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Outline

• Levels of analysis of DNA microarray data
• Clustering methods for functional class discovery: 

discovering gene expression signatures 

• Hierarchical clustering
• K-means family of clustering methods
• A fuzzy c-mean application to a toy problem
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Measuring gene expression through DNA 
microarray experiments

Large scale gene expression 
profiling:

•Different tissues

•Different conditions

•Different developmental 
stage

•Time series experiments

•Responses to external stimuli 
(drugs, environments, 
hormones)

To discover:

• Gene function

• Gene regulation

• Metabolic, gene and 
signaling networks

• Genetic mechanisms of 
diseases

• ...

Very large amounts of data



Levels of analysis of DNA microarray data

A. - Image analysis
- Preprocessing and normalization 

B. Single gene analysis: Detecting differential expression of 
single genes

C. Multiple genes pattern discovery: analysis of interactions, 
common functionalities, co-regulations:
- Analysis of expression signatures
- Discovering groups of genes correlated with functional status of a cell
- Discovering (sub)classes of cell/tissues on functional basis

D. Classification and prediction of functional classes of genes or 
tissues
- Diagnosis of polygenic diseases based on gene expression data
- Predicting subsets of genes related to a particular disease.

E.    Pathway analysis: analysis of the relationships between 
networks of interacting molecules



Clustering
• High level overview of the data
• First analytical step in study that involves other anaytical 

methods
• Unsupervised methods

Goals:

• Discovering the underlying structure of the data

• Discovering groups of co-expressed genes/tissues



Clustering - 1

• Grouping a set of data objects into clusters
• Cluster: a collection of data objects:

– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters

• Clustering is an unsupervised method (no labeled examples)
Typical usage:
As a stand-alone tool to get insight into data distribution
As a preprocessing step for other algorithms



Clustering - 2
Goals:
• Inferring unknown gene functions from clusters
• Discovering functionally related sets of genes
• Discovering new subclasses of diseases
• Discovering regulatory networks

For instance, clustering allows us to

– group together genes that respond similarly across several
experimental conditions

– group together experimental conditions tissue types giving 
similar expression patterns across the whole genome



Clustering methods applied to gene 
expression data analysis

• Hierarchical clustering (Eisen et al., 1998)
• K-mean family clustering (Tavazoie et al., 1999; Gasch 

and Eisen, 2002)
• Self-organizing maps (SOM) (Tamayo et al., 1999)
• Methods based on graph theory (Sharan and Shamir, 

2000)
• Methods based on within cluster maximization and 

between cluster similarity minimization (De Veet et al., 
2002)

• Biclustering methods (Tanay et al., 2002)
• Ensemble methods (Dudoit et al. 2003)



Data can have a hierarchical structure 

It could be useful a hierarchical clustering algorithm in 
these situations



Hierarchical clustering
• Hierarchical decomposition of the data set (with respect to 

a given similarity measure) into a set of nested clusters

• Result represented by a dendrogram

• Nodes in the dendrogram represent possible clusters

• They can be constructed bottom-up (agglomerative 
approach) or top down (divisive approach)



- The root represents the whole data set
- A leaf represents a single object in the data set
- An internal node represent the union of all objects in its sub-
tree
- The height of an internal node represents the distance between 
its two child nodes

Dendrograms





Advantages and disadvantages of 
Hierarchical clustering

Advantages
• Does not require the 

number of clusters to be 
known in advance

• No input parameters 
(besides the choice of the 
(dis)similarity)

• Computes a complete 
hierarchy of clusters

• Good result visualizations 
integrated into the 
methods

Disadvantages
• May not scale well: runtime 

for the standard methods: 
O(n2 log n2)

• No explicit clusters: a “flat” 
partition can be derived 
afterwards (e.g. via a cut 
through the dendrogram or 
termination condition in the 
construction) 

• No automatic discovering of 
“optimal clusters”



