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Abstract— Clustering analysis of gene expression is character-
ized by the very high dimensionality and low cardinality of the
data, and two important related topics are the validation and the
estimate of the number of the obtained clusters. In this paper
we focus on the estimate of the stability of the clusters. Our
approach to this problem is based on random projections obeying
the Johnson-Lindenstrauss lemma, by which gene expression
data may be projected into randomly selected low dimensional
subspaces, approximately preserving pairwise distances between
examples. We experiment with different types of random projec-
tions, comparing empirical and theoretical distortions induced by
randomized embeddings between euclidean metric spaces, and we
present cluster-stability measures that may be used to validate
and to quantitatively assess the reliability of the clusters obtained
by a large class of clustering algorithms. Experimental results
with high dimensional synthetic and DNA microarray data show
the effectiveness of the proposed approach.

I. I NTRODUCTION

Clustering methods may discover gene expression signa-
tures related to specific biological processes or to specific
diseases. Moreover unsupervised learning methods, exploiting
the overall gene expression profile of a patient, may research
and discover subclasses of pathologies that cannot be detected
with traditional biochemical, histopathological and clinical
criteria [4].

Two of the main concerns with gene expression clustering
analysis are the estimate of the number of clusters in a dataset,
and the stability of the obtained clusters [3]. Indeed in many
cases we have no sufficient biological knowledge to ”a priori”
evaluate both the number of clusters (e.g. the number of
biologically distinct tumor classes), as well as the validity of
the discovered clusters (e.g. the reliability of new discovered
tumor classes).

Several approaches for assessing the reproducibility and
stability of clustering patterns in gene expression data have
been recently proposed [8], [9], [13].

In this paper we present an approach that exploits the very
high dimensionality and relatively low cardinality of gene
expression data, using multiple random projections of the
original data, to assess the reliability of the discovered clusters.
The main idea behind our approach consists in evaluating the
stability of the clusters discovered in the original high di-
mensional space comparing them with the clusters discovered
in randomly projected lower dimensional subspaces. To this

end we use the concept of random projections with bounded
metric distortions, according to the Johnson-Lindenstrauss (JL)
theory [7].

The proposed method is related to the Smolkin and
Gosh [12] approach based on an unsupervised version of the
random subspace method [5]. We extend the unsupervised ran-
dom subspace approach to more general random projections,
in the framework of random embeddings between euclidean
spaces, and we propose a new cluster stability measure based
on similarity between randomly projected data.

In the next section we present a brief introduction to
randomized embeddings of metric spaces, focusing on random
projections obeying theJL lemma. In Sect. III we compare
the theoretical and empirical distortion induced by randomized
embeddings using two high-dimensional synthetic data. Then
in Sect. IV we present our approach to the estimate of cluster
stability based on random projections, and we apply the
proposed stability measures to both synthetic and ”real” gene
expression data.

For all the experiments presented in this paper we developed
R functions and programs to implement both the random
projections described in Sect.III and the stability measures
described in Sect. IV.

II. D IMENSIONALITY REDUCTION AND RANDOMIZED

EMBEDDINGS

Dimensionality reduction may be obtained by mapping
points from a high to a low-dimensional space, approximately
preserving some characteristics, i.e. the distances between
points. In this context randomized embeddings with low dis-
tortion represent a key concept. Randomized embeddings have
been successfully applied both to combinatorial optimization
and data compression [6].

A randomized embeddingbetweenL2 normed metric spaces
with distortion1 + ε, with ε > 0 and failure probabilityP is
a distribution probability over mappingsµ : Rd → Rd′ , such
that for every pairp, q ∈ Rd, the following property holds
with probability 1− P :

1
1 + ε

≤ ||µ(p)− µ(q)||2
||p− q||2 ≤ 1 + ε (1)



The main result on randomized embedding is due to Johnson
and Lindenstrauss [7], who proved the existence of a random-
ized embeddingµ : Rd → Rd′ with distortion 1 + ε and
failure probability eΩ(−d′ε2), for every 0 < ε < 1/2. As a
consequence, for a fixed data setS ⊂ Rd, with |S| = n, by
union bound, for allp, q ∈ S, it holds:

Prob

(
1

1 + ε
≤ ||µ(p)− µ(q)||2

||p− q||2 ≤ 1 + ε

)
≥ 1−n2eΩ(−d′ε2)

(2)
Hence, by choosingd′ such thatn2eΩ(−d′ε2) < 1/2, it is
proved the following:
Johnson-Lindenstrauss (JL) lemma: Given a setS with |S| =
n there exists a1+ ε-distortion embedding intoRd′ with d′ =
c log n/ε2, wherec is a suitable constant.

