Complementi di Algoritmi e Strutture Dati
k-Means

Docente: Nicolo Cesa-Bianchi versione 24 aprile 2025

These lecture notes are based on a set of slides written by Marco Bressan in 2023.

We consider the problem of partitioning a finite set X € R? of points in k > 1 clusters. Since we
are in R?, we can use the Euclidean distance to measure the similarity between two points. We
identify each cluster i € {1,...,k} with a center ¢; € R? (we do not require that these centers
belong to X') and we assign each point & € X to its closest center (with respect to the Euclidean
distance).
The cost of a point in a clustering C = {¢y,..., ¢} is ¢(C,x) = i—nllink [
The cost of a clustering C is ®(C) = Z »(C,x).

xreX
Note that each point pays the squared distance to its closest center. The optimal k-clustering C*
of C is any choice of centers that minimizes the cost,

C* = argmin ®(cyp,...,cx)
cl,A..,CkGRd

Note that the optimal centers need not be unique. We use OPT(X') to denote the cost of C*.
The k-means problem is, given X and k, that of finding any C ¢ R? with |C| = k such that
o(C) = OPT(X).

Note that k-means is trivial for £k = 1, as there is a unique center ¢* minimizing the cost which
corresponds to the centroid of the set X,

c :argmlnz |z —c||* =] Za:

d
ceRY pex reX

This can be shown by noticing that F'(c) =)y [l® — c|? is a convex function that is minimized
when c is the centroid. This implies that the centers of C* are the centroids of their corresponding
clusters.

The k-means problem implicitly assumes that the points in X are sampled from k spherical Gaus-

sian distributions N (,ui,ag I) for i = 1,...,k whose means p, ..., u; are the centers and whose
variances o2, ..., O'l% upper bounds the optimal cost,

k
p; = argminE [[| X — c||2] where X ~ N(u;,021) and E[®(py, ..., m)] < Za?
c i=1

It turns out that the k-means problem in R is A'P-hard even for k = 2 (when d = 2n). As a
consequence of this result, the best known exact algorithm for solving k-means is based on:

1. enumerating all k¥ partitions of X in k elements,

2. computing the centroids C = {¢y, ..., cx} for the k elements of the partition,

3. computing the cost ®(C) of the partition.

The following algorithm is the most popular heuristic solver for k-means.

Algoritmo 1 Lloyd’s Algorithm
Input: Finite set of points X C R?, integer 1 < k < | X].

1: Draw k points ¢y, ..., ¢, v.a.r. from X

2: repeat

3: for x € X do

4: Assign @ to cluster C; where i = argmin ||z — ¢;||*

i=1,....k

5: end for !

6: fori=1,...,k do

7 c;, = |1 Z x > ¢; is the centroid of Cj
Z‘ zeX;

8: end for

9: until ¢y, ..., c; remain unchanged

Output: cq,...,cg

The per-iteration runnning time of Lloyd’s algorithm is O(nkd). One can use random projections
to map X to RY with N = O(Inn), while blowing up OPT by at most a constant factor. This
reduces the running time of each iteration of Lloyd’s algorithm to O(nklnn). unfortunately, the
worst-case number of iterations of the algorithm is 2(V7),

Although Lloyd’s algorithm works well in practice, it does not approximate OPT to within any
constant factor, as shown by the next result.

Teorema 1 For any a > 1 there exist 1-dimensional instances X C R of 3-means where Lloyd’s
algorithm returns a cluster C such that ®(C) > a OPT with probability arbitrarily close to 1.

DiMOSTRAZIONE. Pick a > 1 and let X of size n be such that n — 2 points are evenly spaced in
the [0, 1] unit segment and the two remaining points (the outliers) are placed at 2y/an and 3\/an.

B Y R D R

The probability that Lloyd’s algorithm does not draw both outliers as initial centers is computed

as follows: there are (g) ways of choosing three points in a set of n points. There are n — 2 ways

of choosing three points when two of which are the outliers. Hence the probability of not drawing
both outliers is 5 16 5 6

(%) n! n(n —1)

Consider the bad event that Lloyd’s algorithm initially draws at most one outlier. Conditioned
on this event, Lloyd’s algorithm terminates with at least two centers in the [0, 1] segment and at

most one center at %\/an. The cost ®(C) of this clustering C is at least %, while the cost of the

optimal cluster (two centers located at the outliers and the remaining center at 1/2) is OPT = 2.
Therefore, ®(C)/OPT = Q(a) As n — oo, we have p, — 1, implying that the bad event occurs

with arbitrarily high probability. O
We now show that, if the centers are moved in Lloyd’s algorithm, then @ strictly decreases and
it can do so for at most O(k™) times (the number of possible partitions of X with |X| = n in k
elements).

Lemma 2 If in any iteration some center is moved, then ® decreases strictly.

DIMOSTRAZIONE. The proof makes use of the following fact. For any finite C' € R? and for any

ceRY,
2 2 2
dlle—cl*=> e —pl*>+IC| e - pl (1)
xzeC xzeC
where p is the centroid of C. Let Cy, ..., Cg, c1, .. ., ¢k the clusters and the centers at the beginning
of an iteration (Line 2) and let C7,...,C}, ¢}, ..., ¢, be the clusters and the centers at the end of

an iteration (Line 9). Let
k
P(Ch,.. Cryer,..yer) =Y Y flz—ail®
i=1 zeC;

Note that ¢¥(C1,...,Ck,c1,...,¢x) > ¥(CY,...,C},c1,...,ck) since Line 4 assigns each point to
its nearest center. Now, if ¢} # ¢; for some i, then

(O, ..., Cr ety e) > U(C, .., Cy ey c)

To see that, recalling that ¢ is the centroid of C (Line 7),

>l —eil®= 3" flz — il 1 e =€l > 3 Jl= — <ilf

xeC] xcC xcC]
where we used (1) in the first step and ¢; # ¢} in the second step. Hence,
O(Cy,...,C) =(C1,...,Cx,e1,. .., cx) > P(Cr, ..., Chycyy. o yer) = ®(C, ..., C)
concluding the proof. O
This immediately implies the following result.

Teorema 3 Lloyd’s algorithm terminates on any input (X, k) after at most kX! iterations.

DIMOSTRAZIONE. Note that @ is a function of the current clustering {C1, ..., Cy}, which can take
on at most k™ distinct values. Moreover, Lloyd’s algorithm does not terminate only if the current
iteration changed the clustering. Since ® can only decrease when the clustering is changed, the
algorithm must terminate after at most k™ iterations. (|

