K-MEANS CLUSTERING

Marco Bressan

Università degli Studi di Milano

April 20, 2021

Clustering: super quick intro

Clustering $=$ "group together similar objects"

Clustering: super quick intro

Clustering $=$ "group together similar objects"
Unlike many basic computational problems (sorting, compression, ...), clustering is very vague and underspecified:

- how do we represent objects?
- what does "similar" mean?
- how many clusters should we form?
- how to measure the quality of a cluster?

Examples

Examples

Examples

Today we will consider clustering of points in \mathbb{R}^{d}.

K-means

What does it mean for a clustering to be good?

K-means

What does it mean for a clustering to be good?

Intuition: a cluster is good if its points are all close to some "central" point.

K-means

Suppose we know k, the number of clusters to be formed.
Given an input set $X \subset \mathbb{R}^{d}$, we choose k centers $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k} \in \mathbb{R}^{d}$.
(Note: we are free to choose the centers anywhere - they need not be in X).
We assign every point $\boldsymbol{x} \in X$ to the closest center among $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k} \in \mathbb{R}^{d}$.
We pay the cost:

$$
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)=\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}^{2}
$$

That is, each point pays the squared distance to its center.

Example with $\mathrm{k}=3$

Example with $\mathrm{k}=3$

Example with $\mathrm{k}=3$

K-means

Each choice of centers $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$ identifies a clustering $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$:

$$
C_{i}=\left\{x \in X: d\left(x, c_{i}\right)<d\left(x, c_{j}\right) \forall j \neq i\right\}
$$

K-means

Each choice of centers $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$ identifies a clustering $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$:

$$
C_{i}=\left\{x \in X: d\left(x, c_{i}\right)<d\left(x, c_{j}\right) \forall j \neq i\right\}
$$

The optimal \mathbf{k}-means clustering, denoted by $\mathcal{C}^{\text {OPT }}$, is the one given by the centers that minimize ϕ,

$$
\boldsymbol{c}_{1}^{\text {OPT }}, \ldots, \boldsymbol{c}_{k}^{\text {OPT }}=\arg \min _{c_{1}, \ldots, c_{k}} \phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)
$$

K-means

Each choice of centers $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$ identifies a clustering $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$:

$$
C_{i}=\left\{x \in X: d\left(x, c_{i}\right)<d\left(x, c_{j}\right) \forall j \neq i\right\}
$$

The optimal k-means clustering, denoted by $\mathcal{C}^{\text {OPT }}$, is the one given by the centers that minimize ϕ,

$$
c_{1}^{\text {OPT }}, \ldots, \boldsymbol{c}_{k}^{\text {OPT }}=\arg \min _{c_{1}, \ldots, c_{k}} \phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)
$$

The optimal clusters are denoted $C_{1}^{O P T}, \ldots, C_{k}^{\text {OPT }}$.
Note that $\mathcal{C}^{O P T}$ may not be unique.

K-means

Each choice of centers $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$ identifies a clustering $\mathcal{C}=\left(C_{1}, \ldots, C_{k}\right)$:

$$
C_{i}=\left\{x \in X: d\left(x, c_{i}\right)<d\left(x, c_{j}\right) \forall j \neq i\right\}
$$

The optimal \mathbf{k}-means clustering, denoted by $\mathcal{C}^{\text {OPT }}$, is the one given by the centers that minimize ϕ,

$$
\boldsymbol{c}_{1}^{\text {OPT }}, \ldots, \boldsymbol{c}_{k}^{\text {OPT }}=\arg \min _{\boldsymbol{c}_{1}, \ldots, c_{k}} \phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\right)
$$

The optimal clusters are denoted $C_{1}^{O P T}, \ldots, C_{k}^{\text {OPT }}$.
Note that $\mathcal{C}^{\text {OPT }}$ may not be unique.
So, the k-means problem is: given X, compute $\mathcal{C}^{\text {OPT }}$.

K-means examples

K-means examples

Clusters formed by the optimized centroids

K-means examples

Beware of the dimensionality!

When $d=2$ or $d=3$, finding the k-means solution looks easy, because the human eye is good at it. This is not the case when $d \gg 1$.

How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:

$$
\begin{equation*}
T \leq \tag{1}
\end{equation*}
$$

How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:
$T \leq \#$ partitions of n points on k clusters

How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:
$T \leq \#$ partitions of n points on k clusters $\simeq k^{n}$

How to solve k-means?

Dumb approach: exhaustive enumeration.

Running time:
$T \leq \#$ partitions of n points on k clusters $\simeq k^{n}$
k-means is NP-hard (Aloise et al., 2009).

