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1 Learning a binary function

Instance. Let X = {x1, . . . , xn} be a finite instance space containing n data points, and
Y = {−1,+1} be the label space containing a negative label (−1) and a positive label (+1).
Assume that there exists a binary function f : X → Y that provides a labeling to the data points,
and suppose you are given a finite set H = {h1, . . . , hm} of m binary functions hi : X → Y; the
class H is typically known as the hypothesis class and f as the ground truth. Finally, let q be any
fixed but unknown distribution over X ; equivalently, we actually consider q to be a distribution
over the indices [n] = {1, . . . , n} of points in X .

Cost function. We measure the performance of the predictions given by any function h : X →
Y against the ground truth f , with respect to the data distribution q, using a cost function
c : Y ×Y → [0, 1] that assign a cost c(ŷ, y) ∈ [0, 1] to any pair of predicted label ŷ ∈ Y and true
label y ∈ Y. In particular, we assume for ease of presentation that c(ŷ, y) = 0 if and only if
ŷ = y. Then, we can define the loss of h over distribution q as

ℓq(h) = E
j∼q

[
c
(
h(xj), f(xj)

)]
=

∑
j∈[n]

qj · c
(
h(xj), f(xj)

)
.

Note that one can think of c as a 2-by-2 matrix given by C =
[
c(ŷ, y)

]
ŷ,y∈Y =

(
0 c+

c− 0

)
.

Notation Meaning

X = {x1, . . . , xn} finite instance space
Y = {−1,+1} binary label space
f : X → Y ground-truth labeling
H = {h1, . . . , hm} hypothesis class
q = (q1, . . . , qn)

⊤ distribution over [n]
c : Y × Y → [0, 1] cost function

Table 1: Summary table for notation.

Goal. The goal we want to achieve is the following: given access to H and f , design an
aggregation h⋆ = h⋆(h1, . . . , hm) of the hypothesis functions in H such that h⋆ = f .

2 Boosting as a game

The idea is that each hypothesis function hi provides some information about the ground-truth
labeling f , depending on how small its loss is over the given distribution q.

Binary prediction game. If we lacked the information provided by H, the best we could
hope for is to select the best distribution over the two possible labels Y such as to minimize
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the expected cost in the worst case. This translates into a two-player zero-sum game with a
2-by-2 cost (instead of payoff) matrix C, which here we call the binary prediction game. Given
the game C, von Neumann’s minimax theorem tells us that the minimax strategy achieves loss
equal to the value of the game VC when facing the worst possible true label. However, this way
of predicting the ground truth f is neither deterministic nor perfect in general.

We will show in what follows that it is possible to resolve both downsides provided a sufficiently
weak and reasonable assumption on how H relates to f . The boosting framework considers what
is commonly known as the weak-learning assumption.

Assumption 1 (Weak learning). For any distribution q over [n], there exists i ∈ [m] such that
the hypothesis hi guarantees ℓq(hi) ≤ VC − γ for some constant γ > 0.

The weak-learning assumption essentially states that, given any distribution q, we can always
find a function in H that guarantees some advantage (or edge) γ over the loss compared to the
value VC obtained by predicting at best while ignoring X and H.

Boosting game. We now define a more structured game that the one given by matrix C.
Let M ∈ [0, 1]m×n be such that each row i corresponds to hypothesis hi and each column j
corresponds to data point xj . Each entry of M is defined as

Mi,j = c(hi(xj), f(xj)) ∀i ∈ [m], ∀j ∈ [n] .

In order words, Mi,j is the cost incurred by the prediction hi(xj) given by hypothesis hi on
the data point xj . Observe that ℓq(hi) = (Mq)i, and so the weak-learning assumption can be
equivalently rewritten as

max
q

min
i

ℓq(hi) = max
q

min
i

(Mq)i ≤ VC − γ .

By von Neumann’s minimax theorem, the left-hand side of the inequality is

max
q

min
i

(Mq)i = max
q

min
p

p⊤Mq = min
p

max
q

p⊤Mq = min
p

max
j

(M⊤p)j ,

and thus, together with the previous inequality given by the weak-learning assumption, we
equivalently have that

min
p

max
j

(M⊤p)j ≤ VC − γ .

In other words, there exists some distribution p over the indices [m] of the hypotheses such that
the randomized hypothesis hI given by sampling I ∼ p has expected cost at most VC − γ on any
data point xj . Define

p⋆ = argmin
p

max
j

(M⊤p)j (1)

to be such a distribution.1

Cost-sensitive majority vote. Think of the mixed strategy p⋆ = (p⋆1, . . . , p
⋆
m)⊤ as a sort of

weighting of the hypotheses in H, placing more weight to hypotheses that achieve small cost
over points in X (as given by the matrix M). Then, given p⋆, we may devise a deterministic
way to predict labels. Given any fixed data point x ∈ X , the intuition is to test the randomized

1Remark: p⋆ can be efficiently computed via a linear program.
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hypothesis hI on each of the two possible labels in Y and to compute its expected cost. In order
words, for each y ∈ Y we compute

E
I∼p⋆

[
c(hI(x), y)

]
=

∑
i

p⋆i c(hi(x), y) = c(−y, y)
∑

i:hi(x)̸=y

p⋆i .

Intuitively, we would select the label y that minimizes such an expected cost. The final predictor
would then become

h⋆(x) = argmin
y∈Y

c(−y, y)
∑

i:hi(x)̸=y

p⋆i ∀x ∈ X ,

that is, h⋆ selects the label y that the majority of H weighted by p⋆ predicts correctly, after
factoring in the contribution of the two possible non-negative costs c(−1,+1) and c(+1,−1),
respectively.

In order to prove that h⋆ is indeed a perfect predictor for the ground-truth labeling f , we need
the following fact about the value of the binary prediction game C.

Fact 1. The binary prediction game C has VC ≤ max
{
αc+, (1− α)c−

}
for any α ∈ [0, 1].

We are now ready to prove the main result.

Theorem 2. The function h⋆ is equal to f .

Proof. Assume by way of contradiction that h⋆ ̸= f . This means that there exists an index
k ∈ [n] such that h⋆(xk) ̸= f(xk). Let yk = f(xk), and define

w− =
∑

i:hi(xk )̸=yk

p⋆i and w+ =
∑

i:hi(xk)=yk

p⋆i = 1− w− .

Hence, we have that h⋆(xk) ̸= f(xk) corresponds to h⋆(xk) = −yk. Using the definition of h⋆,
this means that

(1− w−)c(yk,−yk) = w+c(yk,−yk) ≤ w−c(−yk, yk) .

Consequently, we obtain that

w−c(−yk, yk) = max
{
w−c(−yk, yk) , (1− w−)c(yk,−yk)

}
≥ VC ,

where the inequality follows by Fact 1. On the other hand,

w−c(yk,−yk) =
∑
i

p⋆i c(hi(xk), yk) = (M⊤p⋆)k

≤ max
j

(M⊤p⋆)j = min
p

max
j

(M⊤p)j ≤ VC − γ ,

where the last inequality follows by the weak-learning assumption. Combining the two inequal-
ities, we obtain VC ≤ w−c+ ≤ VC − γ, which is a contradiction since γ > 0.

3 Exercises (optional)

Exercise 1. Prove that VC = minα∈[0,1]max
{
αc+, (1− α)c−

}
. (Note that this implies Fact 1.)

Exercise 2. Prove that VC = c−c+

c−+c+
. (Hint: use Exercise 1.)

Exercise 3. Show how to compute p⋆ (Equation (1)) exactly using a linear program.
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