K-MEANS CLUSTERING

Marco Bressan

Universita degli Studi di Milano

April 20, 2021



Clustering: super quick intro

Clustering = “group together similar objects”



Clustering: super quick intro

Clustering = “group together similar objects”

Unlike many basic computational problems (sorting, compression, ... ), clustering
is very vague and underspecified:

how do we represent objects?

what does “similar” mean?
® how many clusters should we form?

® how to measure the quality of a cluster?
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Today we will consider clustering of points in RY.



K-means

What does it mean for a clustering to be good?

A “good” clustering A “bad” clustering
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K-means

What does it mean for a clustering to be good?

A “good” clustering A “bad” clustering
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Intuition: a cluster is good if its points are all close to some “central” point.



K-means

Suppose we know k, the number of clusters to be formed.

Given an input set X C R, we choose k centers ci,...,c, € RY.
(Note: we are free to choose the centers anywhere — they need not be in X).

We assign every point x € X to the closest center among ¢y, ..., ¢, € RY.
We pay the cost:
¢ 2
p(€1, ... €)= XGZX min |lx — ¢;ll3

That is, each point pays the squared distance to its center.



Example with k=3
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Example with k=3

-'...::'o b ‘. C1:(40,59)
. ¢, = (10,11)
¢ = (71,-11)
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Example with k=3

50-

Ci1 = (40,59)
S c2 = (10,11)
s = (71, —11)

¢(C1, Co, C3) = 121368.6




K-means

Each choice of centers ¢, ..., ¢ identifies a clustering C = (Cy, ..., Ck):

CG={xeX:d(x,c)<d(x,g)Vj#i}



K-means

Each choice of centers ¢, ..., ¢ identifies a clustering C = (Cy, ..., Ck):

CG={xeX:d(x,c)<d(x,g)Vj#i}

The optimal k-means clustering, denoted by C°PT

centers that minimize ¢,

, is the one given by the

OPT OPT -
cr ., € = arg _min (c1,-..,Ck)
100 k



K-means

Each choice of centers ¢, ..., ¢ identifies a clustering C = (Cy, ..., Ck):
CG={xeX:d(x,c)<d(x,g)Vj#i}

The optimal k-means clustering, denoted by C°F7, is the one given by the

centers that minimize ¢,

oPT oPT -
cr ., € = arg _min o(c1y ... Ck)
1;--4,Ck

The optimal clusters are denoted COPT, ... CPPT.

Note that C°"T may not be unique.



K-means

Each choice of centers ¢, ..., ¢ identifies a clustering C = (Cy, ..., Ck):
CG={xeX:d(x,c)<d(x,g)Vj#i}

The optimal k-means clustering, denoted by C°F7, is the one given by the
centers that minimize ¢,

oPT oPT :
cy ',...,c ' =arg min ¢(cy,...,Ck)
C1,...,Ck
The optimal clusters are denoted COPT, ... CPPT.

Note that C°"T may not be unique.

So, the k-means problem is: given X, compute COFT.



K-means examples

Original unclustered data Clustered data
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K-means examples

Clusters formed by the optimized centroids
T o

% %

T
Cluster #1 data
Cluster #2 data
Cluster #3 data
Cluster #4 data
Cluster #1 centroid
Cluster #2 centroid
Cluster #3 centroid
Cluster #4 centroid




K-means examples
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Beware of the dimensionality!

When d = 2 or d = 3, finding the k-means solution looks easy, because the
human eye is good at it. This is not the case when d > 1.

“mpg ol disp  hp  dat  wt  asec s am  gear  carb
MazdaRX4 210 6 1600 110 390 2620 1646 0 1 4 4
Mazda RX4Wag 210 6 1600 110 390 2875 1702 0 1 4 4
50~ Datsun 710 228 4 1080 93 385 2320 1861 1 1 4 1
Hornet 4 Drive 214 6 2580 110 308 3215 1944 1 0 3 1
« Hornet Sportabout 18.7 8 3600 175 315 3440 1702 0O 0 3 2
> Valiant 181 6 2250 105 276 3460 2022 1 0 3 1
Duster 360 143 8§ 3600 245 321 3570 1584 0 0 3 4
0- Merc240D 244 4 1467 62 369 3190 2000 1 0 4 2
Merc230 228 4 1408 95 392 3150 2290 1 0 4 2
* Merc280 192 6 1676 123 392 3440 1830 1 0 4 4
* Merc280C 17.8 6 1676 123 392 3440 1890 1 0 4 4
Merc450SE 164 8 2758 180 307 4070 1740 0 0 3 3
0 25 50 75 100 Merc4s0sL 173 8§ 2758 180 307 3730 1760 0 0 3 3



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T < (1)



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T < 4 partitions of n points on k clusters (1)



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T < # partitions of n points on k clusters ~ k" (1)



How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

T < # partitions of n points on k clusters ~ k" (1)

k-means is NP-hard (Aloise et al., 2009).



