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Filtering through regularization
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Overview

• Algebric reconstruction and tomosynthesis
• Limited angle tomography
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Where does it start from?

For producing a panoramic image, emitter 
and sensor rotate together.

Why not using multiple rotations for multipleWhy not using multiple rotations for multiple 
images?
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Hyperion 
CEFLA (MyRay)

Motivation for limited angle tomography

MAMMOMAT Siemens

Dose reduction (ALARA principle)
Costs reduction

MAMMOMAT - Siemens
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Hyperion 
CEFLA (MyRay)

For several applications, few images are sufficient to recover the information that is 
needed by clinicians.
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Where did it come from? (Tiggelen 2002)
Bocage A.E.M.: Procédé et 
dispositif de radiographie sur 
plaque en mouvement. Brevet 
français N° 534 464, 1922.

At the same time C. Baese
from Florence developed a

Vallebona Alessandro Radiol Med, 1930: stratigraphy

from Florence, developed a 
tool to identify the depth of 
bullets inside soldiers.

5/79

George Ziedses des Plantes (1902-1993), 
Acta Radiol., 1932 replicates slicing in 
microscopes with slices on film.

1 Slice only can be imagined for each 
acquisition. 

Grossmann G. - Forstschr Röntgenstr, 1935. 
Tomography. Film attached to a swing which pivots 

around a horizontal axis over the patient..

Tomosynthesis 
(retroproiezione, shift and add)

Plane B

Plane A

X-ray tube X-ray tube X-ray tube +
+

=

+
+

=

• It allows reconstructing a set of parallel planes.
• Classical tomosynthesis (Shift & add) is equivalent to backprojection

(blurring of out of focus structures)

a e

(a)

Sensor

Sensor

Sensor

(b) (c)
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(blurring of out of focus structures)…
• Characteristics:

– limited angle of view and limited number of images.
– Images are not necessary equally spaced
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Tomography is a typical inverse problem

We start from N images of 
MxP pixels each

Volume as a set of parallel 
planes or voxels.

Interpolation between adjacent 
planes (Marching cubes)
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Results with Tomosynthesis

Section of a cylinder acquired in the previous 15 images. 
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Impulse response
of Tomosynthesis

Blurred reconstruction
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Tomosinthesis limitations - 1

9/79

•Structures orthogonal to the rays cannot be seen
•Good resolution in planes orthogonal to the principal X-ray, poor 
resolution parallel to the X-ray.

Siltanen et al., Medical Physics, 2003

Tomosinthesis limitations - 2

2 sections tomosynthesized:Test objects

10/79

2 sections tomosynthesized:
- The central section of the square
- The central section of the line.

Test objects

Shadows are evident. How can we remove them? (Filtering)
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Tomography as a linear problem
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Tomography – discrete case
Voxels and pixels are introduced.

Integrate over voxels and over pixels.

• pi measured value at pixel i: number of 
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• fj voxel absorption: average value of μ
inside the voxel j.

•wij portion of the voxel j-th crossed by the 
X-rays from the emitter that reach the i-th
pixel (impact of the voxel on the 
measurement of pixel i).
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Parallel X-rays (fan -> parallel geometry)

From Kak & Slaney 2002

A system of linear equations results: p = W f
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Role of wij
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Properties of p = WTf
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q g g ( g)

It could be made equal if no blurring would have occurred.

f*1 = (w11 w11 + w21 w21 + w31 w31 + w41 w41 + w51 w51) f1

Some numbers on W

Voxels number = 256 x 256 x 256 = 224 Number of images = 128 = 27

Images dimension = 512 x 512 = 218
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⎦⎣⎥⎦⎢⎣⎥⎦⎢⎣
N

MNMkMMM

f
wwwwp 21 16 x106 x 32 x 106

W is sparse

: p = W f Cannot be solved through algebra
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How to remove artifacts?
Selective plane removal. Analytical solution for three planes. Gosh-Roy et al, Med Phys. 1985)

General approach to deblurring in tomosynthesis (Ruttimann et al., IEEE Trans. Med Imag, 
1984) 

p = W f f = WT·p

Back-projection
(tomosynthesis)

Projection

http://ais-lab.dsi.unimi.it 17/81

( ) Ruttimanttt fWWpWff TT1 ⋅−⋅+=+ λ

Comparison of the backprojected measured images with the backprojected images 
obtained from the projection of the actual volume. The error is used to update fij. 

