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Abstract. A new boosting algorithm ADABOOST-RA for regression
problems is presented and upper bound on the error is obtained. Exper-
imental results to compare ADABOOST-RA and other learning algo-
rithms are given.

1 Introduction

Boosting refers to the general problem of producing a very accurate prediction
algorithm by appropriately combining rough and moderately inaccurate ones.
It works by calling repeatedly a given “weak” learning algorithm on various
distributions on the training set, and combining the hypotheses obtained with a
linearly separable boolean function.

The boosting algorithm ADABOOST proposed by Freund and Schapire [1]
and presented in Section 2 has been successfully applied to improve the perfor-
mance of different learning algorithms used for classification problems both bi-
nary and multiclass [2]. The first extension for regression problems f : X — [0, 1]
is the algorithm ADABOOST-R [1]. In this paper we present ADABOOST-RA,
a different and more general extension for problems f : X — [0,1]™. The main
theoretical result 1s an upper bound on the error.

To analyse the performance of ADABOOST-RA we have done experiments
using backpropagation as “weak” learning algorithm. Preliminary results show
good convergence properties of ADABOOST-RA; notably it is able to lower
both the mean and the maximum error on either the training and the test set.
For regression problems f : X — [0, 1] it works better than ADABOOST-R.

2 Preliminary definitions and results

Given a set X and Y = {0, 1}, let P be a probability distribution on X x Y. An
N —sample is a sequence {((x1,¥1), ..., (xn, yn)) with (zg,ys) € X X Y; we call
Sampp the set of all the N—samples and Samp = Uy Sampy .

Given a class of functions H C {f | f: X — {0,1}}, a learning algorithm A
on H is a function A : Samp — H.
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Let S = {(z1,y1),...,(zNn,yn)) be a N—sample and let h = Ag be the
hypothesis output by A on input S, the empirical error € of A on S is

# (ke u6) | ye £ h(2k)}
N

€=

while the generalization error is

¢ =Py # h()}.

Under weak conditions on H (that is the Vapnik-Chervonenkis dimension [3] of
H is finite), choosing elements of X x Y randomly and independently according
to P, for sufficiently large samples, the empirical error is close to the generaliza-
tion error with high probability [4]. For this reason a good learning algorithm
should minimize the empirical error. Often this is a difficult task because of the
large amount of computational resources required and computationally efficient
algorithms are usually moderately accurate.

Boosting 1s a general method for improving the accuracy of a learning algo-
rithm. In particular we refer to the algorithm ADABOOST presented in [1]
and described below. It has in input a learning algorithm A4, a N—sample
S = {(#1,11),..., (&N, yn)), a distribution D on the elements of S, an inte-
ger 1" and gives in output a final hypothesis hy = HS(ZZIl wiphi — A) with
hy € H (k= 1,T); HS denotes the function HS(x) = if # > 0 then 1 else
0. Even whether A is moderately inaccurate, for a sufficiently large 7' the error
made by the final hypothesis h; on the sample S can be made close to 0. Besides,
the generalization ability of h; is good since the Vapnik-Chervonenkis dimension
of the family of the final hypothesis does not grow too much [1].

Algorithm ADABOOST

Input: a N—sample S = {(z1,41), ..., (2N, yn)), a distribution D on S| a learn-
ing algorithm A, an integer T.

Initialize the weight vector w} = D(i) fori=1,..., N

Do for t=1,2,...,T

w®

1. Set p(t) = W

2. Choose randomly with distribution p(*) the sample S*) from S; call the
learning algorithm .4 and get the hypothesis h; = Agq)

3. Calculate the error ¢; = Zﬁ\;lp(t) | he(ai) — i |

4. Calculate 3; = ui—tﬁt)

(t41) _ (0 gl=|p ) (i) =y

5. Set the new weights vector to be: w

7 7 t

Output the hypothesis hy = HS (Zzzl(log %t)ht(l‘) —1/2 ZZﬂ(lOg %t))

