K-MEANS CLUSTERING

Marco Bressan

Università degli Studi di Milano

April 20, 2021

Clustering = "group together similar objects"

Clustering = "group together similar objects"

Unlike many basic computational problems (sorting, compression, ...), clustering is very **vague** and **underspecified**:

- how do we represent objects?
- what does "similar" mean?
- how many clusters should we form?
- how to measure the quality of a cluster?

Examples

Examples

Today we will consider clustering of points in \mathbb{R}^d .

What does it mean for a clustering to be good?

What does it mean for a clustering to be good?

Intuition: a cluster is good if its points are all close to some "central" point.

Suppose we know k, the number of clusters to be formed.

Given an input set $X \subset \mathbb{R}^d$, we choose k centers $c_1, \ldots, c_k \in \mathbb{R}^d$. (Note: we are free to choose the centers anywhere — they need not be in X). We assign every point $x \in X$ to the closest center among $c_1, \ldots, c_k \in \mathbb{R}^d$. We pay the cost:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k) = \sum_{\boldsymbol{x}\in\boldsymbol{X}} \min_{j=1}^k \|\boldsymbol{x}-\boldsymbol{c}_j\|_2^2$$

That is, each point pays the squared distance to its center.

Example with k=3

Example with k=3

$$egin{aligned} m{c}_1 &= (40, 59) \ m{c}_2 &= (10, 11) \ m{c}_3 &= (71, -11) \end{aligned}$$

Example with k=3

$$egin{aligned} m{c}_1 &= (40, 59) \ m{c}_2 &= (10, 11) \ m{c}_3 &= (71, -11) \ \phi(m{c}_1, m{c}_2, m{c}_3) &= 121368.6 \end{aligned}$$

Each choice of centers $\boldsymbol{c}_1, \ldots, \boldsymbol{c}_k$ identifies a clustering $\mathcal{C} = (C_1, \ldots, C_k)$:

$$C_i = \{x \in X : d(x, c_i) < d(x, c_j) \,\forall j \neq i\}$$

Each choice of centers $\boldsymbol{c}_1, \ldots, \boldsymbol{c}_k$ identifies a clustering $\mathcal{C} = (C_1, \ldots, C_k)$:

$$C_i = \{x \in X : d(x, c_i) < d(x, c_j) \,\forall j \neq i\}$$

The **optimal k-means clustering**, denoted by C^{OPT} , is the one given by the centers that minimize ϕ ,

$$oldsymbol{c}_1^{OPT},\ldots,oldsymbol{c}_k^{OPT}=rg\min_{oldsymbol{c}_1,\ldots,oldsymbol{c}_k}\phi(oldsymbol{c}_1,\ldots,oldsymbol{c}_k)$$

Each choice of centers $\boldsymbol{c}_1, \ldots, \boldsymbol{c}_k$ identifies a clustering $\mathcal{C} = (C_1, \ldots, C_k)$:

$$C_i = \{x \in X : d(x, c_i) < d(x, c_j) \,\forall j \neq i\}$$

The **optimal k-means clustering**, denoted by C^{OPT} , is the one given by the centers that minimize ϕ ,

$$oldsymbol{c}_1^{OPT},\ldots,oldsymbol{c}_k^{OPT} = rg\min_{oldsymbol{c}_1,\ldots,oldsymbol{c}_k} \phi(oldsymbol{c}_1,\ldots,oldsymbol{c}_k)$$

The optimal clusters are denoted $C_1^{OPT}, \ldots, C_k^{OPT}$. Note that C^{OPT} may not be unique.

Each choice of centers $\boldsymbol{c}_1, \ldots, \boldsymbol{c}_k$ identifies a clustering $\mathcal{C} = (C_1, \ldots, C_k)$:

$$C_i = \{x \in X : d(x, c_i) < d(x, c_j) \,\forall j \neq i\}$$

The **optimal k-means clustering**, denoted by C^{OPT} , is the one given by the centers that minimize ϕ ,

$$oldsymbol{c}_1^{OPT},\ldots,oldsymbol{c}_k^{OPT}=rg\min_{oldsymbol{c}_1,\ldots,oldsymbol{c}_k}\phi(oldsymbol{c}_1,\ldots,oldsymbol{c}_k)$$

The optimal clusters are denoted $C_1^{OPT}, \ldots, C_k^{OPT}$. Note that C^{OPT} may not be unique.

So, the k-means problem is: given X, compute C^{OPT} .

K-means examples

K-means examples

Clusters formed by the optimized centroids Cluster #1 data Cluster #2 data Cluster #3 data Cluster #4 data Cluster #1 centroid Cluster #2 centroid * Cluster #3 centroid Cluster #4 centroid 6 10 12

K-means examples

When d = 2 or d = 3, finding the k-means solution looks easy, because the human eye is good at it. This is not the case when $d \gg 1$.