A more efficient implementation by 
matrix rearrangement

Voxel number = 256x256x256 = 224 Number of images = 128 = 27

Images dimension = 512 x 512 = 218

Size of W is 224 x 225

( )

( ) methodebriclgA

Ruttiman

ttt

ttt

=⋅−⋅⋅+=

=⋅−⋅+=

+

+

fWpWff

fWWpWff

T1

TT1

λ

λ

O(N x M x N) = 224 x 225 x 224 = 273

18/79

( ) gp

2 x O(N x M) = 2 x 224 x 225 = 250

Besides there is a computational and memory problem to store W.

W is computed on-the-fly
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wij can be approximate with a binary 
value (cross / not cross) as in ART

wij can be approximated as the length

wij are computed on the fly.
Approximations of wij

wij can be approximated as the length 
of the intersection of the central axis.

wij can be approximated as the inverse 
of the distance between the ray and the 
voxel center.
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Parallel X-rays (fan -> parallel geometry)

From Kak & Slaney 2002

SART - Simultaneous Algebric Reconstruction 
Technique  (Anderson & Kak, 1984)

It is borne on projections method to solve iteratively linear systems:
S.Kaczmarz, “Angenaherte auflosung von systemen linearer gleichungen,” Bull. Acad. Pol. Sci. 

Lett. A, vol. 6-8A, pp. 355-357, 1937.
K.Tanabe, “Projection method for solving a singular system,” Num. Math., vol.17, pp.203-214, 1971

fWp =

∑
=

=
N

j
jji fwp

1

Modify fj such that the equations are satisfied. 
1 equation at a time is considered.
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SART general formulation

( ) ( ) ( )
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SART iterates through the following steps:
1) Choose randomly a projection image, i, (Alternatively Ordered-subsets can be 

used).  (if we choose a single pixel -> ART, if we choose all the images -> SIRT)

2) Compute the current absorption along each ray of the image (wi f) – forward 
projection.
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3) Compute the error on the image (projection error), compute the error.

4) Back-project the error along the ray to the voxels (WT.), retro-project the error.

5) Updated voxel j as a fraction of the error captured by the voxel. Update.

SART interpretation

Let us suppose that we minimize: ( )[ ]2fWpD ⋅−

fWp =Given:

with D diagonal

( )ttt fff ⋅−⋅⋅⋅+=+ WpDWT1 λ

We apply gradient descent optimization and obtain: (Lanweber??)

( )ttt fWpWff T1 ⋅−⋅⋅+=+ λ
( ) ( ) ( )
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( )fWpWff += λ ∑
i

ijw2

λ Djj = 

∑
i

ijw2

1 It is a form of scaled gradient.



12

SART statistical interpretation

ii vp +=⋅fwi with νi noise on pixel i.

We weight each pixel i-th by ∑
j

ijw2

Through interative least squares

j

( )
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Maximum likelihood estimate of the Δfk, under the hypothesis that noise is 
Gaussian, zero mean.

( )ttt fff ⋅−⋅⋅⋅+=+ WpDWT1 λ

SART allows filtering noise
Risults obtained from 300 images equally spaced over 300 degrees. Phantom.

-FIGURA

-

Original Difference ith SART Difference ith ART
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Original Difference with SART Difference with ART 
(noise is added to the original)

Maximum likelihood estimate -> filtering
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Pros and Contra of SART and limited 
angle projection

Pro
Easy incorporate information on each projection- Easy incorporate information on each projection

- Easy management of tomography from a few projections
- Filtering is incorporated

Contra
- Limited resolution of structures perpendicular to...

http://ais-lab.dsi.unimi.it 25/81

Limited resolution of structures perpendicular to...
- Huge memory resources that limited in the past its use.
- When limited volumes are reconstructed, truncation 

artifacts arise (also when using analytical solutions).

