
Complementi di Algoritmi e Strutture Dati

Correlation Clustering

Docente: Nicolò Cesa-Bianchi versione 22 aprile 2023

Clustering is a central problem in unsupervised learning. A clustering problem is typically repre-
sented by a set of elements together with a notion of similarity (or dissimilarity) between them.
When the elements are points in a metric space, dissimilarity can be measured via a distance func-
tion. In more general settings, when the elements to be clustered are members of an abstract set
V , similarity is defined by an arbitrary symmetric function σ defined on pairs of distinct elements
in V .

Correlation Clustering (CC) is a well-known special case where σ is a {−1,+1}-valued function
establishing whether any two distinct elements of V are similar or not. The objective of CC is to
cluster the points in V so to minimize the number of errors, where an error is given by any pair
of elements having similarity −1 and belonging to the same cluster, or having similarity +1 and
belonging to different clusters. Importantly, there are no a priori limitations on the number of
clusters or their sizes: all partitions of V , including the trivial ones, are valid. Given V and σ, the
error achieved by an optimal clustering is known as the Correlation Clustering index, denoted by
OPT.

Note that OPT = 0 implies that V can be perfectly clustered: any two elements in the same
cluster have similarity +1 and any two elements in different clusters have similarity −1. Since
its introduction, CC has attracted a lot of interest and has found numerous applications in entity
resolution, image analysis, and social media analysis.

Minimizing the correlation clustering error is hard, and the best efficient algorithm found so far
achieves 2OPT (the actual coefficient multiplying OPT is slightly smaller than 2). A very simple
and elegant algorithm for approximating CC is KwikCluster. At each round, KwikCluster draws a
random pivot πr from V , queries the similarities between πr and every other node in V , and creates
a cluster C containing πr and all points u such that σ(πr, u) = +1. The algorithm then recursively
invokes itself on V \ C. On any instance of CC, KwikCluster achieves an expected error bounded
by 3OPT.

Algoritmo 1 KwikCluster

Parameters: residual node set Vr, round index r
1: if |Vr| = 0 then RETURN
2: end if
3: if |Vr| = 1 then output singleton cluster Vr and RETURN
4: end if
5: Draw pivot πr u.a.r. from Vr

6: Cr ← {πr} ▷ Create new cluster and add the pivot to it
7: Cr ← Cr ∪ {u ∈ Vr : σ(πr, u) = +1} ▷ Populate cluster
8: Output cluster Cr

9: KwikCluster(Vr \ Cr, r + 1) ▷ Recursive call on the remaining nodes

1

We denote by V ≡ {1, . . . , n} the set of input nodes, by E ≡
(
V
2

)
the set of all pairs {u, v} of

distincts nodes in V , and by σ : E → {−1,+1} the binary similarity function. A clustering C is a
partition of V in disjoint clusters Ci : i = 1, . . . , k. Given C and σ, the set ΓC of mistaken edges
contains all pairs {u, v} such that σ(u, v) = −1 and u, v belong to same cluster of C and all pairs
{u, v} such that σ(u, v) = +1 and u, v belong to different clusters of C. The cost ∆C of C is

∣∣ΓC
∣∣.

The correlation clustering index is OPT = minC ∆C , where the minimum is over all clusterings C.

A triangle is any unordered triple T = {u, v, w} ⊆ V . We denote by e = {u,w} a generic triangle
edge; we write e ⊂ T and v = T \ e. We say T is a bad triangle if the labels σ(u, v), σ(u,w), σ(v, w)
are {+,+,−} (the order is irrelevant), see the figure below here.

u

vw

+

−

+

We denote by T the set of all bad triangles in V and also define T (e) ≡ {T ∈ T : e ⊂ T}. It is
easy to see that the number of edge-disjoint bad triangles is a lower bound on OPT: no matter how
we cluster its nodes, a bad triangle contributes by at least 1 to the total cost of the partition. The
following lemma (which we state without proof) shows that the weighted sum of all bad triangles
is also a lower bound on OPT provided the sum of the weights of the bad triangles insisting on any
single edge e is at most 1.

Lemma 1 If {βT ≥ 0 : T ∈ T } is a set of weights on the bad triangles such that
∑

T∈T (e) βT ≤ 1
for all e ∈ E, then

∑
T∈T βT ≤ OPT.

We now bound the expected error of KwikCluster. We use Vr to denote the set of remaining nodes
at the beginning of the r-th recursive call.

Let ΓA be the set of mistaken edges for the clustering output by KwikCluster and let ∆A =
∣∣ΓA

∣∣
be the cost of this clustering. The expected cost of the clustering is therefore:

E[∆A] =
∑
e∈E

P(e ∈ ΓA)

u

vw

+

−

+

u

vw

−

+

−

u

vw

−

−

−

u

vw

+

+

+

Lemma 2 An edge e is mistaken by Kwik in a recursive call r if and only if there exists a bad
triangle T such that T ⊆ Vr, T ∈ T (e), and πr = T \ e.

Dimostrazione. Pick a round r with pivot πr and pick an arbitrary edge e ∈ Vr. Consider the
triangle T = e ∪ {πr}. If e is mistaken in round r, then: πr = T \ e and T ∈ T (e) (see the pictures

2

above here). Moreover, T ⊆ Vr by construction. We prove the rest of the lemma via a case analysis
with e = {u,w}. Assume T = {u, πr, w} ⊆ Vr, T ∈ T (e), and πr = T \ e.

Case 1: σ(u,w) = +1. If σ(u,w) = +1, πr = T\e, and T is a bad triangle, then σ(πr, w) ̸= σ(πr, u).
But then u and w must end up in different clusters, which implies that e is mistaken.

Case 2: σ(u,w) = −1. If σ(u,w) = −1 πr = T \ e, and T is a bad triangle, then σ(πr, u) =
σ(πr, v) = +1. But then u and w end up in the same cluster, which implies that e is mistaken. □

Since e can be mistaken only once (because when e = {u,w} is mistaken at least one between u
and w is removed from V), for each e ∈ ΓA there is a unique pair (r, T) satisfying the conditions
of Lemma 2. We may thus write∣∣ΓA

∣∣ = ∑
e∈E

I{e ∈ Γ} =
∑
T∈T

∑
r

I{T ⊆ Vr ∧ πr ∈ T} =
∑
T∈T

I{AT }

where AT is the event
{
(∃ r) : T ⊆ Vr ∧ πr ∈ T

}
.

Note that for any e ∈ ΓA and for any two distinct T, T ′ ∈ T (e), AT and AT ′ can not both occur
because, due to Lemma 2, for each e ∈ ΓA there is a unique pair (r, T) such that T ⊆ Vr and
πr = T \ e. Thus we can write

1 =
∑

T∈T (e)

P
(
AT ∧ e ∈ ΓA

)
=

∑
T∈T (e)

P
(
e ∈ ΓA | AT

)
P(AT) =

∑
T∈T (e)

1

3
P(AT) . (1)

Applying Lemma 1 with βT = 1
3P(AT), we get

∑
T∈T P(AT) ≤ 3OPT.

3