S

d=2

•	mpg °	cyl 0	disp 0	hp 0	drat 0	wt °	qsec °	vs 0	am 0	gear 0	carb $^{\circ}$
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3

Running time:

 $T \leq$

(1)

Running time:

 $T \leq \#$ partitions of *n* points on *k* clusters

(1)

Running time:

 $T \leq \#$ partitions of n points on k clusters $\ \simeq k^n$

(1)

Running time:

 $\mathcal{T} \leq \#$ partitions of n points on k clusters $\ \simeq k^n$

(1)

k-means is NP-hard (Aloise et al., 2009).

Interlude: distances

Why are we using the squared Euclidean distance ?

Why are we using the squared Euclidean distance ?

Consider 10 points at distance 1 from the center:

 $\phi = 10 imes 1^2 = 10$

versus 1 point at distance 10 from the center:

 $\phi = 1 imes 10^2 = 100$

Why are we using the squared Euclidean distance ?

Consider 10 points at distance 1 from the center:

 $\phi = 10 imes 1^2 = 10$

versus 1 point at distance 10 from the center:

 $\phi = 1 imes 10^2 = 100$

It's like progressive taxes: the farther from the center you are, the more (in proportion) you pay. This tends to give "round" clusters with points roughly equally close to the center.

Example

$$c_1 = (2.5, 0), \ c_2 = (6.5, 0)$$

Example

Example

The main and most used k-means algorithm: Lloyd's algorithm.

(Very often, by "k-means" people actually mean Lloyd's algorithm.)

Algorithm 1: Lloyd(X, k)

choose k distinct points c_1, \ldots, c_k u.a.r. from X;

for i = 1, ..., k let C_i = the set of points closest to c_i ; for i = 1, ..., k let c_i = the center of mass of C_i ; **until** $c_1, ..., c_k$ do not change; return $C_1, ..., C_k$;

• Does it find the optimal clustering? NO

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO
- Does it have good running time? **NO**

- Does it find the optimal clustering? NO
- Does it find an almost-optimal clustering? NO
- Does it have good running time? **NO**
- Why is it so used? It works well in practice

Claim: for any constant $a \ge 1$ (say, a = 1000000) there are instances on which Lloyd's algorithm, with probability $1 - O(n^{-1})$, returns a clustering C such that

$$\phi(\mathcal{C}) \ge \mathbf{a} \cdot \phi(\mathcal{C}_{OPT}) \tag{2}$$

Claim: for any constant $a \ge 1$ (say, a = 1000000) there are instances on which Lloyd's algorithm, with probability $1 - O(n^{-1})$, returns a clustering C such that

$$\phi(\mathcal{C}) \ge \mathbf{a} \cdot \phi(\mathcal{C}_{OPT}) \tag{2}$$

Proof: consider this instance on the real line, with k = 3, and X formed by n - 2 points in [0, 1] and two "outliers" at $x = 2\sqrt{an}$ and $x = 3\sqrt{an}$:

Claim: for any constant $a \ge 1$ (say, a = 1000000) there are instances on which Lloyd's algorithm, with probability $1 - O(n^{-1})$, returns a clustering C such that

$$\phi(\mathcal{C}) \ge \mathbf{a} \cdot \phi(\mathcal{C}_{OPT}) \tag{2}$$

Proof: consider this instance on the real line, with k = 3, and X formed by n - 2 points in [0, 1] and two "outliers" at $x = 2\sqrt{an}$ and $x = 3\sqrt{an}$:

With probability $1 - O(\frac{1}{n})$, Lloyd's draws at most 1 center among the outliers, in which case it ends up $\phi(\mathcal{C}) \ge 2 \cdot (\frac{1}{2}\sqrt{an})^2 > a \cdot \frac{n}{4}$. However, $\phi(\mathcal{C}_{OPT}) \le (\frac{1}{2})^2 \cdot n = \frac{n}{4}$ (check it!). **Claim:** the worst-case running time of Lloyd's algorithm is $2^{\Omega(\sqrt{n})}$.

Proof: see Arthur and Vassilvitskii, *How slow is the k-means method?*, Symposium on Computational Geometry, 2006. https://doi.org/10.1145/1137856.1137880. Does it even converge?

Fundamental fact.

Let $C \subset \mathbb{R}^d$ be a finite set of points, and let μ be its center of mass:

$$\mu = rac{1}{|C|} \sum_{\mathbf{x} \in C} \mathbf{x}$$

Then, for any point $\boldsymbol{c} \in \mathbb{R}^d$, we have the identity:

$$\sum_{\bm{x}\in C} \|\bm{x}-\bm{c}\|_2^2 = \sum_{\bm{x}\in C} \|\bm{x}-\bm{\mu}\|_2^2 + \|C|\cdot\|\bm{c}-\bm{\mu}\|_2^2$$

Theorem. Lloyd's algorithm always terminates.

