
Characteristics of Runtime Program Evolution

Mario Pukall and Martin Kuhlemann

School of Computer Science, University of Magdeburg, Germany
{pukall, kuhlemann}@iti.cs.uni-magdeburg.de

Abstract. Applying changes to a program results typically in stopping
the program execution. This is not acceptable for highly available appli-
cations. Such applications should be evolved at runtime. Because runtime
program evolution is nontrivial we give terms and definitions which char-
acterize this process. We will specify two major dimensions of runtime
program evolution – time of evolution and types of evolution. To sketch
the state of the art we will pick out three different approaches which try
to deal with runtime program evolution.

1 Introduction

Nowadays requirements for complex applications rapidly change due to fre-
quently altering environmental conditions. Attending new requirements using
well-known software re-engineering techniques results the recurring schedule:
stopping the application, applying the changes, testing the application, and
restarting the changed application. Erlikh [1] and Moad [2] calculate the costs
to maintain and evolve software to be 90 percent of the overall engineering
costs. This is unacceptable for applications that should be highly available, e.g.
security applications, web applications or banking systems, because unavailabil-
ity causes costs. Idioms like design patterns, component-based approaches, and
configurable applications help to reduce the costs of maintenance, evolution,
and unavailability of applications. Nevertheless, these approaches cannot avoid
unavailability of applications at all.

In this paper we mark characteristics of runtime program evolution based on
object-oriented programming language Java. Based on these characteristics we
evaluate existing approaches of runtime evolution.

2 Terms and Definitions

In this section we define terms which characterize runtime program evolution.
We start at the categories time and types of evolution because these are major
features of runtime evolution.

2.1 Time of Evolution

We found 3 different stages of program evolution (Figure 1 – Build time, Hire
time and Deployment time). Build time references the process of static software



evolution where a software engineer implements the required changes in the
program’s source code. Building the program (i.e., source code compilation)
terminates the process. Hire time is the time after the compilation of a class
but before loading this class, e.g. before creating an instance of the class at all.
Deployment time is the time after loading the code for execution, e.g. after class
loading. Hire time and deployment time belong to runtime program evolution,
whereas build time belongs to static program evolution.

2.2 Types of Evolution

Fig. 1. Dimensions of Evolution Time.

We identified three funda-
mental types of runtime evo-
lution: predictability, kind of
code and program changes.

Predictability. In some
cases the application can be
prepared for future program
changes – so called antici-
pated program changes. We
observed that the amount of
program changes which can-
not be foreseen (i.e. unantic-
ipated program changes) is much bigger than the amount of predictable changes.

Kind of Code. Kind of code classifies the code which must be changed to
achieve modifications into: source code, byte code (intermediate code of platform
independent languages) and native binary code (directly executable by the host
system).

Program Changes. Gustavsson and Assmann [3] identified two types of
program changes: source code and state changes. In this work we concentrate on
changes of program’s source code because source code changes can also effect
the program state. Additionally, program state changes can be prepared using
interfaces and introducing the new state through, e.g. Java Remote Method
Invocation (RMI) or Java Platform Debugger Architecture (JPDA).

In Table 1 we give our classification of program changes based on source code
modifications. The classification respects major attributes of object-oriented
paradigm and contains: changes that result in modified structure, behavior, ab-
straction & encapsulation, and inheritance & polymorphism of program’s source
code (which is organized in classes).

Due to space limitations we only depict a subset of possible source code
changes. Each kind of source code change influences at least one category of
our classification.1 The benefit of our classification is a better highlighting of
the approach’s shortcomings concerning the feasibility of source code changes.
We point out the applicability of our classification at byte code changes because
byte code keeps the object-oriented paradigm.
1 E.g., ”modify method body” ↔ {behavior}, ”add/remove class variable” ↔
{structure, encapsulation & abstraction}.



Categories of Source Code Changes
Examples Structure Behavior Encapsulation & Inheritance &

Abstraction Polymorphism

add/remove class yes yes yes no

add/remove base/sub class yes yes yes yes

modify method body no yes no no

change method modifier no no yes optional

add/remove class variable yes no yes no

add/remove base/sub class variable yes no yes optional

add/remove class method no yes yes no

add/remove base/sub class method no yes yes optional

Table 1. Examples and Classification of Source Code Changes.

3 Evaluation

In this section we evaluate representative approaches which fit the topic of run-
time evolution. Unless there is a huge amount of approaches we just have chosen
these ones because they can be attached to different ideas of approximating
runtime program evolution.

3.1 Javassist

Javassist (Java Programming Assistant) enables Java byte code changes [4, 5].
Using Javassist’s source level API new or changed source code can be applied to
existing class files without knowing the classes byte code. The byte code level
API allows direct changes of class file contents.

Fig. 2. Time of Evolution – Javassist.

