-means++

Introduced by Arthur and Vassilvitskii (ACM-SIAM SODA, 2007).

Algorithm 1: K-means++(X, k)

choose a first center, c_1 , uniformly at random from X;

for i = 2, ..., k do

draw c_i at random from X according to the probability distribution:

$$\mathbb{P}(c_i = x) = \frac{\min_{j=1,...,i-1} \|x - c_j\|_2^2}{\sum_{x \in X} \min_{j=1,...,i-1} \|x - c_j\|_2^2}$$

end

run Lloyd's algorithms with initial centers c_1, \ldots, c_k ; return the clustering;

K-means++

$$\mathbb{P}(\boldsymbol{c}_i = \boldsymbol{x}) = \frac{\min_{j=1,\dots,i-1} \|\boldsymbol{x} - \boldsymbol{c}_j\|_2^2}{\sum_{\boldsymbol{x} \in X} \min_{j=1,\dots,i-1} \|\boldsymbol{x} - \boldsymbol{c}_j\|_2^2}$$

You can see that

$$\min_{j=1,\ldots,i-1} \|\boldsymbol{x} - \boldsymbol{c}_j\|_2^2$$

is the cost paid by ${m x}$ in the clustering ${\mathcal C}_{i-1}$ given by the first i-1 centers, and

$$\sum_{\boldsymbol{x} \in \boldsymbol{X}} \min_{j=1,\dots,i-1} \|\boldsymbol{x} - \boldsymbol{c}_j\|_2^2$$

is $\phi(\mathcal{C}_{i-1})$.

$$p=1/n$$
 $p=1/n$

$$p=1/n$$
 $p=1/n$

$$p = .52$$

$$p = .45$$

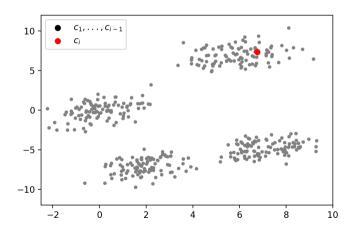
$$p = .52$$

p=0 p=.7

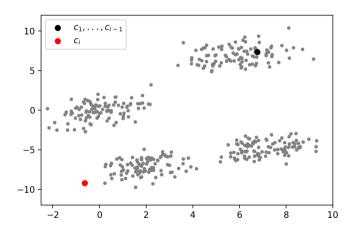
$$p=0$$

p = .7

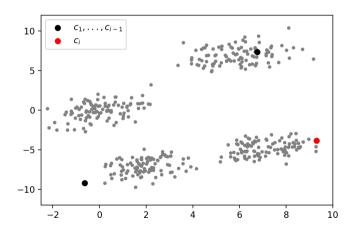
$$X \subset R^2$$
, $k = 4$.



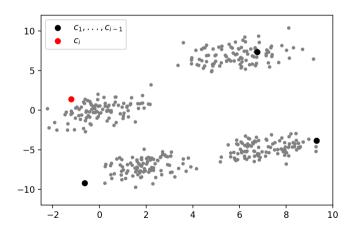
$$X \subset R^2$$
, $k = 4$.



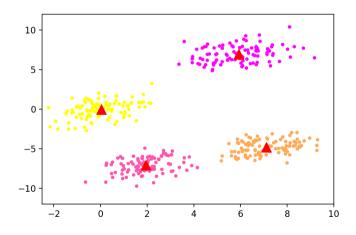
$$X \subset R^2$$
, $k = 4$.



$$X \subset R^2$$
, $k = 4$.



$$X \subset R^2$$
, $k = 4$.

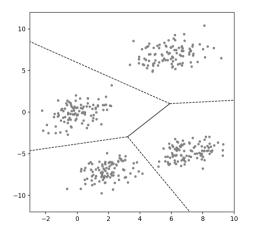


K-means++

Theorem. The clustering $\mathcal C$ found by K-means++ satisfies:

$$\mathbb{E}[\phi(\mathcal{C})] \leq 8(\ln k + 2) \, \phi(\mathcal{C}_{OPT}).$$

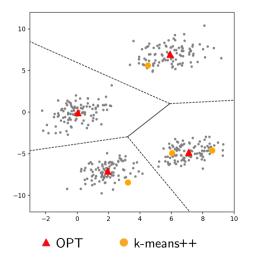
In the remainder we prove a simplified version of the theorem.