Overview

• Algebric reconstruction and tomosynthesis
• Limited angle tomography

26/79
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Limited angle acquisition of a small 
volume

•Acquisition angle = ‐30°… +30°
•Acquisition time = 60s
•Xray duration = 26s (1,5s x 11)
•Reconstruction time =

60 (OS SART 5 i i )

X-ray tube

•60s (OS‐SART, 5 iterations)
• 6s in CUDA

•Number of projections = 11
•Images size = 1536x562 pixel
•Pixel size 0,096mm.
•Volume = 5cm x 4cm x 10.5cm
•Volume dimension in voxels = 50 x 267 x 700
V l di i 1 0 15 0 15

Reconstructed 
volume

Head

Dental 
arch
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•Voxel dimension: 1mm x 0.15mm x 0.15mm

Sensor

Simulations

•1 ellipse
•4 spheres (radius 8mm, 
5mm, 4mm, 2mm)

•11 projections
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Approximation of W, WT

Images with noise (Poisson, max 10000 
photons per pixel, added before log is 
computed)

Evaluation of noise inside a uniform 
area of a 3D slice

Use of unmatched projectors (Zeng, Gullberg, 
Unmatched Projector/Backprojector Pairs in
an Iterative Reconstruction Algorithm, IEEE 
Trans. Med. Imag., 2000):
- Voxel based backwards projection.
- Pixel based forward projection. 

http://ais-lab.dsi.unimi.it 29/81

Approximation of W and WT with noise

Step: 0.5mm Step: 0.2mm

Sampling step forwards
Stampling step bakwards
Bilinear interpolation
Trilinear interpolation

• More uniform 
appearance for shorter 
step.

• Trilinear interpolation 
(forward projection) / 
blinear interpolation

Step: 0.5mm

http://ais-lab.dsi.unimi.it 30/81

blinear interpolation 
(backwards proection) 
does not significantly 
improve the image quality 
in this case.Step: 0.2mm
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Truncation artifacts
• The abosption volume extends beyond 
the sensor field of view (local tomography 
‐ the head is larger than the reconstructed 
volume)
• White bands are generated in 
correspondence of short rays  (ray A) 
crossing the volume.

A

http://ais-lab.dsi.unimi.it 31/81

sensor

Volume
Image

AN van Daatselaar SM Dunn, HJW 
Spoelder, DM Germans, L Renambot, 
HE Bal, PF van der Stelt, Feasibility of 
local CT of dental tissues, 
Dentomaxillofacial Radiology (2003) 32, 
173–180.

Truncation artifacts: generation
Slice 1 / 50

B

AB AB
C

C C

A A

B

http://ais-lab.dsi.unimi.it 32/81

Backprojection (other view)
Voxels on C: underestimated.

Black bands On C.
Correct reconstruction on B.

Absorption 
measured
Equal in A and B 
A = B = 100.

Backprojection
Voxels on A: 100 / length(A)
Voxels on B: 20 / length(B)

A sees a larger absorption

Slice 25 / 50

C C
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Truncation artifacts: correction
• For a short ray (A),                is small;

• If absorbing structures external to the 
actual volume are present along the 
short ray the absorption coefficients

( ) ( ) ( )
∑

−⋅
+=+

i
ij

ijit
j

t
j

w

pw
ff

2

1
(t)

i fw
λ

∑
i

ijw2

AB

short ray, the absorption coefficients 
inside the actual volume are 
overestimated.

• To avoid this bias, short rays should 
be considered as “less important” in 
the recontruction process. 

fwi ⋅=ip
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• In the least squares estimate this is 
equivalent to adding a weight 
proportional to:

( ) )( )()1(
i

t
ji

j
ij

2t
j

t
j pwwff −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ∑+ fwiλ

∑
i

ijw2

This is a very different weighting scheme with respect to original SART formulation:
( ) ( ) ( )

∑

−⋅
+=+

i
ij

ijit
j

t
j

w

pw
ff

2

1 fwiλ
Different scaling matrix.

Truncation artifact: results

Correction: NO 
central slice

Correction: YES 
central slice

Correction: YES 
last slice

Correction: NO 
last slice

http://ais-lab.dsi.unimi.it 34/81
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Band artifacts
Band shape artifacts due to the fact 
that the cone associated to each 
projection only partially crosses the 
recontructed volume

 

1600

1800

2000

2200

• Projections are taken 
using a narrow sensor;

 
600

800

1000

1200

1400using a narrow sensor;

•Band artifact are visible 
in the reconstructed 
volume.
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Spurious discontinuities at the 
projections boundary do arise in 
the reconstructed volume.

Band artifacts: correction
( ) SARTkTk1k μWpDWμμ ⋅−⋅⋅⋅+=+ λ

Local equalization (inspired by W. Zbijewski, F. J. Beekman, 2004)

Linear correction of the absorption outside the projecting cone:
xijk xijk + Δk⋅(1 - δijk/Δk)

δijk/Δk ration between 1) the distance of voxel ijk (outside the projecting 
cone) and the volume border and 2) between the projecting cone and the 
volume border

http://ais-lab.dsi.unimi.it 36/81
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Band artifacts: results

http://ais-lab.dsi.unimi.it 37/81
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CUDA implementation

CUDA extends the C language and it furnishes a set of 
functions that permits the usage of the GPU as a parallel 
multiprocessor.