Time of Evolution.
Byte code changes can be ex-
ecuted until hire time (Fig-
ure 2). Byte code changes af-
ter class loading cannot be
applied to the Java Virtual
Machine (JVM).

Types of Evolution.
Javassist enables all kinds of
code changes2, i.e. it covers
all categories of our classi-
fication. This predestinates
the tool for computing unanticipated program changes. Unfortunately Javassist
lacks the complete bandwidth of time of evolution.

3.2 AspectWerkz

AspectWerkz [6, 7, 8] is an framework for aspect-oriented programming [9, 10]
in Java.
2 E.g., ”add/remove class”, ”modify method body”, ”add/remove class method”, etc.



Time of Evolution. AspectWerkz allows program changes until deployment
time (Figure 3). The process of preparing the program for runtime evolution can
only be performed until hire time.

Types of Evolution. Aspectwerkz offers two several concepts for modify-
ing running applications – aspects and mixins – which enables unanticipated
program changes.

Fig. 3. Time of Evolution – Aspectwerkz.

Mixins introduce inter-
faces and there implemen-
tations to classes at hire
time. To achieve this, meth-
ods (interface methods) and
a field (instance of the inter-
face implementing class) will
be introduced into target
class (processed at byte code
level). These code changes
cover all categories of our
classification (Table 1).

The preparation for as-
pect deployment is pro-
cessed at byte code level and results in modified method bodies. Aspects can
be added and removed to (from) prepared program statements at deployment
time. Such operations only change the program’s state.

3.3 The Bean Scripting Framework – Java and JRuby in Concert

Fig. 4. Time of Evolution – Java and JRuby.

The Bean Scripting Frame-
work (BSF) enables integra-
tion of scripting languages
like JRuby3 into Java pro-
grams [12]. The application
is made up of the Java part
(JP) and the JRuby part
(SP). The interaction be-
tween the JP and the SP is
controlled by a BSFManager
which handles the scripting
engine of JRuby. The BSF-
Manager manages the execu-
tion of JRuby scripts and the
interchange of object references4 among the JP and the SP of the application.

Time of Evolution. The combination of Java and JRuby enables program
changes until deployment time (Figure 4). At build time it is terminated what
is static (JP) and what is changeable (SP) in the application.
3 Java implementation of scripting language Ruby[11]
4 JRuby interpreter can execute scripts which contain Java source code.



Types of Evolution. Java classes defined within JRuby scripts can be re-
defined at deployment time. This influences all categories of source code changes
(Table 1). Modifications can be applied to existing instances of the redefined
class, i.e. unanticipated program changes are possible.

4 Conclusion

In this paper we characterized runtime evolution of programs. We identified two
essential characteristics of runtime program evolution – time of evolution and
types of evolution.

We reason that the combination of Java and scripting language JRuby using
the Bean Scripting Framework offers the most suitable options for enabling run-
time program evolution. JRuby scripts are interpreted and enable all kinds of
program changes until deployment time. Nevertheless, because of the overhead
of script interpretation at program’s runtime this approach is not appropriate
to time-critical use cases. New approaches are needed which enable runtime pro-
gram evolution, as offered by interpreted languages, for compiled languages like
Java and C++.

References

[1] L. Erlikh: Leveraging Legacy System Dollars for E-Business. IT Professional
(2000)

[2] J. Moad: Maintaining the competitive edge. DATAMATION (1990)
[3] J. Gustavsson and U. Assmann: A Classification of Runtime Software Changes.

In: Proceedings of the First International Workshop on Unanticipated Software
Evolution (USE). (2002)

[4] S. Chiba and M. Nishizawa: An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators. In: Proceedings of the second International Conference on Generative
Programming and Component Engineering (GPCE). (2003)

[5] S. Chiba: Load-Time Structural Reflection in Java. Lecture Notes in Computer
Science (2000)

[6] A. Vasseur: Dynamic AOP and Runtime Weaving for Java – How does As-
pectWerkz Address It? In: DAW: Dynamic Aspects Workshop. (2004)

[7] J. Bonér: AspectWerkz – dynamic AOP for Java. Invited talk at 3rd International
Conference on Aspect-Oriented Software Development (AOSD). (2004)

[8] J. Bonér: What are the key issues for commercial AOP use: how does AspectWerkz
address them? In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD). (2004)

[9] G. Kiczales and J. Lamping and A. Mendhekar and C. Maeda, C.V. Lopes and
J.-M. Loingtier and J. Irwin: Aspect-Oriented Programming. In: Proceedings of
the European Conference on Object-Oriented Programming (ECOOP). (1997)

[10] K. Czarnecki and U. Eisenecker: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

[11] D. Thomas and C. Fowler and A. Hunt: Programming Ruby: The Pragmatic
Programmers’ Guide, Second Edition. Pragmatic Bookshelf (2004)

[12] V.J. Orlikowski: An Introduction to the Bean Scripting Framework. Presented
at Conference ApacheCon US. (2002)