The embedding exhibited in [7] consists in random projec-
tions fromRd into Rd′ , represented by matricesd′ × d with
random orthonormal vectors. Similar results may be obtained
by using simpler embeddings, represented through random
d′ × d matrices P = 1/

√
d′(rij), where rij are random

variables such that:

E[rij ] = 0, V ar[rij ] = 1

For sake of simplicity, we call random projections even this
kind of embeddings. In particular in [1] matrices are proposed
such that their entries are uniformly chosen in{−1, 1}, or in
{−√3, 0,

√
3} , by choosing0 with probability2/3 and−√3

or
√

3 with probability 1/6. In this case theJL lemmaholds
with c ' 4.

Consider now a data set represented by ad × n matrix
X whose columns representn d-dimensional observations.
Suppose thatd′ = 4 log n/ε2 << d; theJL lemmaguarantees
the existence of ad′ × d matrix P such that the columns of
the ”compressed” data setXP = PX have approximately the
same distance (up to a distortion1 + ε) of the corresponding
columns inX. Moreover there is a randomized algorithm that,
having in inputX, outputsXP in time O(dd′n) with high
confidence.

This fact suggests that we can speed-up algorithms for
solving proximity problems. Instances of aproximity problem
are setsI ⊂ Rd (described by a data setX), and the goal
consists in computing some properties defined in terms of
distances between points inI: clustering is an example. In
particular consider an algorithmA that, having as input a
d×n data setX, outputs the solution of aproximity problem
in time T (n, d). An approximate solution of the problem can
be obtained by computing firstly the projectionP and the
”compressed” data setXP = PX, and finally by applyingA
to XP . In this way the time complexity may be reduced from
T (n, d) to O(nd log n) + T (n,O(log n)).

III. D ISTORTION INDUCED BY RANDOM PROJECTIONS

In this section we consider two random embeddings, pro-
posed respectively in [1] and [5]. We estimate the distortions
induced by the random embeddings with respect to high di-
mensional synthetic data, comparing them with the theoretical
bounds predicted by theJL lemma.

A. Distortion measures

Given a data setX ⊂ Rd and a mapµ : Rd → Rd′ , for
x, y ∈ X the distortion distµ(x, y) is defined:

distµ(x, y) =
||µ(x)− µ(y)||2
||x− y||2 (3)

Of course, distµ(x, y) = 1 means that no distortion is
introduced. Themaximum, minimumand average distortion
of µ on X respectively are:

max.distµ(X) = max
x,y∈X

distµ(x, y) (4)

min.distµ(X) = min
x,y∈X

distµ(x, y)

ave.distµ(X) =
1

|X|(|X| − 1)

∑

x,y∈X,x 6=y

distµ(x, y)

B. Empirical estimation of distortions induced by randomized
maps

In this section we estimate, given a data setX and a
randomized mapµ, the expectation of the random variables
max.distµ(X),min.distµ(X) andave.distµ(X) (eq.4)

1) Randomized maps:We considered two randomized
maps:
• Random Projection (RP): represented byd′ × d matrices

P = 1/
√

d′(rij), where rij are uniformly chosen in
{−1, 1}. As observed in Sect.IIRP satisfies theJL
lemma.

• Random Subspace (RS)[5]: represented byd′×d matrices
P =

√
d/d′(rij), whererij are uniformly chosen with

entries in{0, 1}, and with exactly one ”1” per row and at
most one ”1” per column. It is worth noting that for ad×
n data setX and a projection matrixP , the ”compressed”
data setXP = PX can be computed in timeO(nd′),
independently fromd. Unfortunately,RSdoes not satisfy
the JL lemma.

