Iptables Tutorial 1.2.2

Oskar Andreasson

oan@frozentux.net

Iptables Tutorial 1.2.2
by Oskar Andreasson

Copyright © 2001-2006 Oskar Andreasson

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1; with the Invariant Sections being
"Introduction" and all sub-sections, with the Front-Cover Texts being "Original Author:
Oskar Andreasson”, and with no Back-Cover Texts. A copy of the license is included in
the section entitled "GNU Free Documentation License".

All scripts in this tutorial are covered by the GNU General Public License. The scripts are
free source; you can redistribute them and/or modify them under the terms of the GNU
General Public License as published by the Free Software Foundation, version 2 of the
License.

These scripts are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License within this tutorial,
under the section entitled "GNU General Public License"; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Dedications

| would like to dedicate this document to my wonderful sister, niece and
brother-in-law for giving me inspiration and feedback. They are a source
of joy and a ray of light when | have need of it. Thank you!

A special word should also be extended to Ninel for always encouraging
my writing and for taking care of me when | needed it the most. Thank
you!

Second of all, | would like to dedicate this work to all of the incredibly
hard working Linux developers and maintainers. It is people like those
who make this wonderful operating system possible.

Table of Contents

ADOUL the aULNOr .o Xiv
[(01 TAV R (o TN £ - Yo [XVi
=TT [U1 (= RSO SR Xviii
Conventions used in this document cccooeiii, XiX
I a1 0o [U T 1o o FN O PPUUORRPN 1
Why this document was WHteN ..o 1

HOW it WaS WIITEEN ...evvei e 1
Terms used in this dOCUMENTccoeoiiiiiiiee e 2
WRALE'S NEXE? oevvieiieee e e eer e eeeaees 4

2. TCP/IP rePetitioNccoiiiiiiiiiiiiii e 5
TCP/IP LAYEIS ..ottt 5

IP CharacteriStiCSuueiiieiiiiicee e 9

IP NEAEIS ...veeeieeeeeee e 12

TCP CharaCteriStiCS.......ciieiiiiiiiiiie e 17
TCP NEAUEIS 18
UDP CharacCteriStiCScovvvviviiiieieieieviiiiireriveeiir b 21

(0] 5] S o TT= Lo <Y 3 22
ICMP CharacCteriStiCS.........ovvvvvviieiiiiiiiiiiieievere e 23
(041, = g 1T T [T £ 24
ICMP Echo ReqUESH/REPIYccovvviiieiiiiiiieiiiiie e 25

ICMP Destination Unreachable.............ccocvvviviviiiiiiiiiieennn. 26

Source QUENCHeviiii e 28

LS |1 Tox 29

TTL eQUAIS O .o 30
Parameter problem..........ccocooeeiiiie 31
Timestamp request/reply ... 31
Information request/replyccoovveeiiiiieee 32

SCTP CharacteriStiCSuuvuururiiiiiiiiiiiieciienie e 33
Initialization and assoCIationevvveveieiiiiriiiiiiiiiennn, 35

Data sending and control SESSIONcceeeeviiiiiiiiiieeeeeenn. 35

Shutdown and abort ... 35

SCTP HEAUEIS ... uu ettt 36
SCTP Generic header format.........c..cooovvviiiiiieiiiiiiieeeeeeees 36