We consider the optimal clustering

$$\mathcal{C}^{OPT} = (A_1, \ldots, A_k)$$

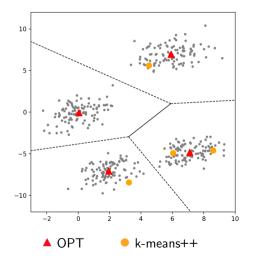
and we look at where the centers chosen by k-means++ "land" .



We consider the optimal clustering

$$\mathcal{C}^{OPT} = (A_1, \ldots, A_k)$$

and we look at where the centers chosen by k-means++ "land" .



We consider the optimal clustering

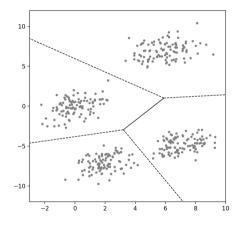
$$\mathcal{C}^{OPT} = (A_1, \ldots, A_k)$$

and we look at where the centers chosen by k-means++ "land".

For any cluster $A \in \mathcal{C}^{OPT}$, we denote

$$\phi_{OPT}(A) = \text{ the cost of } A \text{ in } \mathcal{C}^{OPT}$$

 $\phi(A) = \text{ the cost of } A \text{ in } \mathcal{C}$



The proof has two parts:

Part 1: For any $A \in \mathcal{C}^{OPT}$, conditioned on the event that k-means++ chooses a center from A, we have:

$$\mathbb{E}[\phi(A)] \leq 8 \, \phi_{OPT}(A)$$

Part 2: In expectation, k-means++ chooses centers from many clusters of \mathcal{C}^{OPT} .

Claim 1. For any $A \in \mathcal{C}^{OPT}$, conditioned on the event that k-means++ chooses a center from A, we have:

$$\mathbb{E}[\phi(A)] \le 8\,\phi_{OPT}(A)$$

Claim 1. For any $A \in \mathcal{C}^{OPT}$, conditioned on the event that k-means++ chooses a center from A, we have:

$$\mathbb{E}[\phi(A)] \leq 8 \, \phi_{OPT}(A)$$

Proof.

Let $\mathbf{a} \in A$ be the random center chosen by k-means++. We consider two cases:

- 1. a is the first center chosen by k-means++
- 2. a is not the first center chosen by k-means++

Case 1: a is the first center chosen by k-means++

$$\mathbb{E}[\phi(A)]$$

Case 1: a is the first center chosen by k-means++

Then **a** is uniform over X. Conditioning on the event $\mathbf{a} \in A$, \mathbf{a} is uniform over A.

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2$$

$$\leq 8 \phi_{OPT}(A)$$

Case 1: *a* is the first center chosen by k-means++

Then **a** is uniform over X. Conditioning on the event $\mathbf{a} \in A$, \mathbf{a} is uniform over A.

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_{2}^{2}$$
$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \left(\sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2} \right)$$

$$\leq 8 \phi_{OPT}(A)$$

Case 1: a is the first center chosen by k-means++

Then **a** is uniform over X. Conditioning on the event $\mathbf{a} \in A$, \mathbf{a} is uniform over A.

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_{2}^{2}$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \left(\sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2} \right)$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$\leq 8 \phi_{OPT}(A)$$

Case 1: *a* is the first center chosen by k-means++

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_{2}^{2}$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \left(\sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2} \right)$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$\leq 8 \phi_{OPT}(A)$$

Case 1: a is the first center chosen by k-means++

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_{2}^{2}$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \left(\sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2} \right)$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= 2 \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} \leq 8 \phi_{OPT}(A)$$

Case 1: a is the first center chosen by k-means++

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_{2}^{2}$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \left(\sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2} \right)$$

$$= \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} \cdot \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \frac{1}{|A|} |A| \cdot \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} + \sum_{\widehat{\boldsymbol{a}} \in A} \|\widehat{\boldsymbol{a}} - \boldsymbol{\mu}\|_{2}^{2}$$

$$= 2 \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \boldsymbol{\mu}\|_{2}^{2} = 2 \phi_{OPT}(A) \leq 8 \phi_{OPT}(A)$$

Case 2: a is not the first center chosen by k-means++

For any $\mathbf{x} \in X$ let $D(\mathbf{x})^2$ be its squared Euclidean distance from the nearest among the already-chosen centers.