Proof stategy: We show that, if the centers are moved, then ϕ decreases *strictly*, and it can do so at most k^n times (the number of possible clusterings).

Lloyd's algorithm always terminates

Claim. In any given iteration, if some center is moved, then ϕ decreases strictly.

Proof. Recall the two steps of the iteration:

for i = 1, ..., k let C_i = the set of points closest to c_i for i = 1, ..., k let c_i = the center of mass of C_i

Denote the state of the algorithm by:

We denote

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1,\ldots,C_k) = \sum_{i=1}^k \sum_{\boldsymbol{x}\in C_i} \|\boldsymbol{x}-\boldsymbol{c}_i\|_2^2$$
(3)

Lloyd's algorithm always terminates

First, we prove:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1,\ldots,C_k) \geq \phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1',\ldots,C_k')$$

First, we prove:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1,\ldots,C_k) \geq \phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1',\ldots,C_k')$$

This holds since, for a fixed choice of c_1, \ldots, c_k , the partition C'_1, \ldots, C_k minimizes ϕ , since it assigns every point to the nearest center.

Lloyd's algorithm always terminates

Second, we prove that, if $c'_i \neq c_i$ for some *i*, then:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1',\ldots,C_k') > \phi(\boldsymbol{c}_1',\ldots,\boldsymbol{c}_k',C_1',\ldots,C_k')$$

Lloyd's algorithm always terminates

Second, we prove that, if $c'_i \neq c_i$ for some *i*, then:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1',\ldots,C_k') > \phi(\boldsymbol{c}_1',\ldots,\boldsymbol{c}_k',C_1',\ldots,C_k')$$

Consider indeed any such *i* and recall that c'_i is the *center of mass* of C'_i . By the fundamental observation above,

$$egin{aligned} &\sum_{m{x}\in C_i'}\|m{x}-m{c}_i\|_2^2 = \sum_{m{x}\in C_i'}\|m{x}-m{c}_i'\|_2^2 + |C_i'|\cdot\|m{c}_i-m{c}_i'\|_2^2 \ &> \sum_{m{x}\in C_i'}\|m{x}-m{c}_i'\|_2^2 \end{aligned}$$

Summing over all clusters yields the claim.

So, if some center is moved, we have:

$$\phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1,\ldots,C_k) \geq \phi(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k,C_1',\ldots,C_k') > \phi(\boldsymbol{c}_1',\ldots,\boldsymbol{c}_k',C_1',\ldots,C_k')$$

which means that ϕ decreases strictly.

Lloyd's algorithm always terminates

Finally, we note that ϕ can decrease only a finite number of times.

Finally, we note that ϕ can decrease only a finite number of times.

First, ϕ is a function of the current clustering C_1, \ldots, C_k , which can take on at most k^n distinct values. Thus, if the algorithm did more than k^n iterations, it would go twice over the same clustering. This implies that ϕ takes the same value in two distinct iterations (ignoring the last one). This is absurd since ϕ always decreases.

Finally, we note that ϕ can decrease only a finite number of times.

First, ϕ is a function of the current clustering C_1, \ldots, C_k , which can take on at most k^n distinct values. Thus, if the algorithm did more than k^n iterations, it would go twice over the same clustering. This implies that ϕ takes the same value in two distinct iterations (ignoring the last one). This is absurd since ϕ always decreases.

This completes the proof of the theorem.

How much does one iteration of Lloyd's algorithm take?

Algorithm 2: Lloyd(X, k)

choose k distinct points $\boldsymbol{c}_1, \ldots, \boldsymbol{c}_k$ u.a.r. from X; do

for i = 1, ..., k let C_i = the set of points closest to c_i ; for i = 1, ..., k let c_i = the center of mass of C_i ;

until c_1, \ldots, c_k do not change;

return c_1, \ldots, c_k ;

How much does one iteration of Lloyd's algorithm take?

Algorithm 3: Lloyd(X, k)

choose k distinct points c_1, \ldots, c_k u.a.r. from X; do $\begin{vmatrix} \text{for } i = 1, \ldots, k \text{ let } C_i = \text{the set of points closest to } c_i; \\ \text{for } \mathbf{x} \in X \text{ let } i_x = \arg\min_{i \in [k]} \|\mathbf{x} - \mathbf{c}_i\|_2^2; \\ \text{for } i = 1, \ldots, k \text{ let } \mathbf{c}_i = \text{the center of mass of } C_i; \\ \text{until } c_1, \ldots, c_k \text{ do not change;} \\ \text{return } c_1, \ldots, c_k; \end{vmatrix}$

 $\Rightarrow O(n \cdot k \cdot d)$ per iteration

k-means

- probably the most popular idea of "clustering"
- formalizes clustering as an optimization problem
- NP-hardness

- unbounded approximation ratio
- worst-case running time $2^{\Omega(n)}$
- but, in practice, it works well