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Università degli Studi di Milano

Via Comelico, 39/41 20135 Milano, Italy
{campadelli, lanzarotti, lipori}@dsi.unimi.it

Abstract— In this paper we describe a two step algorithm
which localizes faces in 2D color images depicting a single face
on a complex background. Given a single image, the algorithm
roughly determines the skin regions and then searches for eyes
within them. A face is localized if at least one eye is present in a
skin region. The system is based on a Support Vector Machine
trained to separate sub-images representing eyes from others.
The algorithm is robust to scale, illumination, pose variations and
deals with partial occlusions. Results on several public databases
are presented.
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I. INTRODUCTION

In recent years a great deal of research work has been
devoted to face image processing due to the interest of the
pattern recognition problems it involves, and to the richness of
potential applications such as face recognition and authentica-
tion, facial expression recognition, face tracking, model-based
coding of video sequences, etc. Albeit these application fields
have different aims, they all have a common denominator:
to detect in images those locations where faces are present.
This task is called face localization in case of input images
depicting only one subject in the foreground1.

Such task is challenging because of the face manifold
owing to the high inter-personal variability (e.g. gender and
race), the intra-personal changes (e.g. pose, expression, pres-
ence/absence of glasses, beard, mustaches), and the acquisition
conditions (e.g. illumination and image resolution).

To our knowledge the best performance in face localization
has been presented by Smeraldi and Bigun in [14], but the
authors reduced the problem complexity by fixing the scale.

In this paper we propose a two-module system: at first
it searches for skin regions within the image allowing to
restrict the search area for the subsequent module (section
II); then an SVM is applied only in correspondence to the
skin regions with the objective of discriminating between
faces and non faces (section III). In particular we trained the
SVM to recognize eyes, meaning that an eye within a skin
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1On the contrary we define face detection the case when no assumption is
made regarding the number of faces in the images.

region validates it as a face. This solution tries to exploit the
advantages of both feature invariant approaches [15], [17] and
appearance based methods [7], [11].

II. SKIN DETECTION

The objective of this step is to greatly reduce the search area
in input to the classifier by excluding the regions that do not
correspond to skin on the basis of their color properties. Sub-
sequently we exploit further information to better characterize
faces among skin regions.

In the following we present the skin color model construc-
tion (II-A), the algorithm which selects the skin regions (II-B)
and the experimental result of the method (II-C).

A. Skin color model

The skin color model consists of a mixture of two bidi-
mensional Gaussians, each one parameterized by (µi, σ2

i I),
since it is simple and statistically well justified [17]. The
parameters are estimated using the EM algorithm [10], [13]
on the basis of 4-million sample of skin colors, and referring
to the chrominance components in the YPbPr color space.

In order to obtain a color sample which is representative
of different illumination conditions and human races, we have
gathered the skin colors from two databases, the BANCA-
Controlled and the DBLAIV.

• BANCA [4] - Controlled: from this database we col-
lected two million pixel colors, taken from the first and
the last image of each section for all the 52 recorded
people and for all the four sections.

• DBLAIV2: from this database we collected two million
pixel samples, referring to a subset of 250 images chosen
randomly among the 1130 images.

The obtained skin color model M spreads on a relative small
portion of the color plane, showing that the skin colors, even

2it consists of 1130 color images collected in our LAIV laboratory [1],
and representing an arbitrary number of people (even none) standing on an
arbitrary background. The images are completely uncontrolled both regarding
the acquisition conditions (very different illuminations, 5 cameras, etc.) and
the face characteristics (pose, scale, expression, wearing or not glasses, partial
occlusions, rotations, etc).
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if corresponding to a wide range of illumination conditions
and human races, are quite clustered together, making such
characterization useful.

B. Skin Map determination

Given the skin color model M, we have to define a criterion
to select in each image the pixels that with high probability do
not correspond to skin. This allows to construct the Skin-Map,
that is a binary image where the pixels corresponding to the
skin are set to 1 and the others are set to 0. To this end, the
straightforward method that consists in building the probability
image and then thresholding it is not robust enough.