Case 2: a is not the first center chosen by k-means++

For any $x \in X$ let $D(x)^2$ be its squared Euclidean distance from the nearest among the already-chosen centers. Conditioning on the event $a \in A$, we have

$$\mathbb{P}(\boldsymbol{a} = \widehat{\boldsymbol{a}}) = \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}$$

Case 2: a is not the first center chosen by k-means++

For any $x \in X$ let $D(x)^2$ be its squared Euclidean distance from the nearest among the already-chosen centers. Conditioning on the event $a \in A$, we have

$$\mathbb{P}(\boldsymbol{a} = \widehat{\boldsymbol{a}}) = \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}$$

If we choose $\mathbf{a} = \widehat{\mathbf{a}}$, then the cost of each point $\mathbf{x} \in A$ will be:

$$\min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

Case 2: a is not the first center chosen by k-means++

For any $x \in X$ let $D(x)^2$ be its squared Euclidean distance from the nearest among the already-chosen centers. Conditioning on the event $a \in A$, we have

$$\mathbb{P}(\boldsymbol{a} = \widehat{\boldsymbol{a}}) = \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}$$

If we choose $\mathbf{a} = \widehat{\mathbf{a}}$, then the cost of each point $\mathbf{x} \in A$ will be:

$$\min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

Therefore:

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

Now, for any $x \in A$, we have the following bound on $D(\widehat{a})^2$:

$$D(\widehat{\mathbf{a}})^2 \leq (D(\mathbf{x}) + \|\mathbf{x} - \widehat{\mathbf{a}}\|_2)^2$$
 triangle inequality
$$\leq 2D(\mathbf{x})^2 + 2\|\mathbf{x} - \widehat{\mathbf{a}}\|_2^2$$
 power-mean ineq: $(b_1 + \ldots + b_m)^2 \leq m(b_1^2 + \ldots + b_m^2)$

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

Now, for any $x \in A$, we have the following bound on $D(\widehat{a})^2$:

$$D(\widehat{\mathbf{a}})^2 \leq (D(\mathbf{x}) + \|\mathbf{x} - \widehat{\mathbf{a}}\|_2)^2$$
 triangle inequality
$$\leq 2D(\mathbf{x})^2 + 2\|\mathbf{x} - \widehat{\mathbf{a}}\|_2^2$$
 power-mean ineq: $(b_1 + \ldots + b_m)^2 \leq m(b_1^2 + \ldots + b_m^2)$

By averaging over all $x \in A$:

$$D(\widehat{\boldsymbol{a}})^2 \leq \frac{1}{|A|} \sum_{\boldsymbol{x} \in A} \left(2D(\boldsymbol{x})^2 + 2\|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)$$

$$\mathbb{E}[\phi(A)] = \sum_{\widehat{\boldsymbol{a}} \in A} \frac{D(\widehat{\boldsymbol{a}})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

Now, for any $x \in A$, we have the following bound on $D(\widehat{a})^2$:

$$D(\widehat{\mathbf{a}})^2 \leq (D(\mathbf{x}) + \|\mathbf{x} - \widehat{\mathbf{a}}\|_2)^2$$
 triangle inequality
$$\leq 2D(\mathbf{x})^2 + 2\|\mathbf{x} - \widehat{\mathbf{a}}\|_2^2$$
 power-mean ineq: $(b_1 + \ldots + b_m)^2 \leq m(b_1^2 + \ldots + b_m^2)$

By averaging over all $x \in A$:

$$D(\widehat{\boldsymbol{a}})^2 \leq \frac{1}{|A|} \sum_{\boldsymbol{x} \in A} \left(2D(\boldsymbol{x})^2 + 2\|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)$$

