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In online advertising, publishers sell their online ad space to advertisers through second-price auc-
tions managed by ad exchanges. For each impression (ad display) created on the publisher’s website,
the ad exchange runs an auction on the fly. Empirical evidence shows that an informed choice of
the seller’s reserve price, disqualifying any bid below it, can indeed have a significant impact on
the revenue of the seller. We assume the seller is also observing the highest bid together with the
revenue.

The seller’s revenue in a second-price auction is computed as follows: if the reserve price r is not
larger than the second-highest bid b(2), then the item is sold to the highest bidder and the seller’s
revenue is b(2). If r is between b(2) and the highest bid b(1), then the item is sold to the highest
bidder and the seller’s revenue is the reserve price. Finally, if r is bigger than b(1), then the item
is not sold and the seller’s revenue is zero. Formally, the seller’s revenue is

g
(
r, b(1), b(2)

)
= max

{
r, b(2)

}
I{r ≤ b(1)}

Note that the revenue only depends on the reserve price r and on the two highest bids b(1) ≥ b(2),
where we assume all quanities be in the unit interval [0, 1].

At the beginning of each auction t = 1, 2, . . . , the seller computes a reserve price rt ∈ [0, 1]. Then,
bids bt(1), bt(2), . . . are collected by the auctioneer, and the seller (which is not the same as the
auctioneer) observes the revenue gt(rt) = g

(
rt, bt(1), bt(2)

)
, together with the highest bid bt(1).

Crucially, knowing gt(rt) and bt(1) allows to compute gt(r) for all r ≥ rt. For technical reasons, we
use losses ℓt(rt) = 1− gt(rt) instead of revenues, see Figure 1 for a pictorial representation.
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Figura 1: The loss function ℓt(rt) = 1−max{rt, bt(2)}I{rt ≤ bt(1)} when bt(1) = 0.7 and bt(2) = 0.5.

The loss functions ℓt : [0, 1] → [0, 1] satisfy the semi-Lipschitz condition,

ℓt(y + δ) ≥ ℓt(y)− δ for all 0 ≤ y ≤ y + δ ≤ 1. (1)
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The learner’s regret is defined by

RT = E

[
T∑
t=1

ℓt(rt)

]
− inf

0≤y≤1

T∑
t=1

ℓt(y) ,

where the expectation is with respect to the randomness in the reserves rt. We introduce the Exp3-
RTB algorithm, a variant of Exp3 exploiting the richer feedback

{
ℓt(r) : y ≥ rt

}
. The algorithm

uses a discretization of the action space [0, 1] in K = ⌈1/γ⌉ actions yk := (k− 1)γ for k = 1, . . . ,K.

Algoritmo 1 (Exp3-RTB)

Input: Exploration parameter γ > 0.
1: Set learning rate η = γ/2 and uniform distribution p1 over {1, . . . ,K} where K = ⌈1/γ⌉
2: for t = 1, 2, . . . do
3: compute distribution qt(k) = (1− γ)pt(k) + γI{k = 1} for k = 1, . . . ,K;
4: draw It ∼ qt and set rt = (It − 1)γ;
5: for each k = 1, . . . ,K, compute the estimated loss

ℓ̂t(k) =
ℓt(yk)∑k
j=1 qt(j)

I{It ≤ k}

6: for each k = 1, . . . ,K, compute the new probability assignment

pt+1(k) =
exp

(
− η

∑t
s=1 ℓ̂s(k)

)∑K
j=1 exp

(
−η
∑t

s=1 ℓ̂s(j)
)

7: end for

Teorema 1 The Exp3-RTB algorithm tuned with γ > 0 satisfies

RT ≤ γT

(
2 +

1

4
ln

e

γ

)
+

2 ln⌈1/γ⌉
γ

.

In particular, γ = T−1/2 gives RT = O
(
(lnT )

√
T
)
.

Dimostrazione. The proof follows the same lines as the regret analysis of Exp3. The key change
is a tighter control of the variance term allowed by the richer feedback.