The method we propose does not assign the probability
to single pixels but to homogeneous regions searched with
the watershed technique. By doing so we segment the image
into catchment basins to be considered as elementary units
in the further steps. We adopted the algorithm proposed in
[16] since it has linear computational time; it is based on
the immersion simulations, and it proceeds labelling each
basin with a progressive label, starting from the pixels with
the darkest gray level. For this application, we applied the
algorithm to the gradient of the low-pass filtered image, since
we have experimentally observed that this allows to extract
basins which well describe the objects in the scene. To this
end, we adopted a Gaussian filter with σ = 1 and the Sobel
filter.

We then characterize the catchment basins with their mean
colors and use some further information, such as the basin’s
label and dimension, to better discriminate the basins corre-
sponding to faces from the others. In particular, in order to find
discriminant criteria, we analyzed 100 images representing
generic scenes observing that:

1) face basins have generally labels with high values; this
is due to the fact that in correspondence of faces there
is frequently a high concentration of borders, that is
high values in the edge images. Remembering that the
watershed algorithm starts labelling the darkest gray
levels, the basins corresponding to faces will have high
values.

2) face basins are small, since in correspondence to the face
there are many features which fragment the face region
in many different basins.

Thus, combining these pieces of information we are able to
define a robust Skin-Map following these steps:

• we eliminate the basins whose label values are lower than
the 1% of the maximum label used in the image;

• we associate to the remaining basins the corresponding
mean color in the YPbPr color space; we build the
probability image P such that for every pixel p, P(p)
is its probability according to the skin color model. We
threshold P putting to 1 the 5% of the highest values and
thus determining a first Skin-Map approximation;

• finally, the area of the basins is analyzed, the idea being
to eliminate the big ones. For each image, we estimate
the mean µ and the standard deviation σ of the areas of
the basins corresponding to the Skin-Map; we eliminate
those basins whose area is greater than (µ + 5σ), under

the condition that σ is high with respect to both µ
and the image dimension |Img|, that is if the condition
[σ > (0.2 ·µ)]∧ [σ > (0.01 · |Img|)] is verified.

These simple rules allow to reduce significantly the Skin-
Map, simplifying the task of the SVM.

C. Experimental results

The skin detection module has been tested on 4 databases,
each one with different characteristics and difficulties:

• AR [9]: it consists of 4000 color images corresponding to
126 people’s faces (70 men and 56 women). Images fea-
ture frontal view faces with different facial expressions,
illumination conditions, and occlusions (sun glasses and
scarf). No restrictions on wear (clothes, glasses, etc.),
make-up, hair style, etc. were imposed to participants.
Each person participated in two sessions, separated by
two weeks time.

• XM2VTS [6]: it consists of 1180 high quality images
of single faces acquired in frontal position with homoge-
neous background.

• BANCA [4] - Adverse: like the BANCA-Controlled
it consists of 2080 images, each one representing one
person placed frontally to the camera and looking down,
while in this database the background is non uniform.
The image quality and illumination are quite poor.

• DBLAIV: we have already presented this database in
section II-A. For this test we selected 150 images not
used for the model construction and representing single
faces which differ in pose, expression and scale.

In order to evaluate the Skin-Map, we distinguish its re-
gions in face regions, and non-face regions, meaning that the
former overlap (at least partially) the portions of the image
representing faces, while the latter might correspond either to
any body part other than the face, or to any portion of the
image that has a mean color similar to skin. Moreover we
define the logical notion of Face-Map as the portion of an
image that corresponds to a face, that is the ground truth of
the image. At this stage we do not consider the inclusion of
non-face regions in the Skin-Map as an error, considering it
will be the goal of the validator step to eventually discard
them.

Thus, to evaluate the Skin-Map quality, we focus on the face
region only. We state that an error (false negative) occurs if
the intersection between the Face-Map and the face region
does not contain at least one eye. Thus, if the Skin-Map
has no false negative we conclude it is correct, no matter
regarding eventual non-face regions. Of course it makes a
big difference, with respect to the classifier task, if the face
region corresponds exactly to the Face-Map or if it is either
over or under estimated; for this reason we give a qualitative
classification of the face regions according to the following
notions: we consider excellent each face region which covers
tightly the Face-Map; we say a face region is good if it covers
at least either the triangle including the two eyes and the mouth
or a vertical half of the face, and if its area does not exceed the
double of the Face-Map area; in all the other correct cases the
face region is considered poor. In table I the obtained results
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are reported and figure 1 shows an example of a poor, a good
and an excellent result.