Many computational cores (on the GPU) execute the same 
code (CUDA kernels) on different data (SIMD = Single 
Instruction Multiple Data architecture).

Each thread (and the corresponding core) has its own 
(limited) register and memory. Shared memory and global 
memory are also present (higher latency).

To maximize the efficiency:

http://ais-lab.dsi.unimi.it 39/81

To maximize the efficiency:
- Avoid CPU / GPU data transfer;
- Data alignment for optimal access;
- Optimize the resource usage for each kernel (e.g. 
number of registers).

CUDA implementation
Quadro FX 770M – On board memory: 512MByte (2008).
Low cost GPU (less than 60$) for mobile workstations.

Volume data (40MByte = 700 x 267 x 50 float variable) can 
be entirely contained in the global board memory. 3D texture y g y
is used to sample data from the volume (HW trilinear 
interpolation) during forward projection.

All images (4MByte per projection = 1538 x 592 float 
variables) can be entirely contained in the on the global 
board memory. 2D textures are used to sample data from the 
error image (p – W f) (HW bilinear interpolation) during back 
projection.

http://ais-lab.dsi.unimi.it 40/81

All the computation is carried out done on the GPU to avoid 
GPU/CPU data exchange.

CUDA Kernel 1: forward projection and error computing – 1 
Thread per ray tracing (per pixel).
CUDA Kernel 2: back projection – 1 Thread per voxel.
CUDA Kernel 3: band artifact correction – 1 Thread per band.
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CUDA implementation
CPU (Intel Centrino Duo @ 3.06GHz, RAM 4M)
• 11 Projections 1538x562;
• Forward projection: NN interpolation;
• Backprojection: NN interpolation;
• Trunctation artifact correction: YES
• Band artifact correction: YES
• Reconstruction time: 60s.

GPU (Quadro FX 770M, RAM 512M - Low cost for 
mobile)
• 11 Projections 1538x562;

Forward projection: TI interpolation;

http://ais-lab.dsi.unimi.it 41/81

• Forward projection: TI interpolation;
• Backprojection: BL interpolation;
• Trunctation artifact correction: YES
• Band artifact correction: YES (simpler version –
Work In Progress)
• Reconstruction time: 6s.

CPU GPU

CUDA vs. CPU

Reconstructuion time:
60s  CPU vs. 6s CUDA.
Sampling step 0.5

CPU CUDA

Quality:
Sligthly less noise with CUDA 
(trilinear interpolation and 

bilinear interpolation are free)
CPU

http://ais-lab.dsi.unimi.it 42/81

CUDA
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How to further improve?

• Metal (streak) artifacts
• Correction for patient movement• Correction for patient movement
• Improving CUDA efficiency on new boards.
• Increase resolution

http://ais-lab.dsi.unimi.it 43/81

Overview

• Algebric reconstruction and tomosynthesis
• Limited angle tomography

44/79
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Denoising of a radiographic image

Typical images (digital radiographies @12bpp, 1.5Mpixels – negative images), Poisson 
noise.

45/79

Can we solve any problem?
g = Af + noise     =>    g = go + noise

Going in the frequency domain:   G(w) = Go(w) + N(w) = A(w)F(w) + N(w)

If we suppose that A(w) ≠ 0 outside the support of N(w) the problem is ill posedIf we suppose that A(w) ≠ 0 outside the support of N(w), the problem is ill-posed.

And if we solve the linear system above, in Fourier space, the following nasty things happen:

G(w)  - N(w) = A(w)F(w)   
No solution exists as noise N(w) cannot be reproduced by F(w). 
Moreover the solution is not unique as any function defined outside the support of F(w) 
can be added

46/79

can be added.
As N(w) decreases to zero with a transition bandwidth of finite width, noise 
components tend to be largely amplified, that produce spurious oscillations.

In case of filtering A = I, the restaured image would be equal to the noisy one.
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Statistical formulation of image restauration

Measuring an image gnoisy taken from an object, f, (e.g. perspective image, transmission 
image):     g = Af + noise f?