Interlude: distances

Why are we using the squared Euclidean distance 7



Interlude: distances

Why are we using the squared Euclidean distance ?

Consider 10 points at distance 1 from the center:
$»=10x1>=10

versus 1 point at distance 10 from the center:

¢ =1x10*=100



Interlude: distances

Why are we using the squared Euclidean distance ?
Consider 10 points at distance 1 from the center:
$»=10x1>=10
versus 1 point at distance 10 from the center:
¢ =1x10*=100

It's like progressive taxes: the farther from the center you are, the more (in

proportion) you pay. This tends to give “round” clusters with points roughly
equally close to the center.



X={1,....88CR k=2

° A ° ° ° A . °
f c1=(2,0), ¢, =(6,0)

Ci = (25,0), Cr = (65,0)



X={1,....88CR k=2

° ' ° ° ° A ° °
f c1=(2,0), ¢, =(6,0)
SwexMin g X —¢jlla=(1+1)+(2+1+1+2)=8

° o A o ° ° o A e °
H C1 = (25,0), Cr = (65,0)
> xex Min' Ix —¢jflo = (1.5+05+05+15)-2=38



X={1,... 8} CR, k=2

° A ° ° ° A ° °

: c1=(2,0), c,=(6,0)
SwexMin g X —¢jlla=(1+1)+(2+1+1+2)=8
Swexminy Ix—¢l3=(1+1)+(4+1+1+4)=12

° o A o oo o A e °

H C1 = (25,0), Cr = (65,0)
> xex Min' Ix —¢jflo = (1.5+05+05+15)-2=38
> xex Min' [Ix — ¢;[3 = (1.5 + 0.5 + 0.5 + 1.5%) - 2 = 10 < k-means



Lloyd's algorithm

The main and most used k-means algorithm: Lloyd's algorithm.

(Very often, by “k-means” people actually mean Lloyd's algorithm.)

Algorithm 1: Lloyd(X, k)

choose k distinct points ¢1, ..., ¢y u.a.r. from X,
do
fori=1,..., k let C; = the set of points closest to c;;
for i =1,... k let ¢; = the center of mass of C;;
until ¢4, ..., ¢, do not change;

return Cy, ..., Cy;
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Lloyd's algorithm

Iteration #6
W] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




Lloyd's algorithm

Iteration #7
W] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




Lloyd's algorithm

Iteration #8
W] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




Lloyd's algorithm

Iteration #9
W] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




Lloyd's algorithm

Iteration #10
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Lloyd's algorithm

Iteration #11
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Lloyd's algorithm

Iteration #12
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Lloyd's algorithm

Iteration #13
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Lloyd's algorithm

Iteration #14
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Lloyd's algorithm

® Does it find the optimal clustering? NO
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® Does it find an almost-optimal clustering? NO



Lloyd's algorithm

® Does it find the optimal clustering? NO
® Does it find an almost-optimal clustering? NO

® Does it have good running time? NO



Lloyd's algorithm

Does it find the optimal clustering? NO

Does it find an almost-optimal clustering? NO

Does it have good running time? NO

Why is it so used? It works well in practice



Lloyd's algorithm

Claim: for any constant a > 1 (say, a = 1000000) there are instances on which
Lloyd's algorithm, with probability 1 — O(n~!), returns a clustering C such that

¢(C) = a- ¢(Copr) (2)



Lloyd's algorithm

Claim: for any constant a > 1 (say, a = 1000000) there are instances on which
Lloyd's algorithm, with probability 1 — O(n~!), returns a clustering C such that

¢(C) = a- ¢(Copr) (2)

Proof: consider this instance on the real line, with kK = 3, and X formed by
n — 2 points in [0,1] and two “outliers” at x = 2y/an and x = 3y/an:




Lloyd's algorithm

Claim: for any constant a > 1 (say, a = 1000000) there are instances on which
Lloyd's algorithm, with probability 1 — O(n~!), returns a clustering C such that

¢(C) = a- ¢(Copr) (2)

Proof: consider this instance on the real line, with kK = 3, and X formed by
n — 2 points in [0,1] and two “outliers” at x = 2y/an and x = 3y/an:

eodbedheee—— o A 0 o

With probability 1 — (%) d s draws at most 1 center among the outliers, in
which case it ends up gb(C) 2-(3van)?>a-
)

However, ¢(Copr) < (3 = 7 (check it!).



