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Graph definitions 

Basic concepts of graph theory 



Graph 

  A grapH (G) contains a set of vertices (V) 
and a set of edges (E) 

  A simple graph contains no self-loop and 
no multi-edge 
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Directed GrapH (= Digraph) 

  A directed edgD (or arc) is characterized 
by a head and a tail 

  A digraph is a graph whose edges are 
directed 

  A partially directed graph is a graph 
combining directed and non-directed 
edges 
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Graph descriptions 

Basic concepts of graph theory 



Graph descriptions : incidence matrix 

  one row per edge 
  one colum per vertex 
  value = 1 if edge and vertex are incident 
  Problems  

  only valid for undirected graphs 
  inefficient storagD (many empty cells) 
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edge\vertex a b c d e f g h
e1 1 1 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0
e3 0 1 1 0 0 0 0 0
e4 0 1 0 0 1 0 0 0
e5 0 1 0 0 1 0 0 0
e6 0 0 1 0 1 0 0 0
e7 0 0 0 0 1 0 0 0
e8 0 0 0 0 0 0 1 1



Graph descriptions : adjacency matrix 

  one row per vertex 
  one colum per vertex 
  value = 1 if vertices are adjacent 
  diagonal = self-loops 
  Problems 

  no possibility to represent multi-arcs 
  inefficient storagD (many empty cells) 
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from\to a b c d e f g h
a 0 1 0 0 0 0 0 0
b 0 0 1 0 1 0 0 0
c 0 0 0 0 0 0 0 0
d 0 0 0 1 0 0 0 0
e 0 1 1 0 0 0 0 0
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 1
h 0 0 0 0 0 0 0 0



Graph descriptions : adjacency list 

  A list of out-going vertices is associated to each vertex 
  Compact representation 
  Optionally, a list of in-going vertices can be added to allow reverse-traversal of the graph 
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Vertex out in 
a (b,b) () 
b (c,e) (a,e) 
c () (b,e)
d (d) (d)
e (b,c) (b)
f () ()
g (h) ()
h () (h) 



Graph descriptions : formal description 

  one row per edge 
  one column for heads  
  one column for tails 
  optional columns for edge attributes  

(label, weight, color, …) 
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a b e2
b c e3
b e e4
e b e5
e c e6
d d e7
g h e8



Walks, trails and paths 

Basic concepts of graph theory 



Walk 

  A walk from vertex A to vertex B is an alternating sequence of vertices and edges, 
representing a continuous traversal from A to B 

  Remarks 
  A walk can be described unequivocally by the sequence of edges (e.g.: d, e, a, d, n,p,h,t,t,t) 
  In a non-simple grapH (i.e. with multi-edges), a walk is not described unequivocally by a sequence 

of vertices 
  An edge or a vertex can appear repeatedly in the same walk  

(e.g.: edges d and t , and vertices α, ε, χ on the figure) 
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Closed walk 

  A closed walk is a walk whose initial and final vertices are identical  
(e.g.: d, e, a, d, n,p,h,t,t,t,b,a) 
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Trail 

  A trail is a walk with no repeated edges  
(e.g.: d, e, a, c,l,q,h,t) 

  Remark: a vertex can appear repeatedly in the same traiL (e.g.: α and χ on the 
figure) 
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Path 

  A path is a trail with no repeated vertices, except possibly the initial and final 
vertex (e.g. c,l,q,h) 
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Path 

  A cycle is a closed path with at least one edge (e.g. c,l,q,h,b,a) 
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Connected graph 

  a connected graph is a graph in which there is a walk between every pair of distinct 
vertices  
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Trees 

Basic concepts of graph theory 



Tree 

  a tree is a connected graph that has no cycles 
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Rooted tree 

  A rooted tree is a directed tree having a distinguished vertex r called the root such that for 
each other vertex v, there is a directed path from the root to v 

  Each non-root node has a single parent  
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Queue and stack 

  A queue is a sequence of elements such 
that each new element is addeD 
(enqueued) to one end, called the back 
of the queue, and an element is removeD 
(dequeued) from the other end, called 
the front 

  A stack is a sequence of elements such 
that each new element is addeD (or 
pushed) onto one end, called the top, 
and an element is removeD (popped) 
from the same end 
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Level-order tree traversal with a queue 

  Enqueue root 
  While queue is not empty 

  Dequeue a vertex and write it to the output list 
  Enqueue its children left-to-right 
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Pre-order tree traversal with a stack 

  Push root onto the stack 
  While stack is not empty 

  Pop a vertex off stack, and write it to the output list 
  Push its children right-to-left onto stack 
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Path finding 

Basic concepts of graph theory 



Path finding in biochemical networks 

  2-ends path finding 
  Find all pathways from compound A to compound B 

  1-end path finding 
  Find all genes regulated by a membrane receptor via a signal transduction pathway 