Fig. 1. Example of Skin-Map results (Poor, Good and Excellent respectively).

Database False Correct
Negatives

Poor Good Excellent Total
XM2VTS 0% - 13.1% 86.9% 100%
BANCA
Adverse 0.5% 0.5% 39.6% 59.4% 99.5%
AR 0.9% 7.5% 63.5% 28.1% 99.1%
DBLAIV 0.6% 3.3% 62.3% 33.3% 99.4%

TABLE I
SKIN DETECTION RESULTS.

As it can be expected, the best results occur with simple,
high quality images (XM2VTS database) but we have very
high detection rates even on images with complex background
such as the BANCA-Adverse and the DBLAIV databases.

The main causes of errors are due to both the skin color
model (which does not match with all the possible skin colors)
and the elimination of big regions from the Skin-Map (which
in some cases brings to deleting portions of face regions),
but we have to observe that errors occur very seldom (in less
than the 1% of faces both eyes are lost), bringing to a slight
undermining of the successive classification step.

III. LOCALIZATION OF FACES WITH SVM

Given the Skin-Map of an image, we conceive a validation
criterion to determine for each connected component R of the
Skin-Map whether it constitutes a face or not. To do so, we
search within it for (at least) one eye; in case of positive
response we say we have localized the face, otherwise we
discard the region R as non-face.

We base the validation step mainly upon the output of a
statistical classifier, without taking into account any strong
geometric knowledge of what constitutes a face. We mean
to treat a wide set of situations that can arise in generic
scenes: visibility of a single eye; faces tilted up to |60◦|; head
significantly bent down; closed eyes, subject looking away
from camera objective; subject wearing transparent spectacles;
subject manifesting a non-neutral expression. Besides, we have

to consider that the Skin-Map can be over or underestimated,
so weakening all the information we can gather from it.

We present in section III-A the construction of the SVM
classifier, in section III-B we give a brief description of the
validation technique and finally in section III-C we summarize
the results obtained on several data sets.

A. Training the classifier

From now on we discard the color information restricting
our attention to the spatial one. To build a SVM able to
recognize eyes in a wide range of situations, we considered
three different image databases to construct the training and
test sets:

1) FERET [5] (1330 images): due to its variety and good
quality it is suitable to model the general eye pattern
(eyes belonging to vertical faces, both frontal and rotated
up to ±60◦, eyes eventually framed by transparent
glasses);

2) BANCA-Adverse (210 images): useful to model the
class of closed eyes;

3) DBLAIV (480 images): it includes in our classifier some
knowledge about real world pictures. For instance it
allows to model eyes taken from tilted faces and it
enriches the class of negative examples due to the high
complexity and variety of the backgrounds.

For all these images we have the coordinates of the eyes’
centers, the nose tip and the mouth center as ground truths.
Consequently we automatically extracted the two eyes (la-
belled as positive examples), six non-eye components chosen
randomly out of eleven (see Fig. 2) plus four random examples
from the background (or generally speaking from the comple-
ment of the eyes’ bounding box). These latter ten examples
are labelled as negative. The dimensions of the window used
for extraction are related to the inter-eye distance d and to an
estimate of the pose angle of the subject. The sample was the
split into training and test set with proportion two third and
one third respectively, giving rise to sets of cardinality 14842
and 7430.

In order to understand the difficulty of the classification
task, we carried out two training experiments, each depending
on a different representation of the same sample data:

• Direct space representation the sub-images have been
contrast stretched and pyramidally down-sampled to the
size of 16× 16 pixels which is a trade off between the
necessity to maintain low the computational cost and to
have sufficient details to learn. We observe that this choice
limits the size of regions that are candidate to be detected
as faces (they must be greater than 40× 40 pixels); this
is a typical drawback of component based methods.