SCTP Common and generic headersccccceeeeerninnns 37

SCTP ABORT ChUNK......cuviiieiiiiiii e 40
SCTP COOKIE ACK ChUNK........coiiiiiiiiieiiiiiie e 41
SCTP COOKIE ECHO ChunK.........cccvviiiiiiiiieiiiiiiee s 41
SCTP DATA ChunKccoiiiiiiiiiiiiiec e 42
SCTP ERROR ChUNKcviiiiiiiiiiie e 44
SCTP HEARTBEAT chunK.........covoiiiiiiieiiiiiie e 45
SCTP HEARTBEAT ACK chunK.......cccccoovviiiiiiiiiiee e, 46
SCTP INIT ChUNK ... 46
SCTP INIT ACK ChUNKcoviiiiiiiiie e 50
SCTP SACK ChUNKccooiiiiiiiiiiiic e 52
SCTP SHUTDOWN chunK........c.ccooiiiiiiieiiiiiie e 55
SCTP SHUTDOWN ACK chunK.......cccccovviiiieiiiiiie e, 56
SCTP SHUTDOWN COMPLETE chunkccccvveiiinneen. 56
TCP/IP destination driven routingccoocvvveeeiiieneseenieee e 57
LAY F= LS =4 SRR 58
3. IP filtering introducCtion oooviiiiiie e 59
What is an [P filter.........cooiiiiiii e 59
IP filtering terms and eXPpreSSIONS.c.vvvuvvveeeeeiiiiiiiineeeeee e e e 61
How to plan an IP filter...........cooiiiiiiiii e 64
WRALE'S NEXL? ..eviieeei ittt e e e e e e e 68
4. Network Address Translation Introduction cccccooviieeiiinenn, 69
What NAT is used for and basic terms and expressions............. 69
Caveats USING NAT ..o 71
Example NAT machine in theory...........ccccccciiiiiiiiis 72
What is needed to build a NAT machineccccceeenie 72
Placement of NAT machinescccuevieeiieiiniiiiiiiieeeeeee, 74

HOW tO place ProXi€sueeiiiieeiiiiiiiiiiiieee e 74

The final stage of our NAT machinecccociinis 75
WRALE'S NEXE? ..ot 77
5. PreparationSoooooiiiiiiiiiiieae ettt 79
Where to get iptables ... 79
KerNel SEUPuveiiii e 79
USEr-1and SEIUPoooiiiiiiiiiiiiee et 84
Compiling the user-land applicationscccccccooviniinnnen. 85
Installation on Red Hat 7.1.........coooiiiiiiiiiiiieiieeee e, 87

VA T2 | S 1) T 90

6. Traversing of tables and chains cccccciiiiiiiii 92
GENETAL ...ciiiiiie e 92
Mangle tableoooi i 99
NAL tADIE.....cviii e 101
RaAW tabIe ...coveee 102
Filter tableeeee e 102
User specified Chains...........ciiiiiiii e 103
WRALE'S NEXE? .ovieiiiiiee et 105

7. The state MacChiNgcoiiiiiiiiiiiii e 106
Yo Yo 13703 1 o o IS 106
The conNtrack eNtriesScooevvieiiiiiiiieeeeeeeeeeeee s 107
UsSer-land StatesS............oovvviiiiiiiiiiiieeie s 109
TCP CONNECLIONScceiiiieiieeeeieeeeeeeeeeeeeeeeeeeeeeeee s 112
UDP CONNECLIONScoeviiiiiieeeeeeeeeeeeeeeeeve e 117
ICMP CONNECHIONS......coeiiiiiiieieeeeeeeeeeee e 119
Default CONNECLIONScooviiiviiieeieeeee s 123
Untracked connections and the raw tablecccoceeeeeeiieeiennnn. 124
Complex protocols and connection trackingccccccvvveeeenn. 125
WRAE'S NEXE? wevveeiieeeeeeeee et e e e e eaaba s 128

8. Saving and restoring large rule-sets cccoiiii 130
Speed CONSIAEratiONSccooiveeieiiiiiiie i 130
Drawbacks With reStore..........ccooeeeiiiiiiiiiiieecc e 131
IPLADIES-SAVE ... 132
IPLADIES-TESIOrE ... 135
WRALE'S NEXE? .oviiiiiiee et 136

9. Howarule is builtcoooiiiiii e 138
Basics of the iptables commandccccccoiiiiiiis 138
TADIES e 139
COMMANAS ... e e eeaaaas 142
WRALE'S NEXE? .oviiiiiiee et 148

10. Iptables MAatChesoeiiiiiiiii e 149
GENEIIC MAICNES....vvii i e 149
IMPHCIt MAICNESeiiiiiiiie e 153

TCP MAIChES ..eviieiiieeeee e 154

Vi

UDP MACNES ... 158

ICMP MatChES.......covviiiieeeeee e, 160
SCTP MAtCheSuuoeiiiiiiie e 161
EXPICIt MALCNES ..o 164
Addrtype MatCh ... 165
AH/ESP match ..., 168
Comment MAatChceii i, 170
Connmark MatCh......c.oooiiiiiiieii e, 170
Conntrack MatChcii i 171
DSCP MