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A set of edges in a graph G = (V,E) is independent if no two edges have an incident vertex in
common. Independent sets of edges are called matchings. M is a matching of U ⊆ V if every
vertex in U is incident with some edge in M . The vertices in U are then called matched (by M);
vertices not incident with any edge of M are unmatched. A perfect matching in G = (V,E) is a
matching of all vertices in V . We want to find conditions ensuring the existence of large or perfect
matchings in arbitrary graphs.

Matchings in bipartite graphs. An important special case of matching considers bipartite
graphs G = (V,E) where V = X ∪ Y and X ∩ Y = ∅. We study this special case through the lens
of the max-flow min-cut theorem. First, we transform G in a flow network G′ = (V ′, E′) where
V ′ ≡ V ∪ {s, t} and E′ = E ∪ {(s, x) : (x ∈ X} ∪ {(y, t) : y ∈ Y }, see figure below here.

s t

The max flow problem in G′ is to find an admissible flow of maximum value between s and t
under a capacity constraint c : E → R, where c(e) ≥ 0 is a nonnegative capacity assigned to each
edge.

A flow is a function f : E → R assigning f(e) ≥ 0 to each e of G′. A flow f is admissible when
the two following set of constraints are satisfied:

1. capacity constraints, f(e) ≤ c(e) for all e ∈ E.
2. flow conservation constraints, for all v ∈ V ,

f(s, x) =
∑

y∈Y : (x,y)∈E

f(x, y) x ∈ X

f(y, t) =
∑

x∈X : (x,y)∈E

f(x, y) y ∈ Y

The value of an admissible flow f is

Vf =
∑
x∈X

f(s, x) =
∑
y∈Y

f(y, t)
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A cut of G′ is a partition S, T of V ′ such that s ∈ S and t ∈ T . The cost of a cut is c(Γ) =
∑

e∈Γ c(e),
where Γ = Γ(S, T ) = {(u, v) ∈ E : u ∈ S, v ∈ T}. The min-cut problem is to find a cut of
minimum cost. The next result, which we do not prove here, is a fundamental consequence of
linear programming duality.

Theorem 1 (Max-flow min-cut) In any flow network, the maximum value of an admissible flow
equals the minimum cost of a cut.

We also use (without proof) this important fact.

Theorem 2 (Integral flow) If each edge in a flow network has integral capacity, then there exists
an integral admissible flow of maximum value.

Fact 3 Let G = (V,E) be a bipartite graph and let G′∞ be the flow network such that c(s, x) =
c(y, t) = 1 for all x ∈ X and y ∈ Y , and c(x, y) = ∞ for all (x, y) ∈ E. Then the value of the
maximum flow in G′∞ equals the size of a maximum matching in E.

Proof. Consider first the flow network G′ derived by G by setting c(e) = 1 for all e ∈ E′. Due
to the integral flow theorem, and recalling that c(e) = 1 for all e ∈ E′, there exists a maximum
flow f∗ such that f∗(e) ∈ {0, 1} for all e ∈ E′. Due to the flow conservation constraints, if
f∗(x, y) = 1 for some (x, y) ∈ E, then it must be f∗(x, y′) = 0 for all y′ ∈ Y \ {y} and f∗(x′, y) = 0
for all x′ ∈ X \ {x}. Hence f∗ defines a set of Vf edge-disjoint paths from s to t of the form
P = {(s, x), (x, y), (y, t)} with f(e) = 1 if and only if e ∈ P .

M = {(x, y) ∈ E : f∗(x, y) = 1}

is a matching in G of size |M | = Vf∗ . Hence the maximum matching M∗ satisfies |M∗| ≥ Vf∗ .
Now assume that by assigning an arbitrarily higher integer capacity to the edges in E, Vf∗ also
increases. Then there must be a pair of edges (s, x) and (y, t) whose assigned flow went from 0 to
1. However, because of the flow conservation constraints, the corresponding flow on (x, y) cannot
be larger than 1. But this contradicts the hypothesis that Vf∗ was maximum for G′. Hence Vf∗ is
also maximum for G′∞.

For the other direction, let M∗ be a maximum matching in G. Then there exists an edge-disjoint
path P = {(s, x), (x, y), (y, t)} in G′∞ for each (x, y) ∈ M∗. Let f be the flow such that f(e) = 1
if and only if e belongs to one of these paths. This f is admissible and has value Vf = |M∗|. This
implies that the maximum flow f∗ satisfies Vf∗ ≥ |M∗|, and the proof is concluded. �

The next theorem gives a characterization of bipartite graphs that contain a perfect matching. If
G = (V,E) with V = X ∪ Y is bipartite, then it can contain a perfect matching only if |X| = |Y |.
For all W ⊆ V , let N(W ) ≡

⋃
w∈W N(w).

Theorem 4 (Hall, 1935) A bipartite graph G such that |X| = |Y | contains a perfect matching of
if and only if |N(W )| ≥ |W | for all W ⊆ X.

Hall’s theorem is also known as the marriage theorem, where the vertices are viewed as individuals
in two disjoint groups and edges represent a potential relationship between two individuals.
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Proof. Assume G has a perfect matching and fix any W ⊆ X. Then each w ∈ W is uniquely
matched to a y ∈ N(w). But this is impossible unless |N(W )| ≥ |W |.

Vice versa, assume |N(W )| ≥ |W | for all W ⊆ X holds. We consider two cases.

Case 1. There exists a flow f in G′∞ with value |X|. Then Fact 3 implies that there exists a
matching of size |X| which must then be perfect.

Case 2. Any flow f in G′∞ has value Vf < |X|. Then the max-flow min-cut theorem implies that
the minimum cut S, T has cost k = c(S, T ) < |X|. Now, the minimum cut S, T must be such that

Γ(S, T ) ≡ {(y, t) : y ∈ S} ∪ {(x, s) : x ∈ T}

because all edges between X and Y have infinite capacity. So we can write

c(S, T ) =
∣∣(X ∩ T ) ∪ (Y ∩ S)

∣∣ =
∣∣X ∩ T

∣∣+
∣∣Y ∩ S

∣∣ = k < |X| =
∣∣X ∩ T

∣∣+
∣∣X ∩ S

∣∣
Therefore,

∣∣Y ∩S∣∣ < ∣∣X ∩S∣∣. Now set W ≡ X ∩S and note that N(W ) ⊆ Y ∩S must hold. Other-
wise, there exists y ∈ T such that (x, y) ∈ E for some x ∈ S. But this implies c(S, T ) =∞ and we
have a contradiction. Hence, |N(W )| ≤ |Y ∩S| < |W |, which contradicts our initial assumption. �
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