• Wavelet space representation we filtered the sample via
an over-complete fast wavelet transform (FWT). Then we
selected a small subset of significant wavelet coefficients
suitable to represent the data for training purposes.

The introduction of the wavelet transform is motivated
by the idea that it permits a better representation of the
pattern, thus simplifying the classification task. The method we
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adopted is based on the work by Papageorgiou et al. presented
in [12].

The first step consists of transforming each example by a
double-density one-dimensional FWT along each dimension
of the image3:

c j−1,k = 1√
2
(c j,2k + c j,2k+1) k = 0, ...,2 j−1 −1, j = 4,3,2

d j−1,k = 1√
2
(c j,k − c j,k+1) k = 0, ...,2 j −2, j = 4,3,2

which equals to perform the standard FWT and skip the
downsampling step on the wavelet coefficients d j,k. This
means that instead of producing 256 coefficients per image,
we generated about four times as many4 in order to increase
the variety of features to select among.

Let us call c j,k1,k2 and d j,k1,k2 the coefficients of the two-
dimensional decomposition, where j is the detail level and
(k1,k2) the two-dimensional shift. However we did not con-
sider all the c j,k1,k2 and d j,k1,k2 ; firstly we discarded the scaling
coefficients c1,k1,k2 since they describe the mean illumination
of the examples; secondly we discarded the detail level j = 4
because eye patterns are characterized by relatively small
frequencies; thirdly we selected a subset of 94 coefficients
which condense most of the characteristics of the pattern. The
relevant features correspond to wavelets that represent vertical
variations as the eye is rich in horizontal edges.

As the sample representations involved in the two exper-
iments are quite different, we had to choose an appropriate
classifier for each data set. In both cases we employed a C-
SVM with Gaussian kernel, but we selected two different
couples of parameters for the different classification tasks:
γ = 1e − 3 and C = 10 for the direct space representation,
γ = 4e− 4 and C = 6 for the wavelet one. Such parameters
have been chosen after several trials as trade off between error
reduction and generalization ability. By doing so, we obtained
respectively 2060 and 1674 support vectors5, being 3.1% and
2% the errors on the test sets. These results suggest that
in the second experiment the examples are better separated,
which makes the wavelet representation more suitable for the
robustness of the detection technique.

B. Localization technique

The validation of the Skin-Map poses two major problems.
First, it is necessary to reduce the number of points to consider
for classification, while not excluding eye centers. Second, the
absence of any assumption on the scale of faces forces the
research of eyes on a range of possible dimensions. The two
questions have implications both on the computational cost
and on the accuracy of the technique.

3The non standard two-dimensional Haar basis corresponds to transforming
the rows and the columns alternatively at each level j, while the standard one
derives from transforming first all rows and then all columns. We prefer the
non standard Haar basis because all its elements have a square support.

4The over-complete FWT is two times denser on each linear dimension of
the image.

5In general a smaller number of support vector indicates an easier classifi-
cation task.

Fig. 2. Facial components: 2 positive and 11 negative examples

For what concerns the first issue we restrict the scan to
edges within the Skin-Map, according to the consideration
that eyes usually lay on strong edges. In particular we limit
the maximum number of points to visit in each region R by
thresholding adaptively the edge image ER.

The detail with which a region is scanned depends on its
size, through the definition of the “radius” r =

√

A/π, where
A is the area of R in pixels.

In fact the candidates p are exactly the points in the set
ER∧G, where G is the set of the interceptions of a grid of lines,
spaced according to the scan step s = r/k (being k a constant
that regulates such detail). In this way we expect to consider
approximately the same number of candidates independently
of the region area.

Regarding the second issue, in order to evaluate a candidate
point we need to extract an example at the correct scale. In
other words, we expect the SVM response to be correct on eyes
only if we feed in an example in which the eye dimension fits
the model defined by the class of positive examples. We know
by construction that the training examples have been extracted
with a size based on the inter-eye distance d. On the other
hand, during validation the only information that we have is
the shape and size of R. Experimentally we see that if the
Skin-Map of a face is excellent, then the ratio of the distance
between the eyes over the radius r is about 0.6. So the natural
choice for candidates extraction is the size d = 0.6× r.