(A may or may not contain the blurring of the measuring tool, point spread function)

Each pixel is considered an independent process (white noise). For each pixel therefore, 
we want to maximize:

p(gnoisy ; f)

Being the pixels independent, the total probability can be written in terms of product of 
independent probabilities:

( ) ( )∏
=

=
N

i
iinoisyiinoisy fgpfgL

1
,, ;;
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L(.) is called likelihood function.

Determine {fi} such that L is maximized. Negative log-likelihood is usually considered 
to deal with sums: 

( ) ( )( )∑
=

−=
N

i
iiniin fgpfgJ

1
,,0 ;ln;

Gaussian & Poisson cases
Noisei = ||Afi – gni ||

We know the statistical distribution of the noise -> we now the statistical distribution of 
the second term.

In case of (normalized) Gaussian distribution therefore:

J0 = -ln(p(gn, f) ) =                                                               = cost + K || gn - Af||2

The minimization of this function leads to:

ATAf = ATgn That is the least squares solution.
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gn q

The same line of reasoning for Poisson noise leads to the KL divergence:

J0 = -ln(p(gn, f)) = ∑ ⎟⎟
⎠
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Observations

Solution has a single global minimum in both discrete and continuous cases (Shepp and 
Vardi, 1982).

S l ti h l l i i i b th P i d G i i th tiSolution has many local minima in both Poisson and Gaussian cases, in the continuous 
case (cf. Malthei, 1993 for Poisson case).

Is the solution interesting? No, as it also incorporates noise. Therefore, semi-
convergence has been proposed (Bertero and Boccacci, 1998).

49/79

The Bayesian framework

We assume that the object f is a realization of the “abstract” object F that can be 
characterized statistically.

The probability p(gn| f) becomes a conditional probability:
J ( | f f*)J0 = p(gn| f = f*) 

Under this condition, the probability of measuring gn can be written as the product of 
the probabilities:

p(gn, f) =

As we are interested in determining f, we have to write the conditional probability of f 
given g through the Bayes theorem:

fn pfgp )|(

50/79

given gn through the Bayes theorem:

p(f | gn) = 
nn g

f
n

g

fn

p
p

fgL
p

pfgp
);(

)|(
=
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MAP estimate

nn g

f
n

g

fn

p
p

fgL
p

pfgp
);(

)|(
=p(f | gn) =

W fi d f h b i i i (f | ) ith t t f MAP ti t WWe can find f here by maximizing p(f | g), with respect to f. MAP estimate. We 
explicitly observe that the marginal distribution of pgn is not dependent on f.

Again, it is more efficient to go to the logarithms:

f = argmax{p(f | gn)} = 
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( ){ } ( ) ( ){ }fn
f

fn
f

pfgppfgp ln)|(ln)|(ln minargminarg +−=−

Likelihood = 
adherence to the data

A-priori

Tikhonov regularization

( ){ } ( ) ( ){ }fn
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Gaussian noise model
Squared shape for the log a-priori termq p g p
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|| λPf||2

Squared error
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∑= +−
i

n
f

PfAfgf 22minarg λ This leads to the classical 
Tikhonov formulation

It is a quadratic cost function

PfPAfAAgA TT
n

Tf λ+−= Poggio and Girosi, 1990
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What happens when noise is Poisson?

( ){ } ( ) ( ){ }fn
f

fn
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pfgppfgpf ln)|(ln)|(ln minargminarg +−=−=

Poisson noise model
Squared shape for the a-priori termq p p
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No analytical solution -> non-linear optimization

Non-quadratic a-priori
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A-priori is a gradient and it is 
expressed in l2 norm

54/79

∑ ∑= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−

i

W

fn
f

w
pAfgf

1

22minarg λ

i w 1



28

Why total variation - simulations

55/79

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model – λ = 0.5
P is the gradient operator

Why total variation - simulations

56/79

No appreciable edge smoothing with total variation
Poisson noise model - λ = 0.5
P is the gradient operator
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Why total variation – panoramic images

57/79

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - λ = 0.5
P is the gradient operator

Why total variation – panoramic images

58/79

No appreciable edge smoothing with total variation
Poisson noise model - λ = 0.5
P is the gradient operator
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Why total variation- endo-oral images

59/79

Edge smoothing effect with Tikhonov-like regularization
Poisson noise model - λ = 0.1
P is the gradient operator

Why total variation – endo-oral images

60/79

No appreciable edge smoothing with total variation
Poisson noise model - λ = 0.1
P is the gradient operator
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Cost introduced by the regularzation term

61/79

Cost increases quadratically with the local gradient in Tikhonov 

A-priori

We can insert in the a-priori term all the desirable characteristic of the image: local smoothness, 
edges, piece-wise constancy,….

