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Abstract— Clustering analysis of gene expression is character- end we use the concept of random projections with bounded

ized by the very high dimensionality and low cardinality of the  metric distortions, according to the Johnson-Lindenstrailgs (
data, and two important related topics are the validation and the theory [7].

estimate of the number of the obtained clusters. In this paper . .
we focus on the estimate of the stability of the clusters. Our  1h€ proposed method is related to the Smolkin and

approach to this problem is based on random projections obeying Gosh [12] approach based on an unsupervised version of the
the Johnson-Lindenstrauss lemma, by which gene expressionrandom subspace method [5]. We extend the unsupervised ran-
data may be projected into randomly selected low dimensional gom subspace approach to more general random projections,
subspaces, approximately preserving pairwise distances betweenin the framework of random embeddings between euclidean

examples. We experiment with different types of random projec- .
tions, comparing empirical and theoretical distortions induced by SPaces, and we propose a new cluster stability measure based

randomized embeddings between euclidean metric spaces, and weon similarity between randomly projected data.
present cluster-stability measures that may be used to validate |n the next section we present a brief introduction to
and to quantitatively assess the reliability of the clusters obtained randomized embeddings of metric spaces, focusing on random
by a I_arge_class_of clustering algorithms. I_Experimental results roiections obevina theL lemma. In Sect, Il we compare
with high dimensional synthetic and DNA microarray data show proj i ying o e T R p .
the effectiveness of the proposed approach. the theoretical and empirical distortion induced by randomized
embeddings using two high-dimensional synthetic data. Then
_ . 'NTROD_UCT'ON ~inSect. IV we present our approach to the estimate of cluster
Clustering methods may discover gene expression sigrgability based on random projections, and we apply the
tures related to specific biological processes or to specifitoposed stability measures to both synthetic and "real” gene
diseases. Moreover unsupervised learning methods, exploitigression data.
the overall gene expression profile of a patient, may researcheor all the experiments presented in this paper we developed
and discover subclasses of pathologies that cannot be detegteflinctions and programs to implement both the random
with traditional biochemical, histopathological and clinicaprojections described in Sect.lll and the stability measures

criteria [4]. described in Sect. IV.
Two of the main concerns with gene expression clustering

analysis are the estimate of the number of clusters in a datasetrI
and the stability of the obtained clusters [3]. Indeed in many
cases we have no sufficient biological knowledge to "a priori”
evaluate both the number of clusters (e.g. the number ofpimensionality reduction may be obtained by mapping
biologically distinct tumor classes), as well as the validity gfoints from a high to a low-dimensional space, approximately
the discovered clusters (e.g. the reliability of new discovergfleserving some characteristics, i.e. the distances between
tumor classes). points. In this context randomized embeddings with low dis-

Several approaches for assessing the reproducibility a@ion represent a key concept. Randomized embeddings have
stability of clustering patterns in gene expression data haygen successfully applied both to combinatorial optimization
been recently proposed [8], [9], [13]. and data compression [6].

In this paper we present an approach that exploits the verya randomized embeddirigetween’, normed metric spaces
high dimensionality and relatively low cardinality of gen&yith distortion 1 + ¢, with e > 0 and failure probabilityP is
expression data, using multiple random projections of theyistribution probability over mappings : R¢ — R, such

original data, to assess the reliability of the discovered clustefigat for every pairp,q € RY, the following property holds
The main idea behind our approach consists in evaluating t{gn probability 1 — P

stability of the clusters discovered in the original high di-
mensional space comparing them with the clusters discovered 1. [l(p) — p(q)||2
in randomly projected lower dimensional subspaces. To this 14e™ l1p — ql|2

. DIMENSIONALITY REDUCTION AND RANDOMIZED
EMBEDDINGS

<l+4e Q)



The main result on randomized embedding is due to Johnsdn Distortion measures
gnd Lindenstrauss [7], who prgvec_j the.exist.ence of a randomgijyen a data sef¥ c R¢ and a mapy : R? — R, for
ized embedding: : R? — R with distortion 1 + ¢ and ; , ¢ X the distortion dist, (x, y) is defined:
failure probability e?(=4'<"), for every0 < ¢ < 1/2. As a
consequence, for a fixed data setc R9, with |S| = n, by dist,,(z,y) = w 3)
union bound, for allp, g € S, it holds: |z — yll2