An upper bound to the error ¢ = Zi\;l D(k)- | hy(xx) — yx) | is given by the
following



Theorem 1 (Freund-Schapire). Suppose the learning algorithm A, when called
by ADABOOST, generates hypotheses with errors €1,...,ep. Then the error
€= Zi\;l D(k)- | hy(xr) —yx | of the final hypothesis hy output by ADABOOST
1s bounded by

T
e< ot H Vel —e).
t=1

ADABOOST can be applied to classification problems with 2 classes. It has
been generalized to multiclass problems (Y = {1,...,K}) and to regression
problems (Y = [0,1]) [1]. Roughly speaking, the main idea of the algorithm
ADABOOST.R designed by Freund and Shapire for regression problems, is that
of transforming the regression problem into a classification one using the total
order relation < on the real numbers. For example, every hypothesis h : X —
[0, 1] is transformed into the boolean function & : X x [0, 1] — {0, 1} with

ﬁ(x,y) :{1 yZh(l‘)

0 otherwise

In the next paragraph we present a different way of transforming a regression
problem for functions with values in [0, 1]™, into a classification problem. It
develops an idea presented in [5] and it is based on the notion of norm in R™.

3 The algorithm ADABOOST-RA

In this section we show a boosting algorithm ADABOOST-RA for regression
problems. In this setting, Y is [0, 1]™ instead of {0, 1}; as before, a sample 5,
chosen at random according to a probability distribution P on X x Y | is given
to a learning algorithm A, that outputs a hypothesis h : X — [0, 1]™.

Given anorm || || on R™, fixed A > 0, we say that  and & “A- agree” if ||x —
Z|] < A. We consider as generalization error egA of a hypothesis h the probability
that y and h(z) does not “A- agree”, that is egA = [HS(||hx) — y|| — A)dP.
Analogously, the empirical error ¢ on a sample S = {(z1,41),. .., (zn,yn)) is

et = L (HS(|h(xk — yxll — A)).
Algorithm ADABOOST-RA

Input: a N—sample S = {(z1,11), ..., (2N, yn)), adistribution D on S| a learn-
ing algorithm A, an integer T, a real numberA.

Initialize the weight vector w} = D(i) fori=1,..., N

Dofor t=1,2,...,7T

w(®

1. Set p(t) = W

2. Choose randomly with distribution p(*) the sample S*) from S; call the
learning algorithm .4 and get the hypothesis hy = Agq

3. Calculate the error ¢, = Zf\;l pl(»t)HS(Hht(xi) —yil| — AQ)
if ¢ > 1/2 then T =t — 1 and abort loop



4. Calculate 3; = 1—Et)

5. Set the new weights vector to be w(H—l) w( )ﬁl HS (Il (=) =yill=4)
Output the hypothesw hy = argmazyeo, iy~ ZatHS( — ||kt (%) —yi||) where

log By

An upper bound to the error €24 = Y (HS(||hs (zx — yx|| — 24)) is given by
following

Theorem 2. Suppose the learning algorithm A, when called by ADABOOST-
RA, generates hypotheses hy with errors €1, ...,er < 1/2 and let hy be the final
hypothesis output by ADABOOST-RA. Then

T

> D(k) < 2" [ Vel —e)

Ay (zr)—yrl|>24 t=1

Proof. (Outline) We transform the regression problem X — [0, 1]™ into a clas-
sification problem X x [0,1]™ — {0,1}

— the sample S = ((#;,y;) | ¢ = 1, N) is transformed into the sample S =
(%5, 9:),0) [ i =1, N) R R
— the distribution D(¢) is transformed into D(i) = D(é) on the sample S

— the algorithm A with input S is transformed into the algorithm A with input
S with the rule: A~ (xl,yl) HS(||As (z;) — ui]| — A)

Let w®) and €(®) be respectively the weights vector and the error at step t
of the algorithm ADABOOST-RA and let @®) and €®) ¢®) be respectively the
weight vector and the error at step ¢ of the algorithm ADABOOST applied to
the associated classification problem. By induction it can be proved that

oW =w® =0 1<t<T)