Thus:

$$\mathbb{E}[\phi(A)] \leq \sum_{\widehat{\pmb{a}} \in A} \frac{\frac{2}{|A|} \sum_{\pmb{x} \in A} \left(D(\pmb{x})^2 + \|\pmb{x} - \widehat{\pmb{a}}\|_2^2\right)}{\sum_{\pmb{x} \in A} D(\pmb{x})^2} \sum_{\pmb{x} \in A} \min(D(\pmb{x})^2, \|\pmb{x} - \widehat{\pmb{a}}\|_2^2)$$

$$\mathbb{E}[\phi(A)] \leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$\begin{split} \mathbb{E}[\phi(A)] &\leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2\right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \\ &= \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \\ &+ \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \end{split}$$

$$\mathbb{E}[\phi(A)] \leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$= \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$+ \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$= 1$$

$$\mathbb{E}[\phi(A)] \leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$= \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$+ \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$\leq 1$$

$$\begin{split} \mathbb{E}[\phi(A)] &\leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2\right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \\ &= \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \\ &+ \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \\ &\leq \frac{4}{|A|} \sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \end{split}$$

$$\mathbb{E}[\phi(A)] \leq \sum_{\widehat{\boldsymbol{a}} \in A} \frac{\frac{2}{|A|} \sum_{\boldsymbol{x} \in A} \left(D(\boldsymbol{x})^2 + \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \right)}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2)$$

$$= \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \qquad = 1$$

$$+ \frac{2}{|A|} \frac{\sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2}{\sum_{\boldsymbol{x} \in A} D(\boldsymbol{x})^2} \cdot \sum_{\boldsymbol{x} \in A} \min(D(\boldsymbol{x})^2, \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2) \qquad \leq 1$$

$$\leq \frac{4}{|A|} \sum_{\widehat{\boldsymbol{a}} \in A} \sum_{\boldsymbol{x} \in A} \|\boldsymbol{x} - \widehat{\boldsymbol{a}}\|_2^2 \leq 4 \cdot 2\phi_{OPT}(A) = 8\phi_{OPT}(A)$$

Recap: For any $A \in \mathcal{C}^{OPT}$, conditioned on the event that k-means++ chooses a center from A, we have:

$$\mathbb{E}[\phi(A)] \leq 8\,\phi_{OPT}(A)$$

For any $A \in \mathcal{C}^{OPT}$, We say that A is **covered** if k-means++ has chosen some center in A. Otherwise we say that A is **uncovered**.

For any $A \in \mathcal{C}^{OPT}$, We say that A is **covered** if k-means++ has chosen some center in A. Otherwise we say that A is **uncovered**.

Thanks to Part 1, we know that covered clusters are "ok" (on them, we pay an almost-optimal cost).

For any $A \in \mathcal{C}^{OPT}$, We say that A is **covered** if k-means++ has chosen some center in A. Otherwise we say that A is **uncovered**.

Thanks to Part 1, we know that covered clusters are "ok" (on them, we pay an almost-optimal cost).

Therefore we can simplify the model as follows.

SIMPLIFYING ASSUMPTION

For all $A \in \mathcal{C}_{OPT}$, we have $\phi_{OPT}(A) = 1$.

Moreover, if A is covered then $\phi(A) = \phi_{OPT}(A) = 1$, otherwise $\phi(A) = L \gg 1$.

For any $A \in \mathcal{C}^{OPT}$, We say that A is **covered** if k-means++ has chosen some center in A. Otherwise we say that A is **uncovered**.

Thanks to Part 1, we know that covered clusters are "ok" (on them, we pay an almost-optimal cost).

Therefore we can simplify the model as follows.

SIMPLIFYING ASSUMPTION

For all $A \in \mathcal{C}_{OPT}$, we have $\phi_{OPT}(A) = 1$.

Moreover, if A is covered then $\phi(A) = \phi_{OPT}(A) = 1$, otherwise $\phi(A) = L \gg 1$.

We will prove: $\mathbb{E}[\phi] \leq \phi_{OPT} \cdot O(\lg k)$

For $i=0,\ldots,k$ we denote by ϕ_i the cost of k-means++ after choosing i centers. By convention $\mathbb{E}[\phi_0]=\phi_0=kL$ (think of an initial "external center").