Interlude: distances

Why are we using the squared Euclidean distance?

Interlude: distances

Why are we using the squared Euclidean distance ?
Consider 10 points at distance 1 from the center:

$$
\phi=10 \times 1^{2}=10
$$

versus 1 point at distance 10 from the center:

$$
\phi=1 \times 10^{2}=100
$$

Interlude: distances

Why are we using the squared Euclidean distance ?
Consider 10 points at distance 1 from the center:

$$
\phi=10 \times 1^{2}=10
$$

versus 1 point at distance 10 from the center:

$$
\phi=1 \times 10^{2}=100
$$

It's like progressive taxes: the farther from the center you are, the more (in proportion) you pay. This tends to give "round" clusters with points roughly equally close to the center.

Example

$$
X=\{1, \ldots, 8\} \subset \mathbb{R}, k=2
$$

- - • • • • •

$$
\boldsymbol{c}_{1}=(2,0), \quad \boldsymbol{c}_{2}=(6,0)
$$

$$
c_{1}=(2.5,0), \quad c_{2}=(6.5,0)
$$

Example

$$
X=\{1, \ldots, 8\} \subset \mathbb{R}, k=2
$$

$$
\text { - • • • • } \boldsymbol{c}_{1}=(2,0), \quad \boldsymbol{c}_{2}=(6,0)
$$

$$
\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}=(1+1)+(2+1+1+2)=8
$$

- Δ •

$$
\boldsymbol{c}_{1}=(2.5,0), \quad \boldsymbol{c}_{2}=(6.5,0)
$$

$\sum_{x \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}=(1.5+0.5+0.5+1.5) \cdot 2=8$

Example

$$
X=\{1, \ldots, 8\} \subset \mathbb{R}, k=2
$$

$$
\boldsymbol{c}_{1}=(2,0), \quad \boldsymbol{c}_{2}=(6,0)
$$

$\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}=(1+1)+(2+1+1+2)=8$
$\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}^{2}=(1+1)+(4+1+1+4)=12$

$$
\boldsymbol{c}_{1}=(2.5,0), \quad \boldsymbol{c}_{2}=(6.5,0)
$$

$\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}=(1.5+0.5+0.5+1.5) \cdot 2=8$
$\sum_{\boldsymbol{x} \in X} \min _{j=1}^{k}\left\|\boldsymbol{x}-\boldsymbol{c}_{j}\right\|_{2}^{2}=\left(1.5^{2}+0.5^{2}+0.5^{2}+1.5^{2}\right) \cdot 2=10 \leftarrow \mathbf{k}$-means

Lloyd's algorithm

The main and most used k-means algorithm: Lloyd's algorithm.
(Very often, by "k-means" people actually mean Lloyd's algorithm.)

```
Algorithm 1: \(\operatorname{Lloyd}(X, k)\)
choose \(k\) distinct points \(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\) u.a.r. from \(X\);
do
    for \(i=1, \ldots, k\) let \(C_{i}=\) the set of points closest to \(\boldsymbol{c}_{i}\);
    for \(i=1, \ldots, k\) let \(c_{i}=\) the center of mass of \(C_{i}\);
until \(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\) do not change;
return \(C_{1}, \ldots, C_{k}\);
```


Lloyd's algorithm

Lloyd's algorithm

- Does it find the optimal clustering? NO

Lloyd's algorithm

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO

Lloyd's algorithm

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO
- Does it have good running time? NO

Lloyd's algorithm

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO
- Does it have good running time? NO
- Why is it so used? It works well in practice

Lloyd's algorithm

Claim: for any constant $a \geq 1$ (say, $a=1000000$) there are instances on which Lloyd's algorithm, with probability $1-O\left(n^{-1}\right)$, returns a clustering \mathcal{C} such that

$$
\begin{equation*}
\phi(\mathcal{C}) \geq a \cdot \phi\left(\mathcal{C}_{\text {OPT }}\right) \tag{2}
\end{equation*}
$$

Lloyd's algorithm

Claim: for any constant $a \geq 1$ (say, $a=1000000$) there are instances on which Lloyd's algorithm, with probability $1-O\left(n^{-1}\right)$, returns a clustering \mathcal{C} such that

$$
\begin{equation*}
\phi(\mathcal{C}) \geq a \cdot \phi\left(\mathcal{C}_{\text {OPT }}\right) \tag{2}
\end{equation*}
$$

Proof: consider this instance on the real line, with $k=3$, and X formed by $n-2$ points in $[0,1]$ and two "outliers" at $x=2 \sqrt{a n}$ and $x=3 \sqrt{a n}$:

