
Concepts of graph theory

Graph-based analysis of biochemical networks

Contents

  Basic concepts of graph theory
  Definitions
  Descriptions of a graph
  Walks, trails and paths
  Trees
  Spanning trees
  Structural properties of a graph

2

Basic concepts
of graph theory

DEA in Bioinformatics 2001

Graph definitions

Basic concepts of graph theory

Graph

  A grapH (G) contains a set of vertices (V)
and a set of edges (E)

  A simple graph contains no self-loop and
no multi-edge

5

graph

simple graph

vertex (node)
edge

multi-edge
proper edge
self-loop

Directed GrapH (= Digraph)

  A directed edgD (or arc) is characterized
by a head and a tail

  A digraph is a graph whose edges are
directed

  A partially directed graph is a graph
combining directed and non-directed
edges

6

digraph

simple digraph

vertex (= node)
arC (= directed edge)
self-loop

multi-arc
proper arc

not a multi-arc !

Graph descriptions

Basic concepts of graph theory

Graph descriptions : incidence matrix

  one row per edge
  one colum per vertex
  value = 1 if edge and vertex are incident
  Problems

  only valid for undirected graphs
  inefficient storagD (many empty cells)

8

a b c

e d

f g h

e1

e2
e3

e4
e5

e6 e7

e8

edge\vertex a b c d e f g h
e1 1 1 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0
e3 0 1 1 0 0 0 0 0
e4 0 1 0 0 1 0 0 0
e5 0 1 0 0 1 0 0 0
e6 0 0 1 0 1 0 0 0
e7 0 0 0 0 1 0 0 0
e8 0 0 0 0 0 0 1 1

Graph descriptions : adjacency matrix

  one row per vertex
  one colum per vertex
  value = 1 if vertices are adjacent
  diagonal = self-loops
  Problems

  no possibility to represent multi-arcs
  inefficient storagD (many empty cells)

9

a b c

e d

f g h

e1

e2
e3

e4
e5

e6 e7

e8

from\to a b c d e f g h
a 0 1 0 0 0 0 0 0
b 0 0 1 0 1 0 0 0
c 0 0 0 0 0 0 0 0
d 0 0 0 1 0 0 0 0
e 0 1 1 0 0 0 0 0
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 1
h 0 0 0 0 0 0 0 0

Graph descriptions : adjacency list

  A list of out-going vertices is associated to each vertex
  Compact representation
  Optionally, a list of in-going vertices can be added to allow reverse-traversal of the graph

10

a b c

e d

f g h

e1

e2
e3

e4
e5

e6 e7

e8

Vertex out in
a (b,b) ()
b (c,e) (a,e)
c () (b,e)
d (d) (d)
e (b,c) (b)
f () ()
g (h) ()
h () (h)

Graph descriptions : formal description

  one row per edge
  one column for heads
  one column for tails
  optional columns for edge attributes

(label, weight, color, …)

11

a b c

e d

f g h

e1

e2
e3

e4
e5

e6 e7

e8

head tail label
a b e1
a b e2
b c e3
b e e4
e b e5
e c e6
d d e7
g h e8

Walks, trails and paths

Basic concepts of graph theory

Walk

  A walk from vertex A to vertex B is an alternating sequence of vertices and edges,
representing a continuous traversal from A to B

  Remarks
  A walk can be described unequivocally by the sequence of edges (e.g.: d, e, a, d, n,p,h,t,t,t)
  In a non-simple grapH (i.e. with multi-edges), a walk is not described unequivocally by a sequence

of vertices
  An edge or a vertex can appear repeatedly in the same walk

(e.g.: edges d and t , and vertices α, ε, χ on the figure)

13

t
Α Β

N

F Ε Δ

L

G

ϑ

H
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Closed walk

  A closed walk is a walk whose initial and final vertices are identical
(e.g.: d, e, a, d, n,p,h,t,t,t,b,a)