For $i=0,\ldots,k$ we denote by ϕ_i the cost of k-means++ after choosing i centers. By convention $\mathbb{E}[\phi_0]=\phi_0=kL$ (think of an initial "external center"). Now:

$$\phi_k = \phi_0 + \sum_{i=0}^{k-1} (\phi_{i+1} - \phi_i)$$

For $i=0,\ldots,k$ we denote by ϕ_i the cost of k-means++ after choosing i centers. By convention $\mathbb{E}[\phi_0]=\phi_0=kL$ (think of an initial "external center"). Now:

$$\phi_k = \phi_0 + \sum_{i=0}^{k-1} (\phi_{i+1} - \phi_i)$$

Taking expectations:

$$\mathbb{E}[\phi_k] = \mathbb{E}[\phi_0] + \sum_{i=0}^{k-1} \left(\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \right)$$

For $i=0,\ldots,k$ we denote by ϕ_i the cost of k-means++ after choosing i centers. By convention $\mathbb{E}[\phi_0]=\phi_0=kL$ (think of an initial "external center"). Now:

$$\phi_k = \phi_0 + \sum_{i=0}^{k-1} (\phi_{i+1} - \phi_i)$$

Taking expectations:

$$\mathbb{E}[\phi_k] = \mathbb{E}[\phi_0] + \sum_{i=0}^{k-1} (\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$
$$= kL + \sum_{i=0}^{k-1} (\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

For $i=0,\ldots,k$ we denote by ϕ_i the cost of k-means++ after choosing i centers. By convention $\mathbb{E}[\phi_0]=\phi_0=kL$ (think of an initial "external center"). Now:

$$\phi_k = \phi_0 + \sum_{i=0}^{k-1} (\phi_{i+1} - \phi_i)$$

Taking expectations:

$$\mathbb{E}[\phi_{k}] = \mathbb{E}[\phi_{0}] + \sum_{i=0}^{k-1} (\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_{i}])$$

$$= kL + \sum_{i=0}^{k-1} (\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_{i}])$$

$$= k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_{i}])$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} \left((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \right)$$

We can see this as charging round i with an initially penalty of L-1, which the algorithm fights by improving by $\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i]$.

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{\kappa-1} \left((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \right)$$

We can see this as charging round i with an initially penalty of L-1, which the algorithm fights by improving by $\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i]$.

Let u_i the number of uncovered clusters after round i. Note that $\phi_i = u_i \cdot L + (k - u_i)$.

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} \left((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \right)$$

We can see this as charging round i with an initially penalty of L-1, which the algorithm fights by improving by $\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i]$.

Let u_i the number of uncovered clusters after round i. Note that $\phi_i = u_i \cdot L + (k - u_i)$.

For any uncovered A, the probability that at round i + 1 we choose a center from A is:

$$\frac{\phi_i(A)}{\phi_i} = \frac{L}{u_i \cdot L + (k - u_i)}$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

We can see this as charging round i with an initially penalty of L-1, which the algorithm fights by improving by $\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i]$.

Let u_i the number of uncovered clusters after round i. Note that $\phi_i = u_i \cdot L + (k - u_i)$.

For any uncovered A, the probability that at round i + 1 we choose a center from A is:

$$\frac{\phi_i(A)}{\phi_i} = \frac{L}{u_i \cdot L + (k - u_i)}$$

So the probability that we choose a center from some uncovered cluster is:

$$\frac{u_i \cdot L}{u_i \cdot L + (k - u_i)}$$

The probability that we choose a center from some uncovered cluster is:

$$\frac{u_i \cdot L}{u_i \cdot L + (k - u_i)}$$

The probability that we choose a center from some uncovered cluster is:

$$\frac{u_i \cdot L}{u_i \cdot L + (k - u_i)} \ge \frac{(k - i) \cdot L}{(k - i) \cdot L + i}$$

The probability that we choose a center from some uncovered cluster is:

$$\frac{u_i \cdot L}{u_i \cdot L + (k - u_i)} \ge \frac{(k - i) \cdot L}{(k - i) \cdot L + i}$$

If this happens (choosing a center from some uncovered cluster), then:

$$\phi_{i+1} = \phi_i - L + 1 = \phi_i - (L-1)$$

The probability that we choose a center from some uncovered cluster is:

$$\frac{u_i \cdot L}{u_i \cdot L + (k - u_i)} \ge \frac{(k - i) \cdot L}{(k - i) \cdot L + i}$$

