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Summary: The detection of pathogenic genomic variants associated with genetic or cancer diseases represents
an open problem in the context of the Genomic Medicine. In particular the detection of mutations in the
non-coding regions of human genome represents a particularly challenging machine learning problem, since
the number of neutral variants largely outnumber the pathogenic ones, thus resulting in highly imbalanced
classification problems. We applied neural networks to the detection of pathogenic regulatory genomic variants
in Mendelian diseases and we showed that leveraging imbalance-aware techniques and deep learning algorithms,
we can obtain state-of-the-art results, using a less complex model than those proposed in literature for this
challenging prediction task.
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1 Introduction

An open problem in the context of Precision Medicine
is the detection of the pathogenic variants associated
with genetic Mendelian diseases. Indeed for most of
the about 8000 different Mendelian diseases no known
causative gene is known and hence no therapy is avail-
able for affected patients [15]. Recently several studies
showed that most of the pathogenic variants associ-
ated with Mendelian disorders lie in the non-coding
regulatory regions of the human genome [3].

For this reason several computational methods have
been proposed to disentangle the regulatory mecha-
nisms underlying Mendelian diseases and other dis-
orders ranging from complex genetic diseases to can-
cer, using mainly supervised Machine Learning-based
techniques to predict the pathogenicity of genomic
variants in regulatory regions of the human genome [8,
16, 6].

Unfortunately only a very small amount of posi-
tive (pathogenic) variants are available to train learn-
ing machines and in this very imbalanced context,
where neutral variants (negative examples) largely
outnumber positive ones, machine learning methods
are severely biased toward the majority class and are
not able to detect pathogenic variants with a suffi-
cient reliability. Very recently novel imbalance-aware
machine learning methods have been proposed in this
context, showing that applying together ensemble and
sampling techniques we can significantly improve pre-

diction results [9, 11].

Motivated by these results and by the very recent
successful application of deep neural learning methods
to Genomic Medicine [14], in this work we investigate
whether a neural model, by adopting imbalance-aware
techniques and deep learning techniques can obtain
state-of-the-art results in this challenging prediction
task.

In the next sections we propose two imbalance-
aware neural models able to deal with highly im-
balanced genomic data, and we experimentally show
that they largely outperform “vanilla” neural models,
achieving state-of-the-art results in the prediction of
pathogenic regulatory variants in Mendelian diseases.

2 Methods

We introduce two imbalance-aware neural methods,
able to deal with highly imbalanced genomic data.
The first one MiMiS-Net (Mini-batch Minority class
Sized Neural Networks) simply enlarges the mini-
batch size applied during the training of the neural
network. The second one MiBa-Net (Mini-batch Bal-
anced Neural Networks), inspired by [10], uses sam-
pling techniques to balance positive and negative ex-
amples in the mini-batch.
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2.1 Mini-batch Minority class Sized
Neural Networks (MiMiS-Net)

The main idea behind this approach consists in im-
proving the likelihood that at least one positive ex-
ample will be included in each mini-batch during the
training phase. We show that this can be accom-
plished by simply appropriately enlarging the size of
the mini-batch itself. Indeed when the data are highly
imbalanced, the update of the weights is likely per-
formed with most of the mini-batches including only
examples of the majority (negative) class: in this sit-
uation the neural network tends to be biased toward
the negative class, since it learns only from negative
examples, and hence cannot recognize positive exam-
ples.

More precisely, let N be the overall number of avail-
able examples of the training set T , n the size of the
mini-batch, and p the probability that a positive ex-
ample will be randomly extracted from the overall
training set. If Np is the total number of positive

examples in the training set, we can estimate p ' Np

N .
Let Xn be a random variable that counts how many

positives have been randomly drawn from T into a
mini-batch of size n. Then Xn is distributed accord-
ing to a binomial distribution B(p, n, k) where k is
the number of successes (positive examples) across n
Bernoulli experiments each one with probability of
success p. Then the probability P (Xn ≥ 1) that we
have at least on positive example in a mini-batch of
size n is:

P (Xn ≥ 1) =

n∑
k=0

(
n

k

)
pk(1− p)n−k (1)

We can observe that

P (Xn ≥ 1) = 1− P (Xn = 0) (2)

