
Complementi di Algoritmi e Strutture Dati

k-Means

Docente: Nicolò Cesa-Bianchi versione 24 aprile 2025

These lecture notes are based on a set of slides written by Marco Bressan in 2023.

We consider the problem of partitioning a finite set X ⊂ Rd of points in k > 1 clusters. Since we
are in Rd, we can use the Euclidean distance to measure the similarity between two points. We
identify each cluster i ∈ {1, . . . , k} with a center ci ∈ Rd (we do not require that these centers
belong to X) and we assign each point x ∈ X to its closest center (with respect to the Euclidean
distance).

The cost of a point in a clustering C = {c1, . . . , ck} is ϕ(C,x) = min
i=1,...,k

∥x− ci∥2.

The cost of a clustering C is Φ(C) =
∑
x∈X

ϕ(C,x).

Note that each point pays the squared distance to its closest center. The optimal k-clustering C∗

of C is any choice of centers that minimizes the cost,

C∗ = argmin
c1,...,ck∈Rd

Φ(c1, . . . , ck)

Note that the optimal centers need not be unique. We use OPT(X) to denote the cost of C∗.
The k-means problem is, given X and k, that of finding any C ⊂ Rd with |C| = k such that
Φ(C) = OPT(X).

Note that k-means is trivial for k = 1, as there is a unique center c∗ minimizing the cost which
corresponds to the centroid of the set X ,

c∗ = argmin
c∈Rd

∑
x∈X

∥x− c∥2 = 1

|X |
∑
x∈X

x

This can be shown by noticing that F (c) =
∑

x∈X ∥x− c∥2 is a convex function that is minimized
when c is the centroid. This implies that the centers of C∗ are the centroids of their corresponding
clusters.

The k-means problem implicitly assumes that the points in X are sampled from k spherical Gaus-
sian distributions N (µi, σ

2
i I) for i = 1, . . . , k whose means µ1, . . . ,µk are the centers and whose

variances σ21, . . . , σ
2
k upper bounds the optimal cost,

µi = argmin
c

E
[
∥X − c∥2

]
where X ∼ N (µi, σ

2
i I) and E

[
Φ(µ1, . . . ,µk)

]
≤

k∑
i=1

σ2i

It turns out that the k-means problem in Rd is NP-hard even for k = 2 (when d = 2n). As a
consequence of this result, the best known exact algorithm for solving k-means is based on:

1. enumerating all k|X | partitions of X in k elements,

1

2. computing the centroids C = {c1, . . . , ck} for the k elements of the partition,

3. computing the cost Φ(C) of the partition.

The following algorithm is the most popular heuristic solver for k-means.

Algoritmo 1 Lloyd’s Algorithm

Input: Finite set of points X ⊂ Rd, integer 1 < k < |X |.
1: Draw k points c1, . . . , ck u.a.r. from X
2: repeat
3: for x ∈ X do
4: Assign x to cluster Ci where i = argmin

j=1,...,k
∥x− cj∥2

5: end for
6: for i = 1, . . . , k do

7: ci =
1

|Ci|
∑
x∈Xi

x ▷ ci is the centroid of Ci

8: end for
9: until c1, . . . , ck remain unchanged

Output: c1, . . . , ck

The per-iteration runnning time of Lloyd’s algorithm is O(nkd). One can use random projections
to map X to RN with N = Θ(lnn), while blowing up OPT by at most a constant factor. This
reduces the running time of each iteration of Lloyd’s algorithm to O(nk lnn). unfortunately, the
worst-case number of iterations of the algorithm is 2Ω(

√
n).

Although Lloyd’s algorithm works well in practice, it does not approximate OPT to within any
constant factor, as shown by the next result.

Teorema 1 For any a > 1 there exist 1-dimensional instances X ⊂ R of 3-means where Lloyd’s
algorithm returns a cluster C such that Φ(C) ≥ aOPT with probability arbitrarily close to 1.

Dimostrazione. Pick a > 1 and let X of size n be such that n − 2 points are evenly spaced in
the [0, 1] unit segment and the two remaining points (the outliers) are placed at 2

√
an and 3

√
an.

The probability that Lloyd’s algorithm does not draw both outliers as initial centers is computed
as follows: there are

(
n
3

)
ways of choosing three points in a set of n points. There are n − 2 ways

of choosing three points when two of which are the outliers. Hence the probability of not drawing
both outliers is

pn = 1− n− 2(
n
3

) = 1− (n− 3)! 6(n− 2)

n!
= 1− 6

n(n− 1)

Consider the bad event that Lloyd’s algorithm initially draws at most one outlier. Conditioned
on this event, Lloyd’s algorithm terminates with at least two centers in the [0, 1] segment and at
most one center at 3

2

√
an. The cost Φ(C) of this clustering C is at least an

2 , while the cost of the

2

optimal cluster (two centers located at the outliers and the remaining center at 1/2) is OPT = n−2
4 .

Therefore, Φ(C)/OPT = Ω(a) As n → ∞, we have pn → 1, implying that the bad event occurs
with arbitrarily high probability. □

We now show that, if the centers are moved in Lloyd’s algorithm, then Φ strictly decreases and
it can do so for at most O(kn) times (the number of possible partitions of X with |X | = n in k
elements).

Lemma 2 If in any iteration some center is moved, then Φ decreases strictly.

Dimostrazione. The proof makes use of the following fact. For any finite C ⊂ Rd and for any
c ∈ Rd, ∑

x∈C
∥x− c∥2 =

∑
x∈C

∥x− µ∥2 + |C| ∥c− µ∥2 (1)

where µ is the centroid of C. Let C1, . . . , Ck, c1, . . . , ck the clusters and the centers at the beginning
of an iteration (Line 2) and let C ′

1, . . . , C
′
k, c

′
1, . . . , c

′
k be the clusters and the centers at the end of

an iteration (Line 9). Let

ψ(C1, . . . , Ck, c1, . . . , ck) =
k∑

i=1

∑
x∈Ci

∥x− ci∥2

Note that ψ(C1, . . . , Ck, c1, . . . , ck) ≥ ψ(C ′
1, . . . , C

′
k, c1, . . . , ck) since Line 4 assigns each point to

its nearest center. Now, if c′i ̸= ci for some i, then

ψ(C ′
1, . . . , C

′
k, c1, . . . , ck) > ψ(C ′

1, . . . , C
′
k, c

′
1, . . . , c

′
k)

To see that, recalling that c′i is the centroid of C ′
i (Line 7),∑

x∈C′
i

∥x− ci∥2 =
∑
x∈C′

i

∥∥x− c′i
∥∥2 + |C ′|

∥∥ci − c′i
∥∥2 > ∑

x∈C′
i

∥∥x− c′i
∥∥2

where we used (1) in the first step and ci ̸= c′i in the second step. Hence,

Φ(C1, . . . , Ck) = ψ(C1, . . . , Ck, c1, . . . , ck) > ψ(C ′
1, . . . , C

′
k, c

′
1, . . . , c

′
k) = Φ(C ′

1, . . . , C
′
k)

concluding the proof. □

This immediately implies the following result.

Teorema 3 Lloyd’s algorithm terminates on any input (X , k) after at most k|X | iterations.

Dimostrazione. Note that Φ is a function of the current clustering {C1, . . . , Ck}, which can take
on at most kn distinct values. Moreover, Lloyd’s algorithm does not terminate only if the current
iteration changed the clustering. Since Φ can only decrease when the clustering is changed, the
algorithm must terminate after at most kn iterations. □

3