1 (p) = (q)]]2 2 (ed'ed) Of course,dz‘st,t(x,g_;) = 1 means that no distortion is
Prob <1 p: < <1+ 6> >1-n"e introduced. Themaximum, minimunand average distortion

lp = dll2 (2) of ponX respectively are:

Hence, by choosing’ such thatn2e?-%'<) < 1/2,itis .0 dist (X) = max dist,(z,y) 4)

proved the following: o eyex

Johnson-Lindenstrauss (JL) lemn@iven a setS with |S| =  min.dist,(X) = min dist,(z,y)

n there exists d + e-distortion embedding int®? with @’ = Tyex 1

c logn/€e?, wherec is a suitable constant. avedist,(X) = oo Z dist,(z,y)
The embedding exhibited in [7] consists in random projec- [ X1(X]=1) z,yeX, oy

tions fromR? into R?, represented by matrice$ x d with B Empirical estimation of distortions induced by randomized
random orthonormal vectors. Similar results may be obtaingghps

by using simpler embeddings, represented through rando
d" x d matrices P = 1/V/d(r;;), wherer;; are random
variables such that:

Mh this section we estimate, given a data sétand a

randomized map:, the expectation of the random variables

maz.dist, (X), min.dist,(X) and ave.dist,(X) (€q.4)

Elri;] =0, Var[r] =1 1) Randomized mapsWe considered two randomized

aps:

« Random Projection (RPYyepresented by’ x d matrices
P = 1/V/d'(r;;), wherer;; are uniformly chosen in
{-1,1}. As observed in Sect.IRP satisfies theJL

For sake of simplicity, we call random projections even thirs?
kind of embeddings. In particular in [1] matrices are proposed
such that their entries are uniformly chosen{inl,1}, or in
{-+/3,0,+/3} , by choosing) with probability2/3 and —+/3

) . : lemma
\(,)vritr\]/i vi/ltz probability 1/6. In this case thelL lemmaholds . Random Subspace (RiS): represented by’ x d matrices
. P = ./d/d'(r;j), wherer;; are uniformly chosen with

Consider now a data set represented by & n matrix
X whose columns represemt d-dimensional observations.
Suppose that’ = 4 logn/e? << d; the JL lemmaguarantees
the existence of @ x d matrix P such that the columns of
the "compressed” data s&f” = PX have approximately the
same distance (up to a distortidn- €) of the corresponding
columns inX. Moreover there is a randomized algorithm that,
having in inputX, outputs X* in time O(dd'n) with high

entries in{0, 1}, and with exactly oneI” per row and at
most one 1" per column. It is worth noting that for dx

n data setX and a projection matri®, the "compressed”
data setX” = PX can be computed in timé&(nd'),
independently froml. Unfortunately,RSdoes not satisfy
the JL lemma

2) Synthetic data generationle developed two generators
for synthetic data setsé@mpleland sample2:

confidence.

This fact suggests that we can speed-up algorithms fore Samplelis a generator for 6000—d|menS|ongI dgta sets
solving proximity problemsinstances of groximity problem composed by3 clusters of data normally distributed.
are setsT ¢ R? (described by a data sef), and the goal The elements of each cluster are distributed according

consists in computing some properties defined in terms of !0 @ spherical gaussian with unitary standard deviation.

particular consider an algorithmt that, having as input a  dimensional hypercube with an edge of length equal to
d x n data setX, outputs the solution of groximity problem 20 conventional units. The other two clusters are centered
in time T'(n, d). An approximate solution of the problem can  at the opposite vertices of the hypercube. Hence the tree
be obtained by computing firstly the projectidh and the clusters are completely separated with no overlapping
"compressed” data se¥” = PX, and finally by applying4 between them.
to X P. In this way the time complexity may be reduced from * SampleZs a a generator for 6000—dimensiongl dgta sets
T(n,d) to O(ndlogn) + T(n, O(logn)). composed by5 clusters of data normally distributed.
All the examples have 1000 no-noisy and 5000 noisy
Ill. DISTORTION INDUCED BY RANDOM PROJECTIONS variables; for all the examples the noisy variables are