2) Synthetic data generation:We developed two generators
for synthetic data sets (sample1andsample2):
• Sample1is a generator for 6000-dimensional data sets

composed by3 clusters of data normally distributed.
The elements of each cluster are distributed according
to a spherical gaussian with unitary standard deviation.
The first cluster is centered in the middle of a 6000-
dimensional hypercube with an edge of length equal to
20 conventional units. The other two clusters are centered
at the opposite vertices of the hypercube. Hence the tree
clusters are completely separated with no overlapping
between them.

• Sample2is a a generator for 6000-dimensional data sets
composed by5 clusters of data normally distributed.
All the examples have 1000 no-noisy and 5000 noisy
variables; for all the examples the noisy variables are
distributed according to a spherical gaussian centered in
0 and with standard deviation equal to2. Considering
only the 1000 no-noisy variables there is substantial
overlapping between classes 1 and 2 and 1 and 3, while
class 4 and 5 are quite well separated.



Using the generators we drew two data set (respectivelyX1

andX2), each one composed by50 examples.
3) Results:Setting a distortion value1 + ε, (0 < ε < 0.5),

a dimensiond′ = 4 log 50/ε2 is computed according to the
JL lemma. For every data setX1 and X2 we performed50
RP and 50 RS projections, computing the empirical average
of max.distµ,min.distµ andave.distµ, according to eq.4.

The results forRP and RS on sample2are summarized
in Fig.1. As expected, forRP the empirical average of
max.distµ and min.distµ are significantly better than the
theoretical bound. Quite surprisingly, similar results have been
also obtained withRSprojections, whereJL bounds are not
guaranteed. A similar behaviour ofRPandRSprojections has
been also observed withsample1(data not shown).
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Fig. 1. Comparing theoretical and empirical distortion withsample2usingRP
and RSprojections. Continuous lines represent the bounds of the maximum
and minimum distortion according to theJL lemma. Dashed lines represent
the average maximum and minimum distortion empirically computed and
averaged over50 random projections. The pairs of dotted lines just above and
below the the dashed lines represent the confidence interval at99 % confidence
level. The dash-dotted line represents the expected average distortion. Above:
RP projection. Below:RSprojection.

Fig. 2 shows the distribution of the pairwise distances
between examples in original and randomly projected data
(sample2data set). We may see that the also the distributions

of the pairwise distances are quite well preserved, at least if
we project data with low distortion. With the well separated
clusters of thesample1data set the distribution of the distances
are better preserved (data not shown).
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Fig. 2. Distribution of the pairwise distances between examples in original
and randomly projected data (sample2). The continuous line represents the
distribution in the original 6000-dimensional space, the dashed line the
distribution in the projected space. Above: Projection into a 63-dimensional
space (corresponding to a 1.50 upper-bound distortion according to JL lemma).
Below: Projection into a 1565-dimensional space (corresponding to a 1.10
upper-bound distortion according to JL lemma).

IV. RANDOM PROJECTIONS AND CLUSTER STABILITY

The JL lemma shows that we may generate relatively low-
distorted random projected data, and our experimental results
show that we may also obtain empirical estimate of the
expectation of the random variablesmax.distµ andmin.distµ
that are better than the theoretical bounds.

Our aim is to exploit random projections to estimate sta-
bility of clusters, because random projections do not induce
relevant distortions (as long as we provide a projection into a
sufficiently high-dimensional subspace).



A. Cluster stability measures

Given a finite setX ⊂ Rd, we denote (with abuse of
notation) withX the metric space< X, f >, wheref(x, y) =
||x − y||2, x, y ∈ Rd. In the following of this section we
consider a fixed random projectionµ : Rd → Rd′ that verifies
the JL lemma (i.e. RP, Sect. III-B.1), and we propose a
stability index for clustering by using a pairwise similarity
matrix between the projected examples.

Let C be a clustering algorithm, that, having in inputX,
outputs a set ofk clusters:

C(X) =< A1, A2, . . . , Ak >, Aj ⊂ X, 1 ≤ j ≤ k (5)

Then we compute a ”similarity” matrixM , with indices in
X, using the following algorithm:

1) Generatet independent projectionsµi : Rd → Rd′ , 1 ≤
i ≤ t, such thatd′ = 4 log |X|+log t

ε2

2) Apply C to the new projected dataµi(X), obtaining a
set of clusterings, for1 ≤ i ≤ t:

C(µi(X)) =< Bi
1, . . . , B

i
k >, Bi

j ⊂ Xi, 1 ≤ j ≤ k
(6)

whereBi
j is the jth cluster of theith clustering.

