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Clustering: super quick intro

Clustering = “group together similar objects”

Unlike many basic computational problems (sorting, compression, . . . ), clustering
is very vague and underspecified:

• how do we represent objects?

• what does “similar” mean?

• how many clusters should we form?

• how to measure the quality of a cluster?
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Examples
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Examples

Today we will consider clustering of points in Rd .
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K-means

What does it mean for a clustering to be good?

A “good” clustering A “bad” clustering

Intuition: a cluster is good if its points are all close to some “central” point.
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K-means

Suppose we know k , the number of clusters to be formed.

Given an input set X ⊂ Rd , we choose k centers ccc1, . . . ,ccck ∈ Rd .
(Note: we are free to choose the centers anywhere — they need not be in X ).

We assign every point xxx ∈ X to the closest center among ccc1, . . . ,ccck ∈ Rd .

We pay the cost:

φ(ccc1, . . . ,ccck) =
∑
xxx∈X

k

min
j=1
‖xxx − ccc j‖2

2

That is, each point pays the squared distance to its center.
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Example with k=3

ccc1 = (40, 59)
ccc2 = (10, 11)
ccc3 = (71,−11)

φ(ccc1,ccc2,ccc3) = 121368.6
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K-means

Each choice of centers ccc1, . . . ,ccck identifies a clustering C = (C1, . . . ,Ck):

Ci = {x ∈ X : d(x , ci) < d(x , cj)∀j 6= i}

The optimal k-means clustering, denoted by COPT , is the one given by the
centers that minimize φ,

cccOPT
1 , . . . ,cccOPT

k = arg min
ccc1,...,ccck

φ(ccc1, . . . ,ccck)

The optimal clusters are denoted COPT
1 , . . . ,COPT

k .

Note that COPT may not be unique.

So, the k-means problem is: given X , compute COPT .
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K-means examples
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Beware of the dimensionality!

When d = 2 or d = 3, finding the k-means solution looks easy, because the
human eye is good at it. This is not the case when d � 1.

d = 2 d = 11
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How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T ≤ (1)

k-means is NP-hard (Aloise et al., 2009).

9 / 21



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T ≤ # partitions of n points on k clusters (1)

k-means is NP-hard (Aloise et al., 2009).

9 / 21



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T ≤ # partitions of n points on k clusters ' kn (1)

k-means is NP-hard (Aloise et al., 2009).

9 / 21



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T ≤ # partitions of n points on k clusters ' kn (1)

k-means is NP-hard (Aloise et al., 2009).

9 / 21



Interlude: distances

Why are we using the squared Euclidean distance ?

Consider 10 points at distance 1 from the center:

φ = 10× 12 = 10

versus 1 point at distance 10 from the center:

φ = 1× 102 = 100

It’s like progressive taxes: the farther from the center you are, the more (in
proportion) you pay. This tends to give “round” clusters with points roughly
equally close to the center.
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Example
X = {1, . . . , 8} ⊂ R, k = 2

ccc1 = (2, 0), ccc2 = (6, 0)

∑
xxx∈X mink

j=1 ‖xxx − ccc j‖2 = (1 + 1) + (2 + 1 + 1 + 2) = 8∑
xxx∈X mink

j=1 ‖xxx − ccc j‖2
2 = (1 + 1) + (4 + 1 + 1 + 4) = 12

ccc1 = (2.5, 0), ccc2 = (6.5, 0)

∑
xxx∈X mink

j=1 ‖xxx − ccc j‖2 = (1.5 + 0.5 + 0.5 + 1.5) · 2 = 8∑
xxx∈X mink

j=1 ‖xxx − ccc j‖2
2 = (1.52 + 0.52 + 0.52 + 1.52) · 2 = 10 ← k-means
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Lloyd’s algorithm

The main and most used k-means algorithm: Lloyd’s algorithm.

(Very often, by “k-means” people actually mean Lloyd’s algorithm.)

Algorithm 1: Lloyd(X , k)

choose k distinct points ccc1, . . . ,ccck u.a.r. from X ;
do

for i = 1, . . . , k let Ci = the set of points closest to ccc i ;
for i = 1, . . . , k let ccc i = the center of mass of Ci ;

until ccc1, . . . ,ccck do not change;
return C1, . . . ,Ck ;
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Lloyd’s algorithm
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Lloyd’s algorithm

• Does it find the optimal clustering? NO

• Does it find an almost-optimal clustering? NO

• Does it have good running time? NO

• Why is it so used? It works well in practice
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Lloyd’s algorithm

Claim: for any constant a ≥ 1 (say, a = 1000000) there are instances on which
Lloyd’s algorithm, with probability 1− O(n−1), returns a clustering C such that

φ(C) ≥ a · φ(COPT ) (2)

Proof: consider this instance on the real line, with k = 3, and X formed by
n − 2 points in [0, 1] and two “outliers” at x = 2

√
an and x = 3

√
an:

With probability 1− O( 1
n

), Lloyd’s draws at most 1 center among the outliers, in
which case it ends up φ(C) ≥ 2 · ( 1

2

√
an)2 > a · n

4
.

However, φ(COPT ) ≤ ( 1
2
)2 · n = n

4
(check it!).

15 / 21



Lloyd’s algorithm

Claim: for any constant a ≥ 1 (say, a = 1000000) there are instances on which
Lloyd’s algorithm, with probability 1− O(n−1), returns a clustering C such that

φ(C) ≥ a · φ(COPT ) (2)

Proof: consider this instance on the real line, with k = 3, and X formed by
n − 2 points in [0, 1] and two “outliers” at x = 2

√
an and x = 3

√
an:

With probability 1− O( 1
n

), Lloyd’s draws at most 1 center among the outliers, in
which case it ends up φ(C) ≥ 2 · ( 1

2

√
an)2 > a · n

4
.