The idea of defining a neighboring system is a natural one:

Neigbour region of Sk

62/79

Images have a natural neighbouring system: the pixels structure. We want to consider the local 
properties of the image considering neighboring pixels (in particular differential properties -
our vision system is particularly tuning to gradients both spatial and temporal). Ideas have 
been borrowed from physics.
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Neighboring System

Let P be the set of pixels of the image: P = {p1, p2, … pP}

The neighboring system defined over P, S, is defined as H = {Np | p, ∀p ∈ P}, that has 
the following properties:

A l i i hb f i lf NAn element is not a neighbour of itself: pk ∉ Npk

Mutuality of the neighboring relationship: pk ∈ Npj   pj ∈ Npk

(S, P) constitute a graph where P contains the nodes of the graph and S the the links.

Depending on the distance from p, different neighboring systems can be defined:

63/79

o o o

o x o

o o o

Second order neighboring System
8-neighboring System

o

o x o

o

First order neighboring System
4-neighboring System

Clique
Borrowed from physics.

64/79

A clique C, for (S, P), is defined as a subset of sites in S. 
W can consider ordered sets of voxels, that are connected to p through S.
Types of cliques: single-site, pairs of neighboring sites, triples of neighboring sites,… up to 
the cardinality of Np
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Markov Random Field
Given a neighbouring system, S, and a set of pixels, P, we can define a set of random 

values, {fk(p)} for each element defined by S, that is in Np. Therefore we define a 
random field , F, over S:

F(Np) = {fk(m) | m ∈ Np } ∀pp p

Under the Markovian hypotheses:
1) P(f(p)) ≥ 0 ∀p Positivity
2) P(f(p) | g(P-{p})  = P(f(p) | g(Np)} Markovianity

2 expresses the fact that the probability of p assuming a certain value f (e.g. a certain 
gradient), is the same considering all the pixel of P but p, or only the neighbor 
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pixels, that is the value of f depends only on the gray value of the pixels in Np.

The random field F is named Markov Random Field.

Energy in a Markov Random Field

A “potential” function, φ(f), can be defined for a MRF. This is a scalar value that is a 
function of the random value associated to the pixels for all the possible elements of 
a clique:

φ (f) = ∑ pf )(φc(f) = ∑
∈cj

jpf )(

If we consider all the possible cliques defined for each element p, we can define a 
potential energy function associated to the MRF:

U(f) = ∑
∈Cc

(f)cφ

66/79

The higher is the potential energy, the lower is the probability that the set of random 
values of the elements of the cliques is realized, that is the higher is the penalization 
for the associated configuration.
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Gibbs prior
If we consider all the possible cliques defined for each element p, we can define a 
potential energy function associated to the MRF:

U(f) = ∑
∈Cc

)(c fφ

The higher is the potential energy, the lower is the probability that the set of random 
values of the elements of the cliques is realized, that is the higher is the penalization 
for the associated configuration.

This is well captured by the Gibbs distribution, that describes the probability of a 
certain configuration to occur. It is a function exponentially decreasing of U:

P(f) = ⎭
⎬
⎫

⎩
⎨
⎧

− )(1
1 fU

β
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P(f) = 

P(f) is a Gibbs random field, Hammersley-Clifford theorem (1971). β regulates the 
decrease in probability and it is associated with temperature in physics. Z is a 
normalization constant. NB to define Gibbs random fields, P(f) > 0, P(f) 0 U(f) 

∞: there are not configurations with 0 probability.

⎭⎩e
Z

β

Gibbs priors and Regularization
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Role of λ
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λ incorporates different elements here:
- the standard deviation of the noise in the likelihood
- the “temperature”, that is the decrease in the energy of the configurations 
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p , gy g
with their cost
- the normalized constant Z.

λ has been investigated in the classical regularization theory (Engl et al., 
1996), but not as deep in the Bayesian framework λ is set 
experimentally through cross-validation.

Choice of the Gibbs priors

We choosed || λPf||2 as a quadratic functional, but not specified P.

P is ofted chosen as a smoothing operator. The rationale is that the noise added to the 
image is often white (both Gaussian and Poisson) over the image as there is no 
correlation between adjacent pixels Therefore its spatial content is unform and with acorrelation between adjacent pixels. Therefore its spatial content is unform and with a 
larger bandwidth that the signal.

