
Università degli Studi di Milano - Corso Architettura degli elaboratori I

Prof. Borghese - Appello 24.07.2019

Cognome e nome dello studente:

Matricola:

- 1. [4] Tradurre in codifica decimale il numero 1100 0001 0110 0000 0000 0000, codificato in IEEE754 in singola precisione. Quale coppia di numeri codificati consecuitivamente in IEEE754 dista esattamente 1 unità? Perché? Qual è la risoluzione della codifica in virgola mobile, in virgola fissa e della codifica intera? Perché? Scrivere in complemento a 2 su 8 bit la sottrazione: 7-5, espressa in base 10, e calcolare il risultato in binario. Qual è il numero piu' grande e il numero piu' piccolo rappresentabile su 8 bit in complemento a 2?
- 2. [4] Implementare il circuito di un multiplexer a 3 vie e calcolarne cammino critico e complessità. Scrivere l'espressione logtica del cricuito, trovare una espressione equivalente (mediante manipolazione algebrica) e implementare il circuito associato all'espressione equivalente. Quale dei due circuiti è più conveniente e perché?
- 3. [6] . Scrivere l'algoritmo della divisione che può essere implementato nel circuito riportato qui sotto. Riportare il contenuto di tutti i registri in tutti i passi dell'algoritmo definito, nel calcolo della divisione tra 1110 e 11. Il circuito sotto è un circuito sequenziale o combinatorio? Perché? Estendere il circuito per implementare anche la moltiplicazione.

- 4. [8] Progettare una macchina a stati finiti che implementa la funzione "Search" in un testo scritto. La macchina scandisce il testo dall'inizio alla fine, leggendo un carattere alla volta, e segnala in uscita (con un 1) tutte le volte che viene trovata la stringa "F00". La macchina scorre il testo sequenzialmente, leggendo una lettera alla volta. La lettera può essere una qualsiasi lettera dell'alfabeto o uno spazio o un qualsiasi carattere di interpunzione: "!", "?",... Si supponga che nello stato inziale coincida con il carattere nullo: S0 = "". Si noti che **non è richiesta la presenza di uno spazio** prima o dopo "F00". Definire la macchina a stati finiti che controlla la macchina. Rappresentare la funzione stato prossimo come SOP, come PLA e come ROM. Quali specifiche occorre dare per le PLA e le ROM? Qual è l'implementazione più vantaggiosa? Cosa sono i mintermini di una funzione? Rappresentare la Macchina a Stati Finiti come Macchina di Huffman. Si possono calcolare il cammino critico e la complessità? Perché? Quanto valgono?
- 5. [3] Costruire con porte logiche un moltiplicatore hardware a 3 bit. Qual è la sua complessità? E il cammino critico?
- 6. [4] Progettare con le porte logiche un register file a 2 porte in ingresso, 2 porte in uscita con 4 registri da 3 bit. E' più opportuno utilizzare flop-flop o latch per i registri? Perché?
- 7. [2]. Consideriamo un latch sincrono di tipo D, la cui uscita valga 1. Quale deve essere il valore degli ingressi perché l'uscita commiti a 0? Perché i latch sincroni vengono chiamati "trasparenti"?
- 8. [3] Supponiamo che l'istruzione corrente si trovi all'indirizzo 0x0000 0034, scrivere l'istruzione assembler e in linguaggio macchina che effettua il salto incondizionato (jump) all'indirizzo: 0x0010 0000. E' possibile utilizzare un'istruzione di branch per saltare allo stesso indirizzo? Perché? Scrivere l'istruzione assembler di branch che effettua il saldo condizionato all'indirizzo 0x00000030, e tradurla in linguaggio macchina. Si scelgano due registri a piacere.
- 9. [2] Disegnare il ciclo di esecuzione di un'istruzione su un'architettura MIPS a singolo ciclo. Quante fasi si distinguono? Quando l'architettura capisce di che istruzione si tratta? I componenti appartenenti a quali fasi vengono configurati dall'unità di controllo? Perché? Cos'è un'ISA? Possono due CPU avere la stessa ISA? Due CPU diverse devono avere una ISA necessariamente diversa? Descrivere come viene suddivisa in modo logico per convenzione una memoria principale dai processori MIPS e quali sono le ragioni per la scelta dei confini dei diversi segmenti.