14

t
Α Β

N

F Ε Δ

L

G

ϑ

H
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Trail

  A trail is a walk with no repeated edges
(e.g.: d, e, a, c,l,q,h,t)

  Remark: a vertex can appear repeatedly in the same traiL (e.g.: α and χ on the
figure)

15

t
Α Β

N

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Path

  A path is a trail with no repeated vertices, except possibly the initial and final
vertex (e.g. c,l,q,h)

16

t
Α Β

N

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Path

  A cycle is a closed path with at least one edge (e.g. c,l,q,h,b,a)

17

t
Α Β

N

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Connected graph

  a connected graph is a graph in which there is a walk between every pair of distinct
vertices

18

Connected graph Non-connected graph
t

Α Β

N

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

t
Α Β

N

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c e f g

h
k

m n o

p
q

r

s

d
i j

l

Trees

Basic concepts of graph theory

Tree

  a tree is a connected graph that has no cycles

20

Α Β

Ν

Φ Ε Δ

Λ

Γ

ϑ

Η
Χ

Μ Κ

a b
c f

k

m n

p

d
i j

l

Tree

Rooted tree

  A rooted tree is a directed tree having a distinguished vertex r called the root such that for
each other vertex v, there is a directed path from the root to v

  Each non-root node has a single parent

21

Rooted tree

root=Α Β

Ν

Φ e Δ

ϑ

Γ

ϑ

Η
Χ

Μ Κ

c e f

h
k

m o

p

d
i j

l

root = A

Β Ν

Φ

Ε Δ

Λ

Γ

ϑ Η

Χ

Μ

Κ

c

e

f

h

k m

o

p

d

i

j

l

Depth

0	

2	

3	

1	

4	

5	

7	

6	

Queue and stack

  A queue is a sequence of elements such
that each new element is addeD
(enqueued) to one end, called the back
of the queue, and an element is removeD
(dequeued) from the other end, called
the front

  A stack is a sequence of elements such
that each new element is addeD (or
pushed) onto one end, called the top,
and an element is removeD (popped)
from the same end

22

Level-order tree traversal with a queue

  Enqueue root
  While queue is not empty

  Dequeue a vertex and write it to the output list
  Enqueue its children left-to-right

23

Step Output Queue
0 	

 	

α	

1 	

α 	

ε,δ	

2 	

ε 	

δ,ι,β	

3 	

δ 	

ι,β,κ,λ	

4 	

ι 	

β,κ,λ	

5 	

β 	

κ,λ,φ	

6 	

κ 	

λ,φ	

7 	

λ 	

φ	

8 	

φ 	

γ	

9 	

γ 	

ϕ,η	

10 	

ϕ 	

η,µ	

11 	

η 	

µ,χ	

12 	

µ 	

χ	

13 	

χ	

1	

5	

4	

8	

2	

 3	

7	

9	

10	

 11	

13	

12	

6	

α	

β	

ι	

φ	

ε	

 δ	

λ	

γ	

ϕ	

 η	

χ	

µ	

κ	

Pre-order tree traversal with a stack

  Push root onto the stack
  While stack is not empty

  Pop a vertex off stack, and write it to the output list
  Push its children right-to-left onto stack

24

Step Output Stack
0 	

 	

α	

1 	

α 	

δ,ε	

2 	

ε 	

δ,β,ι	

3 	

ι 	

δ,β	

4 	

β 	

δ,φ	

5 	

φ 	

δ,γ	

6 	

γ 	

δ,η,ϕ	

7 	

ϕ 	

δ,η,µ	

8 	

µ 	

δ,η,χ	

9 	

χ 	

δ,η	

10 	

η 	

δ	

11 	

δ 	

λ,κ	

12 	

κ 	

λ	

13 	

λ 	

	

α	

β	

ι	

φ	

ε	

 δ	

λ	

γ	

ϕ	

 η	

χ	

µ	

κ	

1	

4	

3	

5	

2	

 11	

13	

6	

7	

 10	

9	

8	

12	

Path finding

Basic concepts of graph theory

Path finding in biochemical networks

  2-ends path finding
  Find all pathways from compound A to compound B

  1-end path finding
  Find all genes regulated by a membrane receptor via a signal transduction pathway

  1-end path finding, reverse
  Find all proteins and compounds exerting a direct or indirect action on the level of

expression of a given gene
  Circuit finding

  Find all feed-back loops
  Subgraph extraction

  Starting from a set of n seed nodes, extract a subgraph that joins “at best” the seeds.
•  Unweighted graphs: minimize the number of edges of the subgrpah
•  Weighted graphs: minimize the weight of the subgraph

26

Tree in a graph

  A tree T in a graph G is a connected subgraph which contains no cycle
  The edges and vertices of T are called tree-edges and tree-vertices
  A frontier-edge is a non-tree edge with one endpoint in T and one endpoint not in T.

27

A B

N

F E D

L

G

J

H

C

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

Spanning tree

  A spanning tree is a tree which contains all the vertices of a graph
  A spanning tree does not necessarily contain all the edges
  A fundamental cycle in the graph G is the unique cycle which is created when a non-tree

edge is added to the spanning tree T
  Each non-tree edge corresponds to a fundamental cycle in the graph

28

Α Β

Ν

Φ Ε Δ

Λ

Γ

ϑ

Η

Χ

Μ Κ

a b

c e f g

h

k

m n o

p
q

d

i j

l

Depth-first-searcH (DFS)

  Initialize tree at a given vertex (for example a)
  Initialize the set of frontier edges as empty
  Set dfnumber(a) to 0
  Initialize label counter i to 1

29

Α (0) Β

Ν

Φ Ε Δ

Λ

Γ

ϑ

Η

Χ

Μ Κ

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=1

Depth-first-search

  While T does not span G
  update the set of frontier edges

30

Α (0) Β

Ν

Φ Ε Δ

Λ

Γ

ϑ

Η

Χ

Μ Κ

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=1

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

31

Α (0) Β

N

F E Δ (1)

L

G

J

H

C

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=2

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

32

Α (0) B

N

F E Δ (1)

L

G

J

H

C

M Κ (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=3

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

33

Α (0) Β

N

F E Δ (1)

L (3)

G

J

H

C

M K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=4

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

34

Α (0) B

N

F E Δ (1)

L (3)

G

J

H

C

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=5

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

35

Α (0) B

N

F E Δ(1)

L (3)

G

J

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=6

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

36

A (0) B (6)

N

F E D (1)

L (3)

G

J

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=7

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

37

A (0) B (6)

Ν

Φ D (7) D (1)

L (3)

Γ

ϑ

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=8

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

38

A (0) B (6)

N (8)

Φ D (7) D (1)

L (3)

Γ

ϑ

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=9

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

39

A (0) B (6)

N (8)

Φ D (7) D (1)

L (3)

Γ

J (9)

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=10

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

40

A (0) B (6)

N (8)

Φ D (7) D (1)

L (3)

G (10)

J (9)

H

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=11

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

41

A (0) B (6)

N (8)

Φ D (7) D (1)

L (3)

G (10)

J (9)

H (11)

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=12

Depth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge whose labelled endpoint has the largest possible dfnumber
  add this edge to the tree
  select the unlabelled endpoint of this edge, and set its dfnumber to i
  i := i+1

42

A (0) B (6)

N (8)

F (12)
D (7) D (1)

L (3)

G (10)

J (9)

H (11)

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=13

Breadth-first-searcH (BFS)

  Initialize tree at a given vertex (for example a)
  Initialize the set of frontier edges as empty
  Write label 0 on vertex a
  Initialize label counter i to 1

43

A (0) B

N

F E D

L

G

J

H

C

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=1

Breadth-first-searcH (BFS)

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := 1+1)