In this section we consider two random embeddings, pro- distributed according to a spherical gaussian centered in
posed respectively in [1] and [5]. We estimate the distortions 0 and with standard deviation equal fo Considering
induced by the random embeddings with respect to high di- only the 1000 no-noisy variables there is substantial
mensional synthetic data, comparing them with the theoretical overlapping between classes 1 and 2 and 1 and 3, while
bounds predicted by th#l. lemma class 4 and 5 are quite well separated.



Using the generators we drew two data set (respectixgly of the pairwise distances are quite well preserved, at least if

and X5), each one composed I5) examples. we project data with low distortion. With the well separated
3) Results:Setting a distortion valué +¢, (0 < ¢ < 0.5), clusters of thesampleldata set the distribution of the distances

a dimensiond’ = 4 log50/e? is computed according to theare better preserved (data not shown).

JL lemma For every data seX; and X, we performed50

RP and 50 RS projections, computing the empirical average

of maz.dist,, min.dist,, andave.dist,, according to eq.4.
The results forRP and RS on sample2are summarized

in Fig.1. As expected, forRP the empirical average of

max.dist,, and min.dist, are significantly better than the

theoretical bound. Quite surprisingly, similar results have been

also obtained withRS projections, wherelL bounds are not

guaranteed. A similar behaviour Bf°P andRSprojections has

been also observed witamplel(data not shown).
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Fig. 2. Distribution of the pairwise distances between examples in original
and randomly projected datagmple?. The continuous line represents the
distribution in the original 6000-dimensional space, the dashed line the
distribution in the projected space. Above: Projection into a 63-dimensional
space (corresponding to a 1.50 upper-bound distortion according to JL lemma).
Below: Projection into a 1565-dimensional space (corresponding to a 1.10
‘ ‘ ‘ ‘ upper-bound distortion according to JL lemma).
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IV. RANDOM PROJECTIONS AND CLUSTER STABILITY
Fig. 1. Comparing theoretical and empirical distortion vitmple2usingRP
and RSprojections. Continuous lines represent the bounds of the maximumThe JL lemma shows that we may generate relatively low-
and minimum distortion according to thilt lemma. Dashed lines represent . . .
the average maximum and minimum distortion empirically computed aﬁHStorted random projected data_-’ and Our exper!mental results
averaged oveF0 random projections. The pairs of dotted lines just above arghow that we may also obtain empirical estimate of the
below the the dashed lines represent the confidence intel®@latconfidence i i ; ; ;
° ©S rep O expectation of the random variablesz.dist,, andmin.dist,,
level. The dash-dotted line represents the expected average distortion. Ab?ﬁ : h he th ical
RP projection. Below:RSprojection. at are better than the theoretical bounds.
Our aim is to exploit random projections to estimate sta-
Fig. 2 shows the distribution of the pairwise distancesility of clusters, because random projections do not induce
between examples in original and randomly projected datlevant distortions (as long as we provide a projection into a

(sample2data set). We may see that the also the distributiossfficiently high-dimensional subspace).



A. Cluster stability measures projections of the pairéx, y) € A; x A; occur together in the
Given a finite setX c R?, we denote (with abuse ofSame clusterin the projected subspaces. The stability index has
notation) withX the metric space: X, f >, wheref(z,y) = values betweef and1: values near 1 denote stable clusters,
|z — yll2, 2,y € RZ In the following of this section we while lower values indicate less reliable clusters. The above
consider a fixed random projectign: R% — R<' that verifies Stability index is very similar to that proposed by [10]. The
the JL lemma (i.e.RP, Sect. Ill-B.1), and we propose amain difference of our approach consists in the way the simi-
stability index for clustering by using a pairwise similarity/@rity matrix is computed: we applied randomized projections