= 1−
(
n

0

)
p0(1− p)n = 1− (1− p)n

Hence eq. 1 can be rewritten as:

P (Xn ≥ 1) = 1− (1− p)n (3)

If we would like to estimate the size n of the mini-
batch needed for having at least one positive in the
mini-batch itself with probability P (Xn ≥ 1), we can
apply a log transform to eq. 3:

n =
log
(
1− P (Xn ≥ 1)

)
log(1− p)

(4)

Eq. 4 shows the mini-batch size n needed for having
with probability P (Xn ≥ 1) at least one positive ex-
ample in each mini-batch. It is easy to see that n
is large for large values of P (Xn ≥ 1) and for small
values of p, i.e. when we would like to be confident
that at least one example is included in the mini-batch
and when the data in the training set are imbalanced
(Figure 1). For a reasonable probability (say P = 0.8)
of having at least one positive example in the mini-
batch, when data are imbalanced (say p = 1

5000 ) we
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Figure 1: Plot of the size n of the mini-batch (vertical
axis) for drawing with probability P (horizontal axis)
at least one positive example included in it when the
frequency of the positives in the training set is about
p = 1

5000 .

need a mini-batch size of at least n = 8046, a size sig-
nificantly larger than those usually applied for mini-
batch learning.

2.2 Mini-batch Balanced Neural Net-
works (MiBa-Net)

Sampling procedures to deal with the imbalance of
the data have just been proposed in machine learn-
ing and neural network literature [5] and have been
proven successful in the context of the analysis of ge-
nomic data with ensemble methods [9, 10]. Here we
propose to balance the mini-batch during the training
of the neural network, in order to provide a number of
positive examples (the minority examples) compara-
ble with those of the majority (negative class). In this
way at each mini-batch the weights of the network are
updated taking into account in a balanced way both
positive and negative examples.

The mini-batch generator samples with replace-
ment, according to a uniform distribution, the posi-
tive examples by drawing a sample ratio rp ∈ (0, rmax

p ]
of the available positive examples: if rp < 1 we sub-
sample the positives, if rp = 1 we have a bootstrap
sample, for rp > 1 we perform oversampling. Neg-
ative examples are sub-sampled without replacement
according to the ratio rn ∈ (0, rmax

n ] between the neg-
atives and the positives in the mini-batch: if rn < 1
we will have less negatives than positives in the mini-
batch, if rn = 1 positives and negatives are equally
sized, and for rn > 1 negatives outnumber positives in
the mini-batch. As an example, if we have Nn = 106

negative examples and Np = 102 positive examples,
we have an imbalance Np/Nn = 1/104. If we set
rp = 1 and rn = 1 we can obtain a perfectly balanced
mini-batch with 100 positives and 100 negatives. An
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epoch, with this generator, is considered to be finished
when all the negative samples are used. Notice that
the positive samples may appear repeatedly among
different batches in the same epoch, while each nega-
tive will appear only once in one specific mini-batch
at each epoch.

3 Results

We evaluated the proposed methods MiMiS-Net and
MiBa-Net on Mendelian data, by comparing them
with a baseline “vanilla” Neural Network and with hy-
perSMURF [10], an imbalance-aware hyper-ensemble
method that significantly outperformed other state-
of-the-art methods such as CADD [8], DeepSEA [16],
Eigen [6] and GWAVA [9] on this specific task [10].

3.1 Experimental set-up

For the experiments we used the data set of Mendelian
Single Nucleotide Variants (SNV) in non-coding re-
gions of the human genome originally collected in [12].
From this data set we used all the available manually
curated 406 positive examples, and from the available
14 millions of neutral variants (negative examples) we
randomly drew one million of examples, thus resulting
in an imbalance p ' 1

2500 . To each SNV example are
associated 26 features representing different charac-
teristics of the genomic variants, ranging from G/C
content, population-based features, to conservation
scores and transcription and regulation annotations
(see [12] for more details).