Lloyd's algorithm

Claim: for any constant $a \geq 1$ (say, $a=1000000$) there are instances on which Lloyd's algorithm, with probability $1-O\left(n^{-1}\right)$, returns a clustering \mathcal{C} such that

$$
\begin{equation*}
\phi(\mathcal{C}) \geq a \cdot \phi\left(\mathcal{C}_{\text {OPT }}\right) \tag{2}
\end{equation*}
$$

Proof: consider this instance on the real line, with $k=3$, and X formed by $n-2$ points in $[0,1]$ and two "outliers" at $x=2 \sqrt{a n}$ and $x=3 \sqrt{a n}$:

With probability $1-O\left(\frac{1}{n}\right)$, Lloyd's draws at most 1 center among the outliers, in which case it ends up $\phi(\mathcal{C}) \geq 2 \cdot\left(\frac{1}{2} \sqrt{a n}\right)^{2}>a \cdot \frac{n}{4}$. However, $\phi\left(\mathcal{C}_{\text {OPT }}\right) \leq\left(\frac{1}{2}\right)^{2} \cdot n=\frac{n}{4}$ (check it!).

Lloyd's algorithm

Claim: the worst-case running time of Lloyd's algorithm is $2^{\Omega(\sqrt{n})}$.

Proof: see Arthur and Vassilvitskii, How slow is the k-means method?, Symposium on Computational Geometry, 2006.
https://doi.org/10.1145/1137856.1137880.

Does it even converge?

Back to k-means

Fundamental fact.

Let $C \subset \mathbb{R}^{d}$ be a finite set of points, and let μ be its center of mass:

$$
\mu=\frac{1}{|C|} \sum_{x \in C} x
$$

Then, for any point $c \in \mathbb{R}^{d}$, we have the identity:

$$
\sum_{\boldsymbol{x} \in C}\|\boldsymbol{x}-\boldsymbol{c}\|_{2}^{2}=\sum_{\boldsymbol{x} \in C}\|\boldsymbol{x}-\boldsymbol{\mu}\|_{2}^{2}+|C| \cdot\|\boldsymbol{c}-\boldsymbol{\mu}\|_{2}^{2}
$$

Lloyd's algorithm always terminates

Theorem. Lloyd's algorithm always terminates.
Proof stategy: We show that, if the centers are moved, then ϕ decreases strictly, and it can do so at most k^{n} times (the number of possible clusterings).

Lloyd's algorithm always terminates

Claim. In any given iteration, if some center is moved, then ϕ decreases strictly.
Proof. Recall the two steps of the iteration:

$$
\begin{aligned}
& \text { for } i=1, \ldots, k \text { let } C_{i}=\text { the set of points closest to } \boldsymbol{c}_{i} \\
& \text { for } i=1, \ldots, k \text { let } \boldsymbol{c}_{i}=\text { the center of mass of } C_{i}
\end{aligned}
$$

Denote the state of the algorithm by:

$\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$	C_{1}, \ldots, C_{k}
$\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$	$C_{1}^{\prime}, \ldots, C_{k}^{\prime}$
$\boldsymbol{c}_{1}^{\prime}, \ldots, \boldsymbol{c}_{k}^{\prime}$	$C_{1}^{\prime}, \ldots, C_{k}^{\prime}$

We denote

$$
\begin{equation*}
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}, \ldots, C_{k}\right)=\sum_{i=1}^{k} \sum_{\boldsymbol{x} \in C_{i}}\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

Lloyd's algorithm always terminates

First, we prove:

$$
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}, \ldots, C_{k}\right) \geq \phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)
$$

Lloyd's algorithm always terminates

First, we prove:

$$
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}, \ldots, C_{k}\right) \geq \phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)
$$

This holds since, for a fixed choice of $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}$, the partition $C_{1}^{\prime}, \ldots, C_{k}$ minimizes ϕ, since it assigns every point to the nearest center.