44

A (0) Β

N

F E D

L

G

J

H

Χ

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=1

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

45

A (0) B

N

F E D (1)

L

G

J

H

C

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=2

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

46

A (0) Β

N

F E (2) D (1)

L

G

J

H

Χ

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=3

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

47

A (0) B (3)

N

F E (2) D (1)

L

G

J

H

C

M K

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=4

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

48

A (0) B (3)

N

F E (2) D (1)

L

G

J

H

C

M K (4)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=5

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

49

A (0) B (3)

N

F E (2) D (1)

L (5)

G

J

H

C

M K (4)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=6

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

50

A (0) B (3)

N (6)

F E (2) D (1)

L (5)

G

J

H

C

M K (4)

a b

c e f g

h

k

m n o

p
q

d

i j

l

i=7

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

51

A (0) B (3)

N (6)

F E (2) D (1)

L (5)

G

J (7)

H

C

M K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=8

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

52

A (0) B (3)

N (6)

F (8)
E (2) D (1)

L (5)

G

J (7)

H

C

M K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=9

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

53

A (0) B (3)

N (6)

F (8)
E (2) D (1)

L (5)

G

J (7)

H

C (9)

M K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=10

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

54

A (0) B (3)

N (6)

F (8)
E (2) D (1)

L (5)

G

J (7)

H

C (9)

M (10)
K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=11

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

55

A (0) B (3)

N (6)

F (8)
E (2) D (1)

L (5)

G (11)

J (7)

H

C (9)

M (10)
K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=12

Breadth-first-search

  While T does not span G
  update the set of frontier edges
  select a frontier edge for which the labeled endpoint has the smallest possible label
  add edge to the tree T
  select the unlabelled vertex of the edge and set its label to i
  increment N (i := i+1)

56

A (0) B (3)

N (6)

F (8)
E (2) D (1)

L (5)

G (11)

J (7)

H (12)

C (9)

M (10)
K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

i=13

Result comparison : DFS versus BFS

57

DFS

BFS

A (0) B (3)

N (6)

F (8)

Ε (2) D (1)

L (5)

G (11)

J (7)

H (12)

C (9)

M (10)

K (4)

a b

c e f g

h

k

m n o

p

q

d

i j

l

A (0) B (6)

N (8)

F (12)

D (7) D (1)

L (3)

G (10)

J (9)

H (11)

C (5)

M (4) K (2)

a b

c e f g

h

k

m n o

p

q

d

i j

l

Dijkstra's Shortest path finding algorithm

  Input: a weighted connected graph G whose edge-weights are non-negative, and a starting
vertex a

  Output: a spanning tree, rooted at a, whose path from each vertex v is the shortest path
from a to v in G; the vertex-labelling gives the distance from s to each vertex

58

a b

i

f e d

l

g

j

h

c

m k

7 8

2 3 2 4

9

6

3 4 4

9
11

3
2 2

7

Dijkstra's Shortest path finding algorithm

  Initialise the Dijkstra tree T as vertex a
  dist[a] = 0
  write label 0 on vertex a

59

A (0) b

i

f e d

l

g

j

h

c

m k

7 8

2 3 2 4

9

6

3 4 4

9
11

3
2 2

7

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled
endpoints of e

•  set D(e) = dist[x] + w(e)

60

A (0) b

i

f e d

l

γ

j

h

c

m k

7 (7) 8

3 2 4

9

6

3 4 4

9

11

3 (3)
2 2

7

2 (2)

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

61

A (0) b

i

f e D (2)

l

γ

j

h

c

m k

7 (7) 8

2 (2) 3 2 4

9

6

3 4 4

9

11

3 (3)
2 2

7

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

62

A (0) b

i

f e D (2)

L (9)

G

j

h

c

m K (8)

7 (7) 8

2 (2) 3 2 4

9

6

3 4 4

9

11

3 (3)
2 2

7

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

63

A (0) b

i

f e D (2)

l

G

j

h

c

m k

7 (7) 8

3 2
4

9

6 (8)

