Complementi di Algoritmi e Strutture Dati

k-Means

Docente: Nicolò Cesa-Bianchi

versione 24 aprile 2025

1.

These lecture notes are based on a set of slides written by Marco Bressan in 2023.

We consider the problem of partitioning a finite set $\mathcal{X} \subset \mathbb{R}^d$ of points in k > 1 clusters. Since we are in \mathbb{R}^d , we can use the Euclidean distance to measure the similarity between two points. We identify each cluster $i \in \{1, \ldots, k\}$ with a center $c_i \in \mathbb{R}^d$ (we do not require that these centers belong to \mathcal{X}) and we assign each point $x \in \mathcal{X}$ to its closest center (with respect to the Euclidean distance).

The cost of a point in a clustering $C = \{c_1, \ldots, c_k\}$ is $\phi(C, x) = \min_{i=1,\ldots,k} ||x - c_i||^2$.

The cost of a clustering \mathcal{C} is $\Phi(\mathcal{C}) = \sum_{\boldsymbol{x} \in \mathcal{X}} \phi(\mathcal{C}, \boldsymbol{x}).$

Note that each point pays the squared distance to its closest center. The optimal k-clustering C^* of C is any choice of centers that minimizes the cost,

$$\mathcal{C}^* = \operatorname*{argmin}_{oldsymbol{c}_1,\ldots,oldsymbol{c}_k \in \mathbb{R}^d} \Phi(oldsymbol{c}_1,\ldots,oldsymbol{c}_k)$$

Note that the optimal centers need not be unique. We use $OPT(\mathcal{X})$ to denote the cost of \mathcal{C}^* . The k-means problem is, given \mathcal{X} and k, that of finding any $\mathcal{C} \subset \mathbb{R}^d$ with $|\mathcal{C}| = k$ such that $\Phi(\mathcal{C}) = OPT(\mathcal{X})$.

Note that k-means is trivial for k = 1, as there is a unique center c^* minimizing the cost which corresponds to the **centroid** of the set \mathcal{X} ,

$$oldsymbol{c}^* = \operatorname*{argmin}_{oldsymbol{c} \in \mathbb{R}^d} \sum_{oldsymbol{x} \in \mathcal{X}} \|oldsymbol{x} - oldsymbol{c}\|^2 = rac{1}{|\mathcal{X}|} \sum_{oldsymbol{x} \in \mathcal{X}} oldsymbol{x}$$

This can be shown by noticing that $F(\mathbf{c}) = \sum_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - \mathbf{c}\|^2$ is a convex function that is minimized when \mathbf{c} is the centroid. This implies that the centers of \mathcal{C}^* are the centroids of their corresponding clusters.

The k-means problem implicitly assumes that the points in \mathcal{X} are sampled from k spherical Gaussian distributions $\mathcal{N}(\boldsymbol{\mu}_i, \sigma_i^2 I)$ for $i = 1, \ldots, k$ whose means $\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k$ are the centers and whose variances $\sigma_1^2, \ldots, \sigma_k^2$ upper bounds the optimal cost,

$$oldsymbol{\mu}_i = \operatorname*{argmin}_{oldsymbol{c}} \mathbb{E}ig[\|oldsymbol{X} - oldsymbol{c}\|^2 ig] \quad ext{where} \quad oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}_i, \sigma_i^2 I) \quad ext{and} \quad \mathbb{E}ig[\Phi(oldsymbol{\mu}_1, \dots, oldsymbol{\mu}_k) ig] \leq \sum_{i=1}^{\kappa} \sigma_i^2$$

It turns out that the k-means problem in \mathbb{R}^d is \mathcal{NP} -hard even for k = 2 (when d = 2n). As a consequence of this result, the best known exact algorithm for solving k-means is based on:

1. enumerating all $k^{|\mathcal{X}|}$ partitions of \mathcal{X} in k elements,

- 2. computing the centroids $C = \{c_1, \ldots, c_k\}$ for the k elements of the partition,
- 3. computing the cost $\Phi(\mathcal{C})$ of the partition.

The following algorithm is the most popular heuristic solver for k-means.

Algoritmo 1 Lloyd's Algorithm

Input: Finite set of points $\mathcal{X} \subset \mathbb{R}^d$, integer $1 < k < |\mathcal{X}|$. 1: Draw k points c_1, \ldots, c_k u.a.r. from \mathcal{X} 2: repeat for $x \in \mathcal{X}$ do 3: Assign \boldsymbol{x} to cluster C_i where $i = \underset{j=1,...,k}{\operatorname{argmin}} \|\boldsymbol{x} - \boldsymbol{c}_j\|^2$ 4: end for 5:for $i = 1, \ldots, k$ do 6: $oldsymbol{c}_i = rac{1}{|C_i|} \sum_{oldsymbol{x} \in X_i} oldsymbol{x}$ $\triangleright c_i$ is the centroid of C_i 7: end for 8: 9: **until** c_1, \ldots, c_k remain unchanged Output: c_1, \ldots, c_k

The per-iteration running time of Lloyd's algorithm is $\mathcal{O}(nkd)$. One can use random projections to map \mathcal{X} to \mathbb{R}^N with $N = \Theta(\ln n)$, while blowing up OPT by at most a constant factor. This reduces the running time of each iteration of Lloyd's algorithm to $\mathcal{O}(nk\ln n)$. unfortunately, the worst-case number of iterations of the algorithm is $2^{\Omega(\sqrt{n})}$.