Lloyd's algorithm always terminates

Second, we prove that, if $\boldsymbol{c}_{i}^{\prime} \neq \boldsymbol{c}_{\boldsymbol{i}}$ for some i, then:

$$
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)>\phi\left(\boldsymbol{c}_{1}^{\prime}, \ldots, \boldsymbol{c}_{k}^{\prime}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)
$$

Lloyd's algorithm always terminates

Second, we prove that, if $\boldsymbol{c}_{i}^{\prime} \neq \boldsymbol{c}_{i}$ for some i, then:

$$
\phi\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)>\phi\left(\boldsymbol{c}_{1}^{\prime}, \ldots, \boldsymbol{c}_{k}^{\prime}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)
$$

Consider indeed any such i and recall that $\boldsymbol{c}_{i}^{\prime}$ is the center of mass of C_{i}^{\prime}. By the fundamental observation above,

$$
\begin{aligned}
\sum_{\boldsymbol{x} \in C_{i}^{\prime}}\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|_{2}^{2} & =\sum_{\boldsymbol{x} \in C_{i}^{\prime}}\left\|\boldsymbol{x}-\boldsymbol{c}_{i}^{\prime}\right\|_{2}^{2}+\left|C_{i}^{\prime}\right| \cdot\left\|\boldsymbol{c}_{i}-\boldsymbol{c}_{i}^{\prime}\right\|_{2}^{2} \\
& >\sum_{\boldsymbol{x} \in C_{i}^{\prime}}\left\|\boldsymbol{x}-\boldsymbol{c}_{i}^{\prime}\right\|_{2}^{2}
\end{aligned}
$$

Summing over all clusters yields the claim.

Lloyd's algorithm always terminates

So, if some center is moved, we have:

$$
\phi\left(c_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}, \ldots, C_{k}\right) \geq \phi\left(c_{1}, \ldots, \boldsymbol{c}_{k}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)>\phi\left(\boldsymbol{c}_{1}^{\prime}, \ldots, \boldsymbol{c}_{k}^{\prime}, C_{1}^{\prime}, \ldots, C_{k}^{\prime}\right)
$$

which means that ϕ decreases strictly.

Lloyd's algorithm always terminates

Finally, we note that ϕ can decrease only a finite number of times.

Lloyd's algorithm always terminates

Finally, we note that ϕ can decrease only a finite number of times.
First, ϕ is a function of the current clustering C_{1}, \ldots, C_{k}, which can take on at most k^{n} distinct values. Thus, if the algorithm did more than k^{n} iterations, it would go twice over the same clustering. This implies that ϕ takes the same value in two distinct iterations (ignoring the last one). This is absurd since ϕ always decreases.

Lloyd's algorithm always terminates

Finally, we note that ϕ can decrease only a finite number of times.
First, ϕ is a function of the current clustering C_{1}, \ldots, C_{k}, which can take on at most k^{n} distinct values. Thus, if the algorithm did more than k^{n} iterations, it would go twice over the same clustering. This implies that ϕ takes the same value in two distinct iterations (ignoring the last one). This is absurd since ϕ always decreases.

This completes the proof of the theorem.

Lloyd's algorithm

How much does one iteration of Lloyd's algorithm take?

```
Algorithm 2: Lloyd(X,k)
choose }k\mathrm{ distinct points }\mp@subsup{\boldsymbol{c}}{1}{},\ldots,\mp@subsup{\boldsymbol{c}}{k}{}\mathrm{ u.a.r. from X;
do
    for i=1,\ldots,k let Ci= the set of points closest to }\mp@subsup{\boldsymbol{c}}{i}{}\mathrm{ ;
    for i=1,\ldots,k let c}\mp@subsup{\boldsymbol{c}}{i}{}=\mathrm{ the center of mass of }\mp@subsup{C}{i}{}
until }\mp@subsup{\boldsymbol{c}}{1}{},\ldots,\mp@subsup{\boldsymbol{c}}{k}{}\mathrm{ do not change;
return c}\mp@subsup{\boldsymbol{c}}{1}{},\ldots,\mp@subsup{c}{k}{}
```


Lloyd's algorithm

How much does one iteration of Lloyd's algorithm take?

```
Algorithm 3: Lloyd \((X, k)\)
choose \(k\) distinct points \(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\) u.a.r. from \(X\);
do
    for \(i=1, \ldots, k\) let \(C_{i}=\) the set of points closest to \(\boldsymbol{C}_{i}\);
    for \(\boldsymbol{x} \in X\) let \(i_{x}=\arg \min _{i \in[k]}\left\|\boldsymbol{x}-\boldsymbol{c}_{i}\right\|_{2}^{2}\);
    for \(i=1, \ldots, k\) let \(\boldsymbol{c}_{i}=\) the center of mass of \(C_{i}\);
until \(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\) do not change;
return \(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{k}\);
\(\Rightarrow O(n \cdot k \cdot d)\) per iteration
```


Recap

k-means

- probably the most popular idea of "clustering"
- formalizes clustering as an optimization problem
- NP-hardness

Lloyd's algorithm

- unbounded approximation ratio
- worst-case running time $2^{\Omega(n)}$
- but, in practice, it works well