Let ﬁf (z,y) be the final hypothesis given by ADABOOST and h¢(x) be the final
hypothesis given by ADABOOST-RA. If || hy (2;) —y; || > 2A then hy(z;, y;) = 1.
Let us suppose, on the contrary, that hs(xz;, y;) = 0, then

S oS (k) —will - 4) < 1723 o (1)

Let I = {t | [[he(2;) — wil] < A}, the inequality (1) becomes ) . ar <
1/2%", a; and the following relation hold

o> )

tel tgI

Since hy = argmazyepo]m y_ arHS(A — ||he(x;) — yi]|) then



Y aHS(A = |lhe(@i) = hy()l]) > Y acHS(A = [|he(xs) —wl))  (3)

From (2) and (3) follows

> HS(A=|he(w)=hg(@)]l) > Y ar(1=HS(A—[|he(z;)—hs()]]) > 0 (4)
tel tg1

From the inequality (4) one can assert that there exists t € I such that
HS(A—||hi(z;)—hy(2:)]]) = 1; for such t it holds that [|h(zs)—hi(z;:)]] < Aand
[|hi(2s) —yi]] < A. Hence by the triangular inequality we obtain: ||hs(2;) — yi|| <
2A but this is against the hypothesis.

Since ||hs(2;) — yi)|| > 2A implies hy(z;, ;) = 1, using Theorem 1 we con-
clude

> pEy< Yo D) <2"[[Vel-e)

oz (i)—yill>24 hy(@iyi)=1

4 Experimental results

In this section we present some preliminary results to evaluate the performance
of ADABOOST-RA in terms of learning accuracy and computational efficiency.
The experiments have been done as follows:

— the functions to be learned are functions f: R — Ror g : R? = R?

— the “weak algorithm” A, given in input to ADABOOST-RA, is backpropa-
gation on neural networks of fixed architecture

— the parameter A has been set at 1.54, where J is the error on the training
set made by backpropagation and preliminarly computed.

The experiments show that ADABOOST-RA exhibits better convergence
properties than backpropagation: after the same number of epochs the accuracy
on either the training and the test sets is higher. A qualitative example of this
behaviour is shown in Figure 1. Figure la and 1b show respectively the interpola-
tion of the function f(z) = (sin(10-2)+2)/4+sin(50-(x+0.5)?)/15+0.1N(0,0.1)
made by backpropagation and by ADABOOST-RA.

Quantitative results for a function g : R? — R?, described by the the
expression g(z,y) = sin(m) . sin(m)/i% + 0.5 with gaussian noise
0.2-N(0,0.2) added, are given in Table 1 (left). Two different network architec-
tures (@ denotes the architecture 2-10-10-2, b denotes the architecture 2-15-15-2)
have been trained for different numbers of epochs.

For functions f : R — R we have also compared the performance of ADABOOST-
RA with the algorithm ADABOOST-R. Table 1 (right) shows the results relative
to the function f(z) = sin(m)/5 +0.2- N(0,0.2)
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Fig. 1. Comparison between back-propagation and ADABOOST-RA.

str|datalepochs|T|mean err.|max err.
a | tr | 1000 |5]0.0428 |0.1607 alg. |datalepochs|T|mean err.|max err.
a |test | 1000 [5]0.0433 0.1545 F.S.| tr | 1000 |6(0.021 0.111
a | tr | 5000 [1]0.0471 0.1739 F.S.|test| 1000 |6]0.020 0.128
a |test | 5000 [1]0.0475 0.1664 A tr | 1000 |51]0.017 0.058
bl tr | 1500 |4(0.0417 0.1687 A |test| 1000 [5]0.018 0.073
b |test| 1500 |4]0.0425 0.2101 b.pr.| tr | 6000 [1]0.031 0.204
b | tr | 6000 |1]0.0434 0.2054 b.pr.|test | 6000 [1]0.036 0.228
b |test| 6000 |1]|0.044 0 |0.2404
Table 1.
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