Although Lloyd's algorithm works well in practice, it does not approximate OPT to within any constant factor, as shown by the next result.

Teorema 1 For any a > 1 there exist 1-dimensional instances $\mathcal{X} \subset \mathbb{R}$ of 3-means where Lloyd's algorithm returns a cluster \mathcal{C} such that $\Phi(\mathcal{C}) \geq a \text{ OPT}$ with probability arbitrarily close to 1.

DIMOSTRAZIONE. Pick a > 1 and let \mathcal{X} of size n be such that n - 2 points are evenly spaced in the [0, 1] unit segment and the two remaining points (the outliers) are placed at $2\sqrt{an}$ and $3\sqrt{an}$.

-••**•***•

The probability that Lloyd's algorithm does not draw both outliers as initial centers is computed as follows: there are $\binom{n}{3}$ ways of choosing three points in a set of n points. There are n-2 ways of choosing three points when two of which are the outliers. Hence the probability of not drawing both outliers is

$$p_n = 1 - \frac{n-2}{\binom{n}{3}} = 1 - \frac{(n-3)! \, 6(n-2)}{n!} = 1 - \frac{6}{n(n-1)!}$$

Consider the bad event that Lloyd's algorithm initially draws at most one outlier. Conditioned on this event, Lloyd's algorithm terminates with at least two centers in the [0, 1] segment and at most one center at $\frac{3}{2}\sqrt{an}$. The cost $\Phi(\mathcal{C})$ of this clustering \mathcal{C} is at least $\frac{an}{2}$, while the cost of the

optimal cluster (two centers located at the outliers and the remaining center at 1/2) is OPT = $\frac{n-2}{4}$. Therefore, $\Phi(\mathcal{C})/\text{OPT} = \Omega(a)$ As $n \to \infty$, we have $p_n \to 1$, implying that the bad event occurs with arbitrarily high probability.

We now show that, if the centers are moved in Lloyd's algorithm, then Φ strictly decreases and it can do so for at most $\mathcal{O}(k^n)$ times (the number of possible partitions of \mathcal{X} with $|\mathcal{X}| = n$ in k elements).

Lemma 2 If in any iteration some center is moved, then Φ decreases strictly.

DIMOSTRAZIONE. The proof makes use of the following fact. For any finite $C \subset \mathbb{R}^d$ and for any $c \in \mathbb{R}^d$,

$$\sum_{\boldsymbol{x}\in C} \|\boldsymbol{x}-\boldsymbol{c}\|^2 = \sum_{\boldsymbol{x}\in C} \|\boldsymbol{x}-\boldsymbol{\mu}\|^2 + |C| \|\boldsymbol{c}-\boldsymbol{\mu}\|^2$$
(1)

where μ is the centroid of C. Let $C_1, \ldots, C_k, c_1, \ldots, c_k$ the clusters and the centers at the beginning of an iteration (Line 2) and let $C'_1, \ldots, C'_k, c'_1, \ldots, c'_k$ be the clusters and the centers at the end of an iteration (Line 9). Let

$$\psi(C_1,\ldots,C_k,\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k) = \sum_{i=1}^k \sum_{\boldsymbol{x}\in C_i} \|\boldsymbol{x}-\boldsymbol{c}_i\|^2$$

Note that $\psi(C_1, \ldots, C_k, c_1, \ldots, c_k) \ge \psi(C'_1, \ldots, C'_k, c_1, \ldots, c_k)$ since Line 4 assigns each point to its nearest center. Now, if $c'_i \ne c_i$ for some *i*, then

$$\psi(C'_1,\ldots,C'_k,\boldsymbol{c}_1,\ldots,\boldsymbol{c}_k) > \psi(C'_1,\ldots,C'_k,\boldsymbol{c}'_1,\ldots,\boldsymbol{c}'_k)$$

To see that, recalling that c'_i is the centroid of C'_i (Line 7),

$$\sum_{\bm{x} \in C'_i} \|\bm{x} - \bm{c}_i\|^2 = \sum_{\bm{x} \in C'_i} \|\bm{x} - \bm{c}'_i\|^2 + |C'| \|\bm{c}_i - \bm{c}'_i\|^2 > \sum_{\bm{x} \in C'_i} \|\bm{x} - \bm{c}'_i\|^2$$

where we used (1) in the first step and $c_i \neq c'_i$ in the second step. Hence,

$$\Phi(C_1, \dots, C_k) = \psi(C_1, \dots, C_k, c_1, \dots, c_k) > \psi(C'_1, \dots, C'_k, c'_1, \dots, c'_k) = \Phi(C'_1, \dots, C'_k)$$

concluding the proof.

This immediately implies the following result.

Teorema 3 Lloyd's algorithm terminates on any input (\mathcal{X}, k) after at most $k^{|\mathcal{X}|}$ iterations.

DIMOSTRAZIONE. Note that Φ is a function of the current clustering $\{C_1, \ldots, C_k\}$, which can take on at most k^n distinct values. Moreover, Lloyd's algorithm does not terminate only if the current iteration changed the clustering. Since Φ can only decrease when the clustering is changed, the algorithm must terminate after at most k^n iterations.