3) Set the elementsMxy of the similarity matrix:

Mxy =
1
t

k∑

j=1

t∑

i=1

χBi
j
(µi(x)) · χBi

j
(µi(y)) (7)

whereχBi
j

is the characteristic function for the cluster
Bi

j .
Since the elementsMxy measure the occurrences of the
examplesµi(x), µi(y) ∈ µi(X) in the same clustersBi

j

for 1 ≤ i ≤ t, then M represents the ”tendency” of the
projections to belong to the same cluster. It is easy to see
that 0 ≤ Mxy ≤ 1, for eachx, y ∈ X.

With respect to the algorithm above we may observe:
Remark 1.Since the failure probability iseΩ(−d′ε2), similarly
to eq.2 in Sect. II, by union bound we have, for allx, y ∈ X,
1 ≤ i ≤ t:

P

(
1

1 + ε
≤ ||µi(y)− µi(x)||2

||x− y||2 ≤ 1 + ε

)
≥ 1−t|X|2eΩ(−d′ε2)

Therefore ford′ ' O
(

log |X|+log t
ε2

)
, we obtain with high

probability that all the projections preserve the distances
between the elements inX up to a distortion1 + ε.
Remark 2.A fuzzy similarity matrix may be obtained simply
substituting in eq. 7 the characteristic function with a member-
ship function and the algebraic product with a suitablet-norm.
In this way fuzzy or possibilistic clustering approaches may
also be applied.

Using the similarity matrixM (eq. 7) we propose the
following stability indexs for a clusterAi:

s(Ai) =
1

|Ai|(|Ai| − 1)

∑

(x,y)∈Ai×Ai,x6=y

Mxy (8)

The indexs(Ai) estimates the stability of a clusterAi in the
original non projected space, by measuring how much the

projections of the pairs(x, y) ∈ Ai×Ai occur together in the
same cluster in the projected subspaces. The stability index has
values between0 and1: values near 1 denote stable clusters,
while lower values indicate less reliable clusters. The above
stability index is very similar to that proposed by [10]. The
main difference of our approach consists in the way the simi-
larity matrix is computed: we applied randomized projections
into lower dimensional subspaces, while [10] applied bootstrap
techniques.

An overall measure of the stability of the clustering in the
original space may be obtained averaging between the stability
indices:

S(k) =
1
k

k∑

i=1

s(Ai) (9)

In this case also we have that0 ≤ S(k) ≤ 1, wherek is the
number of clusters.

B. Assessing cluster stability in synthetic and gene expression
data

We applied the stability measures proposed in the previous
section to high dimensional synthetic and gene expression
data, using the Ward’s hierarchical agglomerative clustering al-
gorithm [14], and using as dissimilarity function the euclidean
distance.

For each data set we computed the average stability index
S(k) (eq. 9) for different numberk of clusters, and the stability
index s (eq. 8) for each corresponding cluster, considering
different 1 + ε distortions induced byRSand RP projections
(Sect. III-B.1) into subspaces whose dimension was computed
according to theJL lemma.

1) Results with synthetic data:Tab.I summarizes the results
with sample1. The maximum of the average stability index
S(k) is reached when the dendrogram is cut at3 clusters
level, and the corresponding stability indicess are equal to1
for each of the3 clusters. Both the average and the individual
stability indices are lower when different number of clusters
are selected, showing that the proposed stability measures
correctly detect3 clusters, identifying them as highly reliable.

With sample2the stability indices correctly predict largely
separated as well as less reliable clusters. Indeed the stability
indices are high for the2 well separated clusters, while for the
other overlapped clusters the stability indices are significantly
lower (data not shown).

2) Results with gene expression data data:We applied the
proposed stability indices to a set of gene expression tumor
specimens from58 Diffuse large B-cell lymphoma (DLBCL)
and19 Follicular lymphoma (FL) patients [11].

Tab. II shows the estimate of cluster stability for the
DLBCL-FL data set. Note that in the first column of Tab. II
the clusters are labeled with numbers, and these number
assignments correspond to left-to-right clusters in the den-
drogram of Fig. 3. The averageS index is slightly larger
when the hierarchical clustering dendrogram is cut at2 clusters
level (Fig. 3), but comparable (even if lower) values are also
registered with3, 4 and 5 clusters. In this case indeed the



TABLE I

Sample1: ESTIMATE OF CLUSTER STABILITY.