However, φ(COPT ) ≤ ( 1
2
)2 · n = n

4
(check it!).

15 / 21



Lloyd’s algorithm

Claim: for any constant a ≥ 1 (say, a = 1000000) there are instances on which
Lloyd’s algorithm, with probability 1− O(n−1), returns a clustering C such that

φ(C) ≥ a · φ(COPT ) (2)

Proof: consider this instance on the real line, with k = 3, and X formed by
n − 2 points in [0, 1] and two “outliers” at x = 2

√
an and x = 3

√
an:

With probability 1− O( 1
n

), Lloyd’s draws at most 1 center among the outliers, in
which case it ends up φ(C) ≥ 2 · ( 1

2

√
an)2 > a · n

4
.

However, φ(COPT ) ≤ ( 1
2
)2 · n = n

4
(check it!).

15 / 21



Lloyd’s algorithm

Claim: the worst-case running time of Lloyd’s algorithm is 2Ω(
√
n).

Proof: see Arthur and Vassilvitskii, How slow is the k-means method? ,
Symposium on Computational Geometry, 2006.
https://doi.org/10.1145/1137856.1137880.
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Lloyd’s algorithm

Does it even converge?
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Back to k-means

Fundamental fact.

Let C ⊂ Rd be a finite set of points, and let µµµ be its center of mass:

µµµ =
1

|C |
∑
xxx∈C

xxx

Then, for any point ccc ∈ Rd , we have the identity:∑
xxx∈C

‖xxx − ccc‖2
2 =

∑
xxx∈C

‖xxx − µµµ‖2
2 + |C | · ‖ccc − µµµ‖2

2
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Lloyd’s algorithm always terminates

Theorem. Lloyd’s algorithm always terminates.

Proof stategy: We show that, if the centers are moved, then φ decreases strictly,
and it can do so at most kn times (the number of possible clusterings).
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Lloyd’s algorithm always terminates
Claim. In any given iteration, if some center is moved, then φ decreases strictly.

Proof. Recall the two steps of the iteration:

for i = 1, . . . , k let Ci = the set of points closest to ccc i
for i = 1, . . . , k let ccc i = the center of mass of Ci

Denote the state of the algorithm by:

ccc1, . . . ,ccck C1, . . . ,Ck at the beginning of the iteration

ccc1, . . . ,ccck C ′1, . . . ,C
′
k after the first step

ccc ′1, . . . ,ccc
′
k C ′1, . . . ,C

′
k after the second step

We denote

φ(ccc1, . . . ,ccck ,C1, . . . ,Ck) =
k∑

i=1

∑
xxx∈Ci

‖xxx − ccc i‖2
2 (3)
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Lloyd’s algorithm always terminates

First, we prove:

φ(ccc1, . . . ,ccck ,C1, . . . ,Ck) ≥ φ(ccc1, . . . ,ccck ,C
′
1, . . . ,C

′
k)

This holds since, for a fixed choice of ccc1, . . . ,ccck , the partition C ′1, . . . ,Ck

minimizes φ, since it assigns every point to the nearest center.
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Lloyd’s algorithm always terminates

Second, we prove that, if ccc ′i 6= ccc i for some i , then:

φ(ccc1, . . . ,ccck ,C
′
1, . . . ,C

′
k) > φ(ccc ′1, . . . ,ccc

′
k ,C

′
1, . . . ,C

′
k)

Consider indeed any such i and recall that ccc ′i is the center of mass of C ′i . By the
fundamental observation above,∑

xxx∈C ′
i

‖xxx − ccc i‖2
2 =

∑
xxx∈C ′

i

‖xxx − ccc ′i‖2
2 + |C ′i | · ‖ccc i − ccc ′i‖2

2

>
∑
xxx∈C ′

i

‖xxx − ccc ′i‖2
2

Summing over all clusters yields the claim.
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Lloyd’s algorithm always terminates

So, if some center is moved, we have:

φ(ccc1, . . . ,ccck ,C1, . . . ,Ck) ≥ φ(ccc1, . . . ,ccck ,C
′
1, . . . ,C

′
k) > φ(ccc ′1, . . . ,ccc

′
k ,C

′
1, . . . ,C

′
k)

which means that φ decreases strictly.
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Lloyd’s algorithm always terminates

Finally, we note that φ can decrease only a finite number of times.

First, φ is a function of the current clustering C1, . . . ,Ck , which can take on at
most kn distinct values. Thus, if the algorithm did more than kn iterations, it
would go twice over the same clustering. This implies that φ takes the same value
in two distinct iterations (ignoring the last one). This is absurd since φ always
decreases.

This completes the proof of the theorem.
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Lloyd’s algorithm

How much does one iteration of Lloyd’s algorithm take?

Algorithm 2: Lloyd(X , k)

choose k distinct points ccc1, . . . ,ccck u.a.r. from X ;
do

for i = 1, . . . , k let Ci = the set of points closest to ccc i ;
for i = 1, . . . , k let ccc i = the center of mass of Ci ;

until ccc1, . . . ,ccck do not change;
return ccc1, . . . ,ccck ;

⇒ O(n · k · d) per iteration
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Recap

k-means

• probably the most popular idea of “clustering”

• formalizes clustering as an optimization problem

• NP-hardness

Lloyd’s algorithm

• unbounded approximation ratio

• worst-case running time 2Ω(n)

• but, in practice, it works well

21 / 21