However, complex pictures seldom have Skin-Maps very
well defined. We must account for possible errors of over
or underestimation of skin regions, which means to consider
different possible dimensions for eyes (hypothetically) present
in the region. For simplicity we extract only two additional
examples of sizes 0.8× d and 1.2× d, besides the optimal
size d.

Let us call xp, x−p and x+
p the examples corresponding to the

same candidate p at the three different scales; we evaluate the
strength of p by summing the margins of all three examples.
Since the margin is proportional to the Euclidean distance of
the example from the decision hyperplane, we treat it as a
“measure” of the confidence with which the SVM classifies
the example. Thus we define the function

f (p) = SV M(xp)+SV M(x−p )+SV M(x+
p )

where SV M(x) = 0 is the equation which defines the optimal
separating hyperplane. Being the three scales quite close, we
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usually observe a good correlation among the margins on
positive examples, and the definition of f is useful to prevent
the exclusion of a good candidate due to a wrong Skin-
Map estimate and simultaneously to weaken the strength of
a pattern that looks similar to an eye only at a certain scale.

Unfortunately the classification skills of the SVM are not
sufficient to take for eyes all candidates p with f (p) positive
and discard all the others. What’s more, we cannot foresee
neither how many candidates will be placed near the eyes’
centers, nor what will be the response of the SVM on them.
Consequently it is necessary to determine a threshold to
separate positives from false positives and a heuristic to group
together all positives relative to the same eye. Our answer to
the problem requires the introduction of two absolute threshold
values, of opposite sign. First, we make a quick scan of the
candidates only at the optimal scale d and discard all p̃ s.t.

SV M(x p̃) < θ1 < 0.

Second, we operate another scan in which we select all p 6= p̃
s.t. f (p) ≥ θ2 > 0, then we aggregate them according to their
mutual distance. The idea is to cluster all strong candidates
closer to each other than a certain multiple m of s, and for each
cluster cl we calculate its centroid c. Finally we strengthen
the correctness of the position of c by adding the contribute
of those candidates p s.t. θ2/2 ≤ f (p) < θ2 (candidates which
are less strong but still significant)and we say that each point
c represents the center of an eye.

If we name C the set of all clusters detected by the previous
technique, we can select the best two (if more than two are
found) and state that they constitute the only eyes present in
the image. In order to choose those clusters we coupled the
elements of C in all possible ways and attributed to each couple
a vote vi j; if we define vi = ∑p∈cli f (p) and call (ci)y the y-
coordinate of the centroid of the i-th cluster cli:

vi j =de f
vi · v j

1+ |(ci)y − (c j)y|
, where i > j, cli,cl j ∈C.

To select the couple with maximum vote in order to localize
the two eyes:

if vnm = max
i, j s.t. i> j

{vi j|cli,cl j ∈C},
then cn,cm are the two eyes’ centers.

This definition means to favor cluster couples whose ele-
ments are strong (in terms of the classifier margin of their
constituents) and horizontally aligned. This is reasonable be-
cause it is highly unlikely that the cluster set will contain false
positives both stronger and better aligned than the two eyes.

The technique so far presented depends critically on many
parameters: d, k, m, θ1 and θ2. Therefore we thought to use
a special database to make an optimal choice for them. We
selected 175 images from the BANCA-Controlled (it consists
of good quality frontal portraits over a uniform background), in
a way that the Skin-Map estimation for each image is at worst
good. Then we exploited this ideal condition to make different
experiments after which we set k = 25, m = 3, θ1 = −1.5,
θ2 = 1 and d = 0.6× r.

C. Experimental results

We list here the results of face localization. Since it
avoids any ad hoc consideration with respect to any particular
database, it follows that we need to evaluate its performance
over different kinds of image collections; to this end we refer
to the database already presented, selecting subset of images
not used to train the classifier:

- AR (396 images): difficult illumination conditions;
- BANCA-Adverse (183 images): generic background;
- DBLAIV (143 images) generic background, different

poses and scales;
- XM2VTS (779 images);

.
The evaluation has been done on images whose Skin-Map

is at least good (according to the definition given in II-C)
to separate the errors of the validation module from the skin
detection one. Tables II summarizes the performance of face
localization. A point detected is ‘positive’ if it is closer to an
eye center than m× s pixels (as defined in section III-B).

IV. CONCLUSIONS

In this paper we have presented a two step-method which
automatically detects faces in still color images of generic
scenes representing one subject. At first a skin detection
module discards the regions whose color has very low prob-
ability to correspond to skin; this step allows to avoid an
exhaustive search of the image, reducing the computational
cost6 and the number of possible false positives. Afterwards,
a validation step based on a SVM classifier discriminates
between faces and non faces among all the regions maintained
by the previous step; the classifier is trained to recognize eyes,
meaning that detecting at least one eye within a skin region
determines the presence of a face. We have chosen to search
for eyes instead of entire faces since it has been shown that
component based methods are more robust to pose, expression
and illumination variations.

We make only the assumptions that skin color is not strongly
altered by artificial lights and that at least one eye per face
is visible. Consequently we propose a very general method,
robust to partial occlusions and to changes in pose, expression
and scale. Differently from many scale-independent methods,
which scan the image several times in a computationally
expensive fashion, we limit our search only to three different
scales and on a small subset of points, exploiting the infor-
mation given by the Skin-Map. Regarding execution times, it
takes approximately 8 seconds to compute the Skin-Map of
a 800× 600 image. After that, it takes roughly 6 seconds to
detect or localize faces within the same image7.

Face localization is a crucial first step for many applications
such as face recognition, face expression analysis, face track-
ing, which all require the previous identification of the main

6In our experiments the Skin-Map area measures on average 1/4 of the
image area.

7We visited on average only 1% of the Skin-Map area, that is the 0.25% of
the total image size. Each point candidate has a computational cost of about
5ms on a Pentium 4 with clock 3.2 GHz. Our Java code was interpreted by
an optimized JRockit Java Virtual Machine.
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TABLE II
FACE LOCALIZATION RESULTS

Localization (θ2 = 1) Eyes Faces
false false

Database positives positives positives positives positives positives detection rate
present detected detected present detected detected

XM2VTS 1558 1522 31 779 773 6 99.2%

AR 786 715 70 396 370 28 93.4%

BANCA Adverse 365 329 35 183 172 16 94.0%

DBLAIV 378 303 67 189 166 37 87.8%

facial features. For example Zhang and Martinez present in
[18] a face recognition system in which the face localization
and normalization is manually done on the AR database [9].
Many face and feature locators have been presented [8], [2],
[19], each of them making some restriction on the input
images. To our knowledge the most significant work has
been presented by Smeraldi and Bigun [14]: they tested their
application on the XM2VTS image collection [6], obtaining
in 97.4% of cases the precise localization of the three main
facial features (eyes and mouth), and the localization of at
least two features in the 99.5% of cases. The main drawback
of this method is that it is scale and pose dependent, limiting
its real usability. In this paper we present a new face and eye
locator that achieves very high performance on several data
sets which differ in illumination, scale, pose, and quality. The
results prove the system robustness and generality. Moreover
in [3] we showed that, given the coordinates of at least one
eye, it is possible to localize precisely the positions of both
eyes, nose, mouth and chin in the 97.5% of images taken from
several databases.

In order to improve the system performance, we can inter-
vene on the two main steps separately. For what concerns the
skin detector, we do not believe that including further skin
samples could help: the model would cover an increasingly
big portion of the color plane, resulting in a non-discriminative
model. On the contrary we should deal with the limits of the
method (over- and under-estimation of the skin regions) by
weakening the dependence of the validator on the Skin-Map
estimate, for example extending the range of scales to take
into account or by integrating the skin information with some
other invariant characteristic.

Concerning the validator, we think that the use of a local
feature validator is correct, but we intend to strengthen the
method by building several detectors, for instance one for eyes
and one for mouths, in order to combine the judgements of
the different SVMs and achieve a lower acceptance of false
positives.

Experiments to evaluate the method also for the detection
problem are ongoing.
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