The K-means algorithm
Input : A set S of examples (vectors of gene 

expression levels), a number K of clusters
1. Initialization: assign the examples randomly to 

the K clusters
loop:
2. Compute the mean fo each cluster
3. Assign each example to the “nearest cluster”
4. If stop condition reached then exit loop, else 

repeat loop
Output: A set of K clusters



K-means algorithm



K-means for gene expression

Strength:
• Relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t is # iterations. Normally, k, t << n.
• Easy implementation.
Weakness:
• Need to specify k, the number of clusters, in advance.
• Sensitive to noisy data and outliers
• Clusters are forced to have convex shapes
• Result and runtime are dependent on the initial partition;
• often terminates at a local optimum
• Genes are forced to belong only to 1 cluster



Genes can be regulated by multiple 
transcription factors



Fuzzy C-mean

• Each gene can belong to multiple clusters: its 
membership can vary from 0 to 1.

• As in the “hard” version, it is an iterative 
algorithm, but the means are weighted through the 
memberhips, and the memberships are updated at 
each iteration

•The output is a fuzzy partition of the data, where each 
gene/sample can belong to more than 1 cluster

•We can obtain also different  partitions with genes belonging 
or not to a cluster according to a selected membership cut-off



Using the fuzzy c-mean 
algorithm

• Main parameters to be tuned:
– The number of clusters
– The index of fuzziness

• Initialization of the algorithm
• The reliability of the clusters
• Selecting a membership level to assign a 

gene to a specific cluster.



function [A, Y, H, cycles, HBindex] = fuzzy_c_mean (X, c, f, errstop, lim) 
Esegue l' algoritmo di fuzzy c means secondo Bezdek
Input:
X      : matrice dei dati di input.
Formato: [n,m]=size(X) con n numero dei pattern ed m dimensione dei pattern.
c      : numero delle classi (def. c = 2)
f      : indice di fuzziness dell' algoritmo, 1<f<inf (def. f = 2)
errstop: condizione di arresto  (def. = 0.001)
lim    : limite valore di membership per assegnazione di un pattern ad un cluster
Output:
A      : Matrice delle membership function dei cluster.

Formato: [c,n]=size(A), c = numero dei cluster, n = numero dei pattern di input
Y      : Matrice dei centri dei cluster

Formato: [c,m]=size(Y), c = numero dei cluster, m = dimensione dei pattern
H      : Vettore di assegnazione dei pattern ai cluster

Formato: n=length(H), n = numero dei pattern di input
cycles : numero dei cicli effettuati dall' algoritmo
HBindex  : Xie-Beni index (misura la qualità della partizione)

minore è il valore di HBindex, migliore è la partizione

A MATLAB implemetation of the fuzzy-c-mean algorithm



High-level view of the fuzzy c-mean algorithm
% Step1: Select an initial pseudopartition
A = DoInitPseudoPartition(c,n);
while err > errstop

%Step2: Cluster-centers computations
Y = ClusterCenters(A, X, f);
% Save the membership matrix
oldA = A;
% Step3: Update the memebership matrix A
A = UpdateMembership(X, Y, c, f);
% Step4: Compute the differences (error) between A and its previous values
err = Error(A, oldA);
cycles = cycles + 1;

end
H = AssignPatterns(A, lim);
HBindex = ComputeXieBeniIndex(X,Y,A,f);
% Plot the clusters
% drawfuzzycluster(X, A, lim);



Limitations of fuzzy C-means 

• User defind membership cut-off.Some criteria:
– Functional relationships of the genes selected
– Biological coherence of the selected patterns
– Statistical enrichment of sequences in gene promoters

• No “natural” visualization of the data
• “Outlier” genes forced to belong to some cluster

(due to Ruspini constraint)



In general there is not the “best” 
clustering method

For example:

Fuzzy clustering:   identifying genes pertaining to different 
regulatory networks

Hierarchical clustering: it offers an intuitive visual clue of 
the distribution of the data

Biclustering:  identifying subsets of genes with similar 
behavior in subsets of experimental conditions

Different techniques highlight different patterns and 
characteristics of the data. 



A final caveat about clustering methods

• We should use clustering methods if we 
pursue pattern discovery or dimensionality 
reduction

• It is not a good idea using them to 
distinguish between classes of examples (if 
the class labels are known)
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