  1-end path finding, reverse 
  Find all proteins and compounds exerting a direct or indirect action on the level of 

expression of a given gene  
  Circuit finding 

  Find all feed-back loops 
  Subgraph extraction 

  Starting from a set of n seed nodes, extract a subgraph  that joins “at best” the seeds. 
•  Unweighted graphs: minimize the number of edges of the subgrpah 
•  Weighted graphs: minimize the weight of the subgraph 
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Tree in a graph 

  A tree T in a graph G is a connected subgraph which contains no cycle 
  The edges and vertices of T are called tree-edges and tree-vertices 
  A frontier-edge is a non-tree edge with one endpoint in T and one endpoint not in T.  
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Spanning tree 

  A spanning tree is a tree which contains all the vertices of a graph 
  A spanning tree does not necessarily contain all the edges 
  A fundamental cycle in the graph G is the unique cycle which is created when a non-tree 

edge is added to the spanning tree T 
  Each non-tree edge corresponds to a fundamental cycle in the graph 
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Depth-first-searcH (DFS) 

  Initialize tree at a given vertex (for example a) 
  Initialize the set of frontier edges as empty 
  Set dfnumber(a) to 0 
  Initialize label counter i to 1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Depth-first-search 

  While T does not span G 
  update the set of frontier edges 
  select a frontier edge whose labelled endpoint has the largest possible dfnumber 
  add this edge to the tree 
  select the unlabelled endpoint of this edge, and set its dfnumber to i 
  i := i+1 
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Breadth-first-searcH (BFS) 

  Initialize tree at a given vertex (for example a) 
  Initialize the set of frontier edges as empty 
  Write label 0 on vertex a 
  Initialize label counter i to 1 
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Breadth-first-searcH (BFS) 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := 1+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 

52 

A (0) B (3) 

N (6) 

F (8) 
E (2) D (1) 

L (5) 

G 

J (7) 

H 

C 

M K (4) 

a b 

c e f g 

h 

k 

m n o 

p 

q 

d 

i j 

l 

i=9 



Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Breadth-first-search 

  While T does not span G 
  update the set of frontier edges  
  select a frontier edge for which the labeled endpoint has the smallest possible label 
  add edge to the tree T 
  select the unlabelled vertex of the edge and set its label to i 
  increment N (i := i+1) 
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Result comparison : DFS versus BFS 
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Dijkstra's Shortest path finding algorithm 

  Input: a weighted connected graph G whose edge-weights are non-negative, and a starting 
vertex a 

  Output: a spanning tree, rooted at a, whose path from each vertex v is the shortest path 
from a to v in G; the vertex-labelling gives the distance from s to each vertex 

58 

a b 

i 

f e d 

l 

g 

j 

h 

c 

m k 

7 8 

2 3 2 4 

9 

6 

3 4 4 

9 
11 

3 
2 2 

7 



Dijkstra's Shortest path finding algorithm 

  Initialise the Dijkstra tree T as vertex a 
  dist[a] = 0 
  write label 0 on vertex a 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled 
endpoints of e 

•  set D(e) = dist[x] + w(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Dijkstra's Shortest path finding algorithm 

  While T does not span G 
  Update frontier edges 
  For each frontier edge e 

•  let x be the labelled and y the unlabelled endpoints of e 
•  set D(e) = dist[x] + w(e) 

  Let e be a frontier edge that has the smallest D-value 
  Add edge e to T, and set dist[y] = D(e) 
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Exercise 

  Follow the Dijkstra algorithm until all the vertices of the preceding graph are 
labelled.  
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Graph topology 
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Degree - definition 

  In a non-directed graph 
  The degree (k) of a node is the number of edges for which it is an endpoint. 

  In a directed graph 
  The in-degree (kin) of a node is the number of arcs for which it is the tail.  
  The out-degree (kout) of a node is the number of arcs for which it is the head.  
  The total degree  (k) of a node is the sum of in-degree and out-degree 

•  k=kin+kout 
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Stochastic models for the degree distribution of a graph 

  Homogeneous networks 
  Erdös-Rényi model (ER model) 
  Pairs of nodes are connected with a constant random 

probability 
  The connectivity follows a Poisson law 

•  P(k) ~ λke-λ /k! 
•  λ  mean number of connections per node 
•  k  number of connections for a given node  

  The probability of finding a highly connected node  
decreases exponentially with connectivity. 

  Scale-free networks 
  A few nodes are highly connected, most nodes are 

poorly connected. 
  Can be generated randomly with a model where new 

nodes are preferentially connected to already 
established nodes 

  The connectivity follows a power law  
•  P(k) = Ck-γ <=> log(P) = -y * log(k) + log(C) 
•  γ  the slope of the distribution in a log-log graph. 
•  k  number of connections for a given node 
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Clustering coefficient 

  The clustering coefficient of a node i indicates the 
density of arcs among its neighbours.  

  It is computed as the ratio between the number of arcs 
(n) between the neighbours, and the maximal number 
of such arcs (M).  

  The maximal number of arcs depends on the graph 
type 

  Directed or undirected 
  With or without self-loops 
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