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A set of edges in a graph G = (V, E) is independent if no two edges have an incident vertex in
common. Independent sets of edges are called matchings. M is a matching of U C V if every
vertex in U is incident with some edge in M. The vertices in U are then called matched (by M);
vertices not incident with any edge of M are unmatched. A perfect matching in G = (V,E) is a
matching of all vertices in V. We want to find conditions ensuring the existence of large or perfect
matchings in arbitrary graphs.

Matchings in bipartite graphs. An important special case of matching considers bipartite
graphs G = (V, E) where V=X UY and X NY = (). We study this special case through the lens
of the max-flow min-cut theorem. First, we transform G in a flow network G’ = (V/, E’) where
V=V U{s,t}and ' = EU{(s,z) : (€ X}U{(y,t) : y € Y}, see figure below here.

The max flow problem in G’ is to find an admissible flow of maximum value between s and ¢
under a capacity constraint ¢ : F — R, where c(e) > 0 is a nonnegative capacity assigned to each
edge.

A flow is a function f : F — R assigning f(e) > 0 to each e of G’. A flow f is admissible when
the two following set of constraints are satisfied:

1. capacity constraints, f(e) < c(e) for all e € E.
2. flow conservation constraints, for all v € V,
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The value of an admissible flow f is
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A cut of G' is a partition S, T of V' such that s € Sand t € T. The cost of a cutis ¢(I') = >~ . c(e),
where I' = I'(S,T) = {(u,v) € E : ue S,ve€T}. The min-cut problem is to find a cut of
minimum cost. The next result, which we do not prove here, is a fundamental consequence of
linear programming duality.

Theorem 1 (Max-flow min-cut) In any flow network, the mazimum value of an admissible flow
equals the minimum cost of a cut.

We also use (without proof) this important fact.

Theorem 2 (Integral flow) If each edge in a flow network has integral capacity, then there exists
an integral admissible flow of maximum value.

Fact 3 Let G = (V,E) be a bipartite graph and let G, be the flow network such that c(s,z) =
c(y,t) =1 forallz € X andy €Y, and c(x,y) = oo for all (z,y) € E. Then the value of the
mazimum flow in G equals the size of a mazimum matching in E.

ProOOF. Consider first the flow network G’ derived by G by setting c¢(e) = 1 for all e € E’. Due
to the integral flow theorem, and recalling that c¢(e) = 1 for all e € E’, there exists a maximum
flow f* such that f*(e) € {0,1} for all e € E’. Due to the flow conservation constraints, if
f*(z,y) =1 for some (z,y) € E, then it must be f*(z,y') =0 for all y/ € Y\ {y} and f*(z/,y) =0
for all 2’ € X \ {z}. Hence f* defines a set of V} edge-disjoint paths from s to ¢ of the form
P ={(s,2),(z,y), (y,t)} with f(e) =1 if and only if e € P.

M ={(z,y) € E : f*(z,y) =1}

is a matching in G of size |M| = Vj. Hence the maximum matching M* satisfies |M*| > V.
Now assume that by assigning an arbitrarily higher integer capacity to the edges in E, V- also
increases. Then there must be a pair of edges (s, x) and (y,t) whose assigned flow went from 0 to
1. However, because of the flow conservation constraints, the corresponding flow on (x,y) cannot
be larger than 1. But this contradicts the hypothesis that Vy+ was maximum for G’. Hence V}- is
also maximum for G/_.

For the other direction, let M* be a maximum matching in G. Then there exists an edge-disjoint
path P = {(s,z), (z,y), (y,t)} in G, for each (z,y) € M*. Let f be the flow such that f(e) =1
if and only if e belongs to one of these paths. This f is admissible and has value V; = |M*|. This
implies that the maximum flow f* satisfies Vy« > |M*|, and the proof is concluded. O

The next theorem gives a characterization of bipartite graphs that contain a perfect matching. If
G = (V,E) with V = X UY is bipartite, then it can contain a perfect matching only if | X| = |Y].
Forall W C V, let N(W) =, e N(w).

Theorem 4 (Hall, 1935) A bipartite graph G such that | X| = |Y| contains a perfect matching of
if and only if IN(W)| > |W| for all W C X.

Hall’s theorem is also known as the marriage theorem, where the vertices are viewed as individuals
in two disjoint groups and edges represent a potential relationship between two individuals.



PrROOF. Assume G has a perfect matching and fix any W C X. Then each w € W is uniquely
matched to a y € N(w). But this is impossible unless |N(W)| > |W]|.

Vice versa, assume |N(W)| > |[W| for all W C X holds. We consider two cases.

Case 1. There exists a flow f in G, with value |X|. Then Fact 3 implies that there exists a
matching of size |X| which must then be perfect.

Case 2. Any flow f in G’ has value Vy < |X|. Then the max-flow min-cut theorem implies that
the minimum cut S, 7T has cost k = ¢(S,T") < |X|. Now, the minimum cut S,T must be such that

IS, T)={(y,t) : ye StU{(z,s) : x €T}
because all edges between X and Y have infinite capacity. So we can write
(S, T)=|(XNT)u(YNS)| =|XNT|+|YnS|=k<|X|=|XNT|+|XNS]|

Therefore, !YﬁS’ < }XﬂS‘. Now set W = X NS and note that N(W) C Y’ NS must hold. Other-
wise, there exists y € T such that (x,y) € E for some x € S. But this implies ¢(S,T) = co and we
have a contradiction. Hence, |N(W)| <|Y NS| < |W|, which contradicts our initial assumption. OJ