If this happens (choosing a center from some uncovered cluster), then:

$$\phi_{i+1} = \phi_i - L + 1 = \phi_i - (L-1)$$

Therefore:

$$\mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \le -(L-1) \cdot \frac{(k-i) \cdot L}{(k-i) \cdot L + i}$$

$$(L-1)+\mathbb{E}[\phi_{i+1}]-\mathbb{E}[\phi_i] \leq (L-1)-(L-1)\cdot rac{(k-i)\cdot L}{(k-i)\cdot L+i}$$

$$(L-1)+\mathbb{E}[\phi_{i+1}]-\mathbb{E}[\phi_i] \leq (L-1)-(L-1)\cdot rac{(k-i)\cdot L}{(k-i)\cdot L+i} \ = (L-1)\left(1-rac{(k-i)\cdot L}{(k-i)\cdot L+i}
ight)$$

$$\begin{aligned} (L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] &\leq (L-1) - (L-1) \cdot \frac{(k-i) \cdot L}{(k-i) \cdot L + i} \\ &= (L-1) \left(1 - \frac{(k-i) \cdot L}{(k-i) \cdot L + i} \right) \\ &= (L-1) \left(\frac{i}{(k-i) \cdot L + i} \right) \end{aligned}$$

$$(L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \le (L-1) - (L-1) \cdot \frac{(k-i) \cdot L}{(k-i) \cdot L + i}$$

$$= (L-1) \left(1 - \frac{(k-i) \cdot L}{(k-i) \cdot L + i} \right)$$

$$= (L-1) \left(\frac{i}{(k-i) \cdot L + i} \right)$$

$$< L \frac{i}{(k-i) \cdot L + i}$$

$$(L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \le (L-1) - (L-1) \cdot \frac{(k-i) \cdot L}{(k-i) \cdot L + i}$$

$$= (L-1) \left(1 - \frac{(k-i) \cdot L}{(k-i) \cdot L + i} \right)$$

$$= (L-1) \left(\frac{i}{(k-i) \cdot L + i} \right)$$

$$< L \frac{i}{(k-i) \cdot L + i}$$

$$< L \frac{k}{(k-i) \cdot L}$$

$$(L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \le (L-1) - (L-1) \cdot \frac{(k-i) \cdot L}{(k-i) \cdot L + i}$$

$$= (L-1) \left(1 - \frac{(k-i) \cdot L}{(k-i) \cdot L + i} \right)$$

$$= (L-1) \left(\frac{i}{(k-i) \cdot L + i} \right)$$

$$< L \frac{i}{(k-i) \cdot L + i}$$

$$< L \frac{k}{(k-i) \cdot L}$$

$$= \frac{k}{k-i}$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} \left((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \right)$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

$$\leq k + \sum_{i=0}^{k-1} \frac{k}{k-i}$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

$$\leq k + \sum_{i=0}^{k-1} \frac{k}{k-i}$$

$$= k + k \sum_{i=1}^{k} \frac{1}{i}$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

$$\leq k + \sum_{i=0}^{k-1} \frac{k}{k-i}$$

$$= k + k \sum_{i=1}^{k} \frac{1}{i}$$

$$= k(1 + H_k) \qquad H_k \text{ is the } k\text{-th harmonic number}$$

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

$$\leq k + \sum_{i=0}^{k-1} \frac{k}{k-i}$$

$$= k + k \sum_{i=1}^{k} \frac{1}{i}$$

$$= k(1 + H_k) \qquad H_k \text{ is the } k\text{-th harmonic number}$$

$$\leq k(2 + \ln k)$$

So $(L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i] \leq \frac{k}{k-i}$. Therefore, recalling from before:

$$\mathbb{E}[\phi_k] = k + \sum_{i=0}^{k-1} ((L-1) + \mathbb{E}[\phi_{i+1}] - \mathbb{E}[\phi_i])$$

$$\leq k + \sum_{i=0}^{k-1} \frac{k}{k-i}$$

$$= k + k \sum_{i=1}^{k} \frac{1}{i}$$

$$= k(1 + H_k) \qquad H_k \text{ is the } k\text{-th harmonic number}$$

$$\leq k(2 + \ln k)$$

This concludes the (simplified) proof that $\mathbb{E}[\phi] \leq \phi_{OPT} \cdot O(\ln k)$.

K-means++

NOTE!

All the "cleverness" of kmeans++ is in the seeding process: after choosing the centers using the D^2 distribution we already have the guarantee $\mathbb{E}[\phi] \leq \phi_{OPT} \cdot O(\ln k)$.

Indeed, we even forgot about running Lloyd's algorithm after choosing the centers!