matrix between the projected examples. into lower dimensional subspaces, while [10] applied bootstrap
Let C be a clustering algorithm, that, having in inpit, ~techniques. N o
outputs a set of: clusters: An overall measure of the stability of the clustering in the

original space may be obtained averaging between the stability
C(X) =< Al,Az,...,Ak >, AJCX,].SJSIC (5) indices:
Then we compute a "similarity” matrid/, with indices in _ 1 £ .
X, using the following algorithm: Sk) = k ZS(Az) ©)
1) Generate independent projections; : R4 — RY | 1 <
i <t, such thatt/ = 4 s X[Hos?
2) Apply C to the new projected data;(X), obtaining a
set of clusterings, fot <i < ¢ B. Assessing cluster stability in synthetic and gene expression
C(ui(X)) =< Bi,...,Bi >, B c X;,1<j<k daa
(6) We applied the stability measures proposed in the previous
whereB;i is the j** cluster of thei*" clustering. section to high dimensional synthetic and gene expression
3) Set the elements/,, of the similarity matrix: data, using the Ward’s hierarchical agglomerative clustering al-
Lkt gorithm [14], and using as dissimilarity function the euclidean
My, = - (i () - i (s 7) distance.
Yot ZZXB”' (hsle) X5 alw)) - (7) For each data set we computed the average stability index
where x g: is the characteristic function for the clustefg(k) (eq. 9) for different numbet of clu_sters, and the stapility
; j index s (eq. 8) for each corresponding cluster, considering
_ Bj. different 1 + e distortions induced byRSand RP projections
Since the elements\/,, measure the occurrences of thgsect. |11-B.1) into subspaces whose dimension was computed
examples (), pi(y) € pi(X) in the same clusters3;  according to thell lemma
for 1 < 4 <t then M represents the "tendency” of the 1) Resylts with synthetic dat&fab.| summarizes the results
projections to belong to the same cluster. It is easy 0 SGfn samplel The maximum of the average stability index
that0 < M,, < 1, for eachz,y € X. S(k) is reached when the dendrogram is cut3atlusters
With respect to the algorithm above we may observe: |evel and the corresponding stability indicesre equal tol
Remark 1Since the failure probability is?(=¢), similarly  for each of thes clusters. Both the average and the individual
to €qg.2 in Sect. II, by union bound we have, forally € X,  stapility indices are lower when different number of clusters
l<ist are selected, showing that the proposed stability measures
P < 1 < [li(y) — wi(x)]|2 <14 E) S 17t|X|ZeQ(,d/Ez) correctly detecB clusters, identifying them as highly reliable.
14e— |z — yl|2 = = With sample2the stability indices correctly predict largely
: log | X | tlog { . separated as well as less reliable clusters. Indeed the stability
Therefore ford" ~ O (T) we obtain with high indices are high for the well separated clusters, while for the
probability that all the projections preserve the distancegher overlapped clusters the stability indices are significantly
between the elements i up to a distortionl + e. lower (data not shown).
Remark 2A fuzzy similarity matrix may be obtained simply  2) Results with gene expression data datsie applied the
substituting in eq. 7 the characteristic function with a membegroposed stability indices to a set of gene expression tumor
ship function and the algebraic product with a suita®rm  specimens fron$8 Diffuse large B-cell lymphoma (DLBCL)
In this way fuzzy or possibilistic clustering approaches maynd 19 Follicular lymphoma (FL) patients [11].

In this case also we have thé&t< S(k) < 1, wherek is the
number of clusters.

j=1 i=1

also be applied. Tab. Il shows the estimate of cluster stability for the
Using the similarity matrix)/ (eq. 7) we propose the DLBCL-FL data set. Note that in the first column of Tab. II
following stability indexs for a cluster4;: the clusters are labeled with numbers, and these number
1 assignments correspond to left-to-right clusters in the den-
s(4i) = m Z Ma,y (®) drogram of Fig. 3. The averag€ index is slightly larger
(@y)€Aix Aiarty when the hierarchical clustering dendrogram is cit@tisters

The indexs(A4;) estimates the stability of a clustet; in the level (Fig. 3), but comparable (even if lower) values are also
original non projected space, by measuring how much thegistered with3,4 and 5 clusters. In this case indeed the



TABLE |
Sample1 ESTIMATE OF CLUSTER STABILITY.

Clusters Members of Clusters | Stability index s
e=0.5 e=0.4 e=20.3 e=20.2 e=0.1

2 clusters S = 0.8631 S =0.8684 S =0.8684 S =0.9157 S =0.9421
1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000

2 1-10,21-30 0.7263 0.7368 0.7368 0.8314 0.8842

3 clusters S = 1.0000 S =1.0000 S =1.0000 S =1.0000 S =1.0000
1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000

2 21-30 1.0000 1.0000 1.0000 1.0000 1.0000

3 1-10 1.0000 1.0000 1.0000 1.0000 1.0000

5 clusters S = 0.7059 S =0.6843 S =0.7044 S =0.7004 S =0.7472
1 11,13,16,17,19,20 0.6973 0.7346 0.7293 0.6506 0.7560

2 12,14,15,18 0.6666 0.7066 0.6866 0.6466 0.7133

3 21-30 0.7155 0.7582 0.7448 0.7591 0.8364

4 57 0.7600 0.5600 0.6800 0.7400 0.7800

5 1-4,6,8-10 0.6900 0.6621 0.6814 0.7057 0.6507
10 clusters S =0.3093 S = 0.3043 S =0.2651 S = 0.3286 S = 0.3936
1 19 0.0600 0.1200 0.0600 0.2000 0.2400

2 11,13,16,17,20 0.4260 0.3520 0.2900 0.3360 0.4560

3 12 0.1400 0.1600 0.1600 0.2000 0.1400

4 14,15,18 0.4066 0.3533 0.3200 0.3800 0.4200

5 23,28,29 0.3733 0.3000 0.2866 0.3600 0.4200

6 21,22,24-27,30 0.3276 0.3419 0.3285 0.3866 0.3933

7 57 0.3600 0.2800 0.3000 0.3600 0.3800

8 2,3,8,10 0.3000 0.3366 0.3066 0.3433 0.3866

9 4,9 0.3400 0.4000 0.2600 0.4200 0.5000
10 1,6 0.3600 0.4000 0.3400 0.3000 0.6000

clusters are not clearly delineated. For instance, consideringlastering algorithm, comprising also fuzzy and possibilistic
cut at4 clusters level, the first cluster (with a relatively high clustering methods.

stability index equal t@.8748) is composed by homogeneous Our experimental results show also that, according to the
FL patients (Fig. 3), the second (less reliable- 0.6004) is JL lemma, if the dimension of the subspace induced by a
composed by both DLBCL and FL patients, while the thirdandom projection is sufficiently high, no significant distortion
(more reliables = 0.8123) is composed only by DLBCL is introduced into the embedding, and clustering may be
patients, as well as the less reliabde={ 0.6005) fourth cluster. performed on random subspaces approximately preserving
Splitting the fourth cluster, we obtain two DLBCL subclusterairwise distances between examples. From this standpoint,
more reliable than the previous one (Tab. II, 5 clusters). If waur random projection-based stability measures may help bio-
split the data in10 or more clusters we note a significanimedical researchers to identify stable and reliable clusters (e.g.
decrement of both the indices and the average index: this new pathological classes), exploiting the high dimension of
fact suggests that no significant structure can be observedyane expression data.

small-sized clusters (data not shown).

These results are congruent with the bio-medical character-
istics of the data. Indeed even if nodal tumor specimens areThis work has been developed in the contexiCOMAINA
subdivided int@2 groups (DLBCL and FL), Alizadeh et al. [2] Center of Excellence and it has been partially funded by the
discovered subclasses among DLBCL patients, and Shippitaetian COFIN projectLinguaggi formali ed automi: metodi,
al. [11] highlighted that FL patients frequently evolve ovemodelli ed applicazioni

time and acquire the morphologic and clinical features of
DLBCLs. REFERENCES
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TABLE Il
DLBCL-FL: ESTIMATE OF CLUSTER STABILITY.
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