We trained the neural networks on all the genomic
variants except those belonging to chromosome 19
(19018 examples) that have been left out for evalu-
ating the generalization performance. In other words
we performed a “chromosome aware” hold-out pro-
cedure and we did not use the examples of the test
set (chromosome 19) to train the model. The main
hyper-parameters of the model, i.e. different number
of hidden layers (ranging from 1 to 4), the number of
hidden neuron per layer (ranging from 2 to 100) have
been selected by 5-fold cross-validation on the train-
ing set. We used the ReLU activation function for the
hidden layers and a sigmoid for the output layer. We
chose as loss function to be optimized the hinge loss
with the logit function applied to the sigmoid output,
and we applied both the Stochastic Gradient Descent
(SGD) with fixed learning rate (0.01) and the Adam
method [7] as optimization algorithms. The weight
matrix of each layer have been initialized using the
Glorot normal initializer [4]. Before training each fea-
ture has been standardized by subtracting its mean
and dividing by its standard deviation across exam-
ples.

For evaluating the performance of the different
methods we used the Area Under the Precision re-
call Curve (AUPRC), since it is well-known that in
very imbalanced learning problems this metric is more
informative than the Area Under the Receiving Op-
erating Characteristic curve (AUROC) [2]. All the

Figure 2: MiMiS-Net cross-validation results on the
training set, using Adam and SGD optimization al-
gorithms with and without feature normalization. In
abscissa the number of hidden neurons for each layer
of the selected best models is reported. The vertical
lines represent the standard deviation across folds.

experiments and the new neural models have been
implemented by deriving new Python classes from the
Keras library [1] using Tensorflow as backend.

3.2 MiMiS-Net results

At first we trained and test the state-of-the-art
method hyperSMURF on the Mendelian data set, ob-
taining an AUPRC = 0.911 and an AUROC = 0.999.
The best “vanilla” neural model, i.e. a neural net-
work that does not adopt any imbalance-aware learn-
ing strategy, achieved an AUPRC = 0.078 and an
AUROC = 0.968. This is not so surprising since a
previous work clearly showed that imbalance-unaware
strategies are not able to obtain good results on this
challenging learning task [10].

The proposed MiMiS-Net imbalance-aware method,
by setting the batch size n = 5000, corresponding to
a probability P (Xn ≥ 1) ' 0.85 of drawing at least
one positive example in the mini-batch in the train-
ing set (eq. 4) led to significantly better results than
the vanilla Neural Network (Fig. 2). On the test set
we obtained an AUPRC = 0.794 and an AUROC =
0.973, significantly lower than that obtained by hyper-
SMURF but an order of magnitude larger than that
obtained by the vanilla neural model. Fig. 2 shows
that Adam optimization achieves significantly better
results than SGD and as expected feature standard-
ization is necessary to improve performances. Never-
theless, looking at Fig. 3 (a), we can observe a cer-
tain overfitting of MiMiS-Net and for this reason we
applied dropout techniques [13] to try to avoid this
effect. Results show that MiMiS-Net with dropout re-
duces overfitting (Fig. 3 (b)) and achieves significantly
better results on the test set (AUPRC = 0.879).
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(a) (b)

(c) (d)

Figure 3: MiMiS-Net and MiBa-Net training and test AUPRC across epochs. Horizontal axis: epochs; vertical
axis: AUPRC. Orange and blue lines represent respectively test and train AUPRC results. (a) MiMiS-Net (b)
MiMiS-Net with dropout (c) MiBa-Net with dropout (d) MiBa-Net with dropout and Max norm regularization.

3.3 MiBa-Net results

Results with MiBa-Net show that also this neu-
ral imbalance-aware technique can boost pathogenic
Mendelian variants detection. Indeed MiBa-Net with
dropout obtains on the test set an AUPRC = 0.674,
but with a serious overfitting towards the training set
(Fig. 3 (c)). Recalling that regularization through
maximization of the norm has been shown to work
nicely when paired with dropout [13], we applied
jointly dropout and Maxnorm regularization tech-
niques, thus reducing overfitting (Fig. 3 (d)) and
achieving a test set AUPRC = 0.835.

Even if we achieved results close to that obtained by
the state-of-the-art method hyperSMURF, we tried to
further improve performances by analyzing the corre-
lation between the 26 features associated with the ge-
nomic variants. By systematically applying the Pear-
son correlation between each pair of features we in-
dividuated sets of highly correlated features, and re-
moved accordingly 5 of them and then we retrained
both MiMiS-Net and MiBa-Net with the reduced set
of 21 features using dropout and regularization. Re-
sults show a further significant enhancement of the
performances (Fig. 4), with AUPRC values even bet-
ter than those achieved by the state-of-the-art hyper-
SMURF method.