Pick any reserve price yk = (k−1)γ. We first control the regret associated with actions drawn from
pt (the regret associated with qt will be studied as a direct consequence). More precisely, since the
estimated losses ℓ̂t(j) are nonnegative, we can apply the standard analysis of Exp3 to get

T∑
t=1

K∑
i=1

pt(i)ℓ̂t(i)−
T∑
t=1

ℓ̂t(k) ≤
η

2

T∑
t=1

K∑
j=1

pt(j)ℓ̂t(j)
2 +

lnK

η
(2)

Writing Et−1[·] for the expectation conditioned on I1, . . . , It−1, we note that

Et−1

[
ℓ̂t(j)

]
= ℓt(yj) and Et−1

[
pt(j)ℓ̂t(j)

2
]
=

pt(j)ℓt(yj)
2∑j

i=1 qt(i)
≤ qt(j)

(1− γ)
∑j

i=1 qt(i)
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where we used the definition of qt and the fact that ℓt(yj) ≤ 1 by assumption. Therefore, taking
expectation on both sides of (2) implies, again similarly to what is done in the analysis of Exp3,

E

[
T∑
t=1

K∑
i=1

pt(i)ℓt(yi)

]
−

T∑
t=1

ℓt(yk) ≤
η

2(1− γ)

T∑
t=1

E

 K∑
j=1

qt(j)∑j
i=1 qt(i)

+
lnK

η

Setting st(j) =
∑j

i=1 qt(i), we can upper bound the sum with an integral,

K∑
j=1

qt(j)∑j
i=1 qt(i)

= 1 +

K∑
j=2

st(j)− st(j − 1)

st(j)
= 1 +

K∑
j=2

∫ st(j)

st(j−1)

dx

st(j)

≤ 1 +
K∑
j=2

∫ st(j)

st(j−1)

dx

x
= 1 +

∫ 1

qt(1)

dx

x
≤ 1− ln qt(1) ≤ 1 + ln

1

γ

where we used qt(1) ≥ γ. Therefore, substituting into the previous bound, we get

E

[
T∑
t=1

K∑
i=1

pt(i)ℓt(yi)

]
−

T∑
t=1

ℓt(yk) ≤
ηT ln(e/γ)

2(1− γ)
+

lnK

η
(3)

We now control the regret of the reserves rt = (It−1)γ, where It is drawn from qt = (1−γ)pt+γδ1.
We have

E

[
T∑
t=1

ℓt(rt)

]
−

T∑
t=1

ℓt(yk) = E

[
T∑
t=1

(
(1− γ)

K∑
i=1

pt(i)ℓt(yi) + γℓt(y1)

)]
−

T∑
t=1

ℓt(yk)

≤ (1− γ)E

[
T∑
t=1

K∑
i=1

pt(i)ℓt(yi)

]
+ γT −

T∑
t=1

ℓt(yk)

≤ ηT ln(e/γ)

2
+

lnK

η
+ γT (4)

where the last inequality is by (3).

To conclude the proof, we upper bound the regret against any fixed y ∈ [0, 1]. Since there exists
k ∈ {1, . . . ,K} such that y ∈ [yk, yk+γ], and since each ℓt satisfies the semi-Lipschitz condition (1),
we have ℓt(y) ≥ ℓt(yk)− γ. This gives

min
k=1,...,K

E

[
T∑
t=1

ℓt(yk)

]
≤ min

0≤y≤1

T∑
t=1

ℓt(y) + γ T

Replacing the last inequality into (4), and recalling that K = ⌈1/γ⌉ and η = γ
2 , finally yields

RT ≤ γT

4
ln

e

γ
+

2 ln⌈1/γ⌉
γ

+ 2γT

Choosing γ ≈ T−1/2 concludes the proof. □
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Note that, if instead of Exp3-RTB we had run Exp3 with learning rate η > 0 on the grid of
K = ⌈1/γ⌉ prices, we would have obtained a bound of the form

RT ≤ lnK

η
+

η

2
KT + γT =

ln⌈1/γ⌉
η

+
ηT

2γ
+ γT

which, for γ = T−1/3 and η = T−2/3 gives RT = O
(
T 2/3

)
ignoring logarithmic factors, a bound

much worse than that obtained by Exp3-RTB exploiting the richer feedback structure of this
problem.
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