As a smoothing operator P is often a differential operator, which penalizes edges.

∑
∈

=
Cc

RJ )(d)( c
k

c ff φ

k is the order of the derivative
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k = 2 difference of gradients piecewise linear areas.
k = 3 difference of Hessian piecewise squared.
Neighbor of order higher than 2.

k is the order of the derivative
φc can be l2 norm (total variation), squared (Tikhonov)
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Quadratic Priors with k = 0

∑∑∑ ===
PCC

RJ 22
c

0
c

k p)(d)(d)( )f(fff φ

k = 0 – No derivative, the same gray level – single site cliques.

∈∈∈ PpCcCc

It has been applied to both Poisson and Gaussian noise models

Reduces bright spots and biases the solution to low intensity values.
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Quadratic Priors with k = 1
k = 1 – First order derivatives – pair-sites cliques.
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d(p,m) takes into account anisotropies in computing the distance. 

If we consider φ(.) a squared function, we have another form of Tikhonov regularization:
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Quadratic Priors with k = 1

k = 1 – First order derivatives – pair-sites cliques.
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If we consider φ(.) a squared function, we have another form of Tikhonov regularization:
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P is the convolution with the Laplacian operator: 
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Second order neighboring System
8-neighboring System

First order neighboring System
4-neighboring System

Non-quadratic potential functions, k = 1

Quadratic functions priors imposes smoothness everywhere. Large true gradients of the 
solution are therefore penalized smoothing sharp edges.

I i i bj t t d t b i i th b t diff t i f bj tIn imaging objects tend to be piecewise smooth, but different pieces of objects are 
separated by more or less sharp edges. We want to smooth inside the object but not 
the edge. A parallel worthwhile to be investigated is with anisotropic diffusion 
(Koenderink, 1987; Perona&Malik, 1990).

We search different potential functions (Geman&McClure, 85; Charbonnier et al., 
1994, 1997; Hebert&Lehay, 1989).
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1. φ(t) ≥ = 0   ∀t        φ(0) = 0       

2. Φ(t) ≥ = 0   ∀t

Non-quadratic potentials
(Charbonier et al., 1997)

Derives from the definition of potential

P iti d ti di t ll3. φ(t) = φ(-t)

4. φ(t) ∈ C1

5.

Positive and negative gradients are equally 
considered

This is to avoid instability.

Up to now quadratic potentials are OK

The potential increase rate should decrease with t.
t
t

2
)('ϕ
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6.

7.

0
2

)('lim =
∞→ t

t
t

ϕ The potential increase rate should decrease for all 
t (at least for large values of t)

The potential increases at least linearly for t = 0.
0cos

2
)('lim

0
>=

→

t
t
t

t

ϕ

Few non-quadratic potentials 
(Vicedomini 2008)
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Asymptotic linear behavior

Asymptotic log-like behavior
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Results
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Application to optical microscopy

Geman & McClure regularization (A,B) 
Hebert & Leahy regularization (C D)

A) Raw image of actin structures in a cell. 
B) Raw image of mito-chondria structures.

Hebert & Leahy regularization (C,D),
Huber regularization (E,F) 
Hyper-surface regularization (G,H).
(From Vicedomini, 2008)

78/79
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Summary

MAP estimate can be seen as a statistical version of regularization.

The regularization term can be derived from the potential energy associated to an 
adequate neighbor system defined over the object (e g over the image)adequate neighbor system defined over the object (e.g. over the image). 

Under this hypothesis the value assumed by the elements of the object to be 
reconstructed (e.g. restored or filtered image) represent a MRF. 

Different neighbor systems and different potential functions allow defining different 
properties of the object.

For quadratic potential functions Tikhonov regularizer are derived

79/79

For quadratic potential functions, Tikhonov regularizer are derived. 

The discrepancy term for the data represents the likelihood and can accommodate 
different statistical models: Poison, Gaussian or even mixture models.

Issues to be investigated

• Is the a-priori term really suitable? There is a difference between the metric 
used in evaluating the distance between the image and the projection and 
the gradient. Which is the best metric?

• How to set the regularization parameter? We have introduced a generalized 
discrepancy principle, but can we do something better?

• Optimization and parallelization of the code using CUDA. Real-time 
reconstruction and filtering.

80/79
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