4 Conclusion

Several machine learning methods have been re-
cently proposed in literature for the detection of
pathogenic genomic variants, associated with several

diseases ranging from genetic disorders to cancer.
We showed that in the case of the detection of rare
SNV mutations in non-coding genome causative of
Mendelian diseases, imbalance-aware neural models
based on mini-batch sampling techniques (MiBa-Net)
and on the enlargement of the mini-batch (MiMiS-
Net), we can significantly improve results obtained
with imbalance-unaware “vanilla” neural models. In
particular by using deep learning techniques together
with imbalance-aware methods we can achieve results
at least comparable with state-of-the-art results. Fi-
nally we observe that in the context of Mendelian dis-
eases the best results have been obtained with rela-
tively simple neural models with one or two hidden
layers and some tens on hidden neurons, while state-
of-the-art models used ensembles or hyper-ensemble
of learning machines, characterized by a significantly
larger complexity and training time.

References

[1] Keras: the python deep learning library. https:

//keras.io/, 2018. Online; accessed 11 November
2018.

[2] J. Davis and M. Goadrich. The relationship between
precision-recall and roc curves. In Proceedings of the
23rd International Conference on Machine Learning,
ICML ’06, pages 233–240, New York, NY, USA, 2006.
ACM.

[3] S.L. Edwards, J. Beesley, J.D. French, and A.M. Dun-
ning. Beyond gwas: illuminating the dark road from
association to function. American Journal of Human
Genetics, 93:779–797, 2013.

4



(a)

(b)

Figure 4: Precision Recall and ROC curves on the test set obtained with the best MiMiS-Net and MiBa-Net
models using feature decorrelation, dropout and regularization techniques. (a) MiMiS-Net (b) MiBa-Net.

[4] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rec-
tifier neural networks. In JMLR W&CP: Proceedings
of the Fourteenth International Conference on Ar-
tificial Intelligence and Statistics (AISTATS 2011),
April 2011.

[5] H. He and E. Garcia. Learning from imbalanced
data. Knowledge and Data Engineering, IEEE Trans-
actions on, 21(9):1263–1284, 2009.

[6] Ionita-Laza et al. A spectral approach integrating
functional genomic annotations for coding and non-
coding variants. Nature Genetics, 48(2):214–20, Feb
2016.

[7] D. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR 2015), 2015.

[8] M. Kircher et al. A general framework for estimating
the relative pathogenicity of human genetic variants.
Nature Genetics, 46(3):310–315, Mar 2014.

[9] G. Ritchie, I. Dunham, E. Zeggini, and P. Flicek.
Functional annotation of noncoding sequence vari-
ants. Nature Methods, 11(3):294–296, Mar 2014.

[10] M. Schubach, M. Re, PN Robinson, and G. Valentini.
Imbalance-aware machine learning for predicting rare

and common disease-associated non-coding variants.
Scientific Reports, 7(2959), 2017.

[11] M. Schubach, M. Re, PN Robinson, and G. Valen-
tini. Variant relevance prediction in extremely imbal-
anced training sets. F1000Research, 6(ISCB Comm
J)(1392), 2017.

[12] D. Smedley et al. A Whole-Genome Analysis Frame-
work for Effective Identification of Pathogenic Reg-
ulatory Variants in Mendelian Disease. American
Journal of Human Genetics, 99(3):595–606, 2016.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research, 15:1929–1958, 2014.

[14] A. Telenti, C. Lippert, P. Chang, and M. De-
Pristo. Deep learning of genomic variation and reg-
ulatory network data. Human Molecular Genetics,
27(R1):R63–R71, 2018.

[15] Y. Yang et al. Clinical whole-exome sequencing for
the diagnosis of mendelian disorders. New England
Journal of Medicine, 369:1502–1511, 2013.

[16] Jian Zhou and Olga G Troyanskaya. Predicting ef-
fects of noncoding variants with deep learning-based
sequence model. Nature Methods, 12(10):931–934,
August 2015.

5