Lloyd's algorithm

Claim: the worst-case running time of Lloyd’s algorithm is 22(v7)

Proof: see Arthur and Vassilvitskii, How slow is the k-means method?

Symposium on Computational Geometry, 2006.
https://doi.org/10.1145/1137856.1137880.


https://doi.org/10.1145/1137856.1137880

Lloyd's algorithm

Does it even converge?



Back to k-means

Fundamental fact.
Let C C R be a finite set of points, and let p be its center of mass:
1
b o
’C’xeC

Then, for any point ¢ € RY, we have the identity:

Dolx—clz=>lix—nul + [Cl-llc—pl

xeC xeC



Lloyd’s algorithm always terminates

Theorem. Lloyd's algorithm always terminates.

Proof stategy: We show that, if the centers are moved, then ¢ decreases strictly,
and it can do so at most k" times (the number of possible clusterings).



Lloyd’s algorithm always terminates

Claim. In any given iteration, if some center is moved, then ¢ decreases strictly.

Proof. Recall the two steps of the iteration:

fori =1,..., k let C; = the set of points closest to c;
fori =1,..., k let c; = the center of mass of (;

Denote the state of the algorithm by:

Ci,...,Ck Gy, Gk at the beginning of the iteration

Ci,...,Cxk c,...,C after the first step

€y, Ch c,...,C after the second step
We denote

k
I e s B N PR (3)

i=1 xeG;



Lloyd’s algorithm always terminates

First, we prove:

o(cr, . ¢k, Gy Go) > o€ty .. €k, G, o0, CL)



Lloyd’s algorithm always terminates

First, we prove:
o(cr, . ¢k, Gy Go) > o€ty .. €k, G, o0, CL)

This holds since, for a fixed choice of ¢y, ..., ¢k, the partition Cj, ..., C
minimizes ¢, since it assigns every point to the nearest center.



Lloyd’s algorithm always terminates

Second, we prove that, if ¢’ # ¢; for some i, then:
p i

o(cr,. €k, Gy, C) > o(cy, ... €, Gy, CL)



Lloyd’s algorithm always terminates

Second, we prove that, if ¢! # c; for some i, then:
o(cr,. €k, Gy, C) > o(cy, ... €, Gy, CL)

Consider indeed any such i and recall that ¢’ is the center of mass of C/. By the
fundamental observation above,

Do lx—cili= Ix—cil+1C| - llei —cill3

xe(] xe(]

> llx =<l

xeC!

Summing over all clusters yields the claim.



Lloyd’s algorithm always terminates

So, if some center is moved, we have:
o(cr, . ¢k, Gyt Go) > o(et, ... €k, G, .o, C) > o(cl, ..., ch, G, C)

which means that ¢ decreases strictly.



Lloyd’s algorithm always terminates

Finally, we note that ¢ can decrease only a finite number of times.



Lloyd’s algorithm always terminates

Finally, we note that ¢ can decrease only a finite number of times.

First, ¢ is a function of the current clustering Ci, ..., Ci, which can take on at
most k" distinct values. Thus, if the algorithm did more than k" iterations, it
would go twice over the same clustering. This implies that ¢ takes the same value
in two distinct iterations (ignoring the last one). This is absurd since ¢ always

decreases.



Lloyd’s algorithm always terminates

Finally, we note that ¢ can decrease only a finite number of times.

First, ¢ is a function of the current clustering Ci, ..., Ci, which can take on at
most k" distinct values. Thus, if the algorithm did more than k" iterations, it
would go twice over the same clustering. This implies that ¢ takes the same value
in two distinct iterations (ignoring the last one). This is absurd since ¢ always
decreases.

This completes the proof of the theorem.



Lloyd's algorithm

How much does one iteration of Lloyd’s algorithm take?

Algorithm 2: Lloyd(X, k)

choose k distinct points ¢, ..., cx u.a.r. from X;
do
fori=1,..., k let C; = the set of points closest to c;;
for i=1,... k let ¢; = the center of mass of C;;
until ¢4, ..., c, do not change;

return Cy,...,Cy;




Lloyd's algorithm

How much does one iteration of Lloyd’s algorithm take?

Algorithm 3: Lloyd(X, k)
choose k distinct points cq,...,cy u.a.r. from X;

do

[

for x € X let i, = arg min;eq ||x — ¢;l[3;

for i=1,..., k let ¢; = the center of mass of C;;
until ¢4, ..., c, do not change;
return Ccy,...,Cy;

= O(n- k - d) per iteration



k-means

® probably the most popular idea of “clustering”

e formalizes clustering as an optimization problem
® NP-hardness

Lloyd’s algorithm
® unbounded approximation ratio
® worst-case running time 22"

® but, in practice, it works well