3 4 4

9

11

3 (3)

2 2

7 (9)

2 (2)

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

64

A (0) b

i

f E (3) D (2)

l

G

j

h

c

m k

7 (7) 8

3 2
4

9

6 (8)

3 4 4

9

11

3 (3)

2 2

7 (9)

2 (2)

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

65

A (0) b

i

f E (3) D (2)

l

G

j

h

c

m k

7 (7) 8

3 (6)
2

4

9

6 (8)

3 (6) 4 (7) 4

9

11

3 (3)

2 2

7 (9)

2 (2)

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

66

A (0) b

N (6)

f E (3) D (2)

l

G

j

h

c

m k

7 (7) 8

3 (6)
2

4

9

6 (8)

3 (6) 4 (7) 4

9

11

3 (3)

2 2

7 (9)

2 (2)

Dijkstra's Shortest path finding algorithm

  While T does not span G
  Update frontier edges
  For each frontier edge e

•  let x be the labelled and y the unlabelled endpoints of e
•  set D(e) = dist[x] + w(e)

  Let e be a frontier edge that has the smallest D-value
  Add edge e to T, and set dist[y] = D(e)

67

A (0) B (6)

N (6)

f E (3) D (2)

l

G

j

h

c

m k

7 (7) 8

3 (6)
2

4

9

6 (8)

3 (6) 4 (7) 4

9

11

3 (3)

2 2

7 (9)

2 (2)

Exercise

  Follow the Dijkstra algorithm until all the vertices of the preceding graph are
labelled.

68

Graph topology

69

Degree - definition

  In a non-directed graph
  The degree (k) of a node is the number of edges for which it is an endpoint.

  In a directed graph
  The in-degree (kin) of a node is the number of arcs for which it is the tail.
  The out-degree (kout) of a node is the number of arcs for which it is the head.
  The total degree (k) of a node is the sum of in-degree and out-degree

•  k=kin+kout

70

k=4

Stochastic models for the degree distribution of a graph

  Homogeneous networks
  Erdös-Rényi model (ER model)
  Pairs of nodes are connected with a constant random

probability
  The connectivity follows a Poisson law

•  P(k) ~ λke-λ /k!
•  λ mean number of connections per node
•  k number of connections for a given node

  The probability of finding a highly connected node
decreases exponentially with connectivity.

  Scale-free networks
  A few nodes are highly connected, most nodes are

poorly connected.
  Can be generated randomly with a model where new

nodes are preferentially connected to already
established nodes

  The connectivity follows a power law
•  P(k) = Ck-γ <=> log(P) = -y * log(k) + log(C)
•  γ the slope of the distribution in a log-log graph.
•  k number of connections for a given node

71
Jeong, H., B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi. 2000.!
 The large-scale organization of metabolic networks. Nature 407: 651-654.!

Clustering coefficient

  The clustering coefficient of a node i indicates the
density of arcs among its neighbours.

  It is computed as the ratio between the number of arcs
(n) between the neighbours, and the maximal number
of such arcs (M).

  The maximal number of arcs depends on the graph
type

  Directed or undirected
  With or without self-loops

72

€

Ci =
n
M

€

Undirected, no self - loop

Ci =
n
M

=
2n

ki ki −1()€

Undirected, self - loops

Ci =
n
M

=
2n

ki ki +1()€

Directed, no self - loop

Ci =
n

ki ki −1()€

Directed, self - loops

Ci =
n
ki

2

Undirected, without self-loops Undirected, with self-loops

k=4
n=3
M=k(k-1)/2=6
C=3/6=0.5

k=4
N=6
M=k(k-1)/2+k=10
C=6/10=0.6

Suggested readings

  Gross, J. & Yellen, J. (1999). Graph theory and its applications. Discrete
mathematics and its applications (Rosen, K. H., Ed.), CRC press, London

73