Clusters Members of Clusters Stability index s
ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1

2 clusters S = 0.8631 S = 0.8684 S = 0.8684 S = 0.9157 S = 0.9421
1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000
2 1-10,21-30 0.7263 0.7368 0.7368 0.8314 0.8842
3 clusters S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000
1 11-20 1.0000 1.0000 1.0000 1.0000 1.0000
2 21-30 1.0000 1.0000 1.0000 1.0000 1.0000
3 1-10 1.0000 1.0000 1.0000 1.0000 1.0000
5 clusters S = 0.7059 S = 0.6843 S = 0.7044 S = 0.7004 S = 0.7472
1 11,13,16,17,19,20 0.6973 0.7346 0.7293 0.6506 0.7560
2 12,14,15,18 0.6666 0.7066 0.6866 0.6466 0.7133
3 21-30 0.7155 0.7582 0.7448 0.7591 0.8364
4 5,7 0.7600 0.5600 0.6800 0.7400 0.7800
5 1-4,6,8-10 0.6900 0.6621 0.6814 0.7057 0.6507
10 clusters S = 0.3093 S = 0.3043 S = 0.2651 S = 0.3286 S = 0.3936
1 19 0.0600 0.1200 0.0600 0.2000 0.2400
2 11,13,16,17,20 0.4260 0.3520 0.2900 0.3360 0.4560
3 12 0.1400 0.1600 0.1600 0.2000 0.1400
4 14,15,18 0.4066 0.3533 0.3200 0.3800 0.4200
5 23,28,29 0.3733 0.3000 0.2866 0.3600 0.4200
6 21,22,24-27,30 0.3276 0.3419 0.3285 0.3866 0.3933
7 5,7 0.3600 0.2800 0.3000 0.3600 0.3800
8 2,3,8,10 0.3000 0.3366 0.3066 0.3433 0.3866
9 4,9 0.3400 0.4000 0.2600 0.4200 0.5000
10 1,6 0.3600 0.4000 0.3400 0.3000 0.6000

clusters are not clearly delineated. For instance, considering a
cut at4 clusters level, the first cluster (with a relatively highs
stability index equal to0.8748) is composed by homogeneous
FL patients (Fig. 3), the second (less reliables = 0.6004) is
composed by both DLBCL and FL patients, while the third
(more reliables = 0.8123) is composed only by DLBCL
patients, as well as the less reliable (s = 0.6005) fourth cluster.
Splitting the fourth cluster, we obtain two DLBCL subclusters,
more reliable than the previous one (Tab. II, 5 clusters). If we
split the data in10 or more clusters we note a significant
decrement of both thes indices and the averageS index: this
fact suggests that no significant structure can be observed in
small-sized clusters (data not shown).

These results are congruent with the bio-medical character-
istics of the data. Indeed even if nodal tumor specimens are
subdivided into2 groups (DLBCL and FL), Alizadeh et al. [2]
discovered subclasses among DLBCL patients, and Shipp et
al. [11] highlighted that FL patients frequently evolve over
time and acquire the morphologic and clinical features of
DLBCLs.

V. CONCLUSIONS

Our experiments with synthetic and gene expression data
show that the proposed stability indices based on random
projections with bounded metric distortion may be used to
identify stable clusters directly from the data, without ”a pri-
ori” knowledge and without assumptions about the distribution
of the data (apart of the choice of the clustering algorithm).
Moreover our experiments show that the average stability
index may also be useful to identify the most likely number
of clusters.

We experimented with agglomerative hierarchical clus-
tering, but the proposed approach may be used with any

clustering algorithm, comprising also fuzzy and possibilistic
clustering methods.

Our experimental results show also that, according to the
JL lemma, if the dimension of the subspace induced by a
random projection is sufficiently high, no significant distortion
is introduced into the embedding, and clustering may be
performed on random subspaces approximately preserving
pairwise distances between examples. From this standpoint,
our random projection-based stability measures may help bio-
medical researchers to identify stable and reliable clusters (e.g.
new pathological classes), exploiting the high dimension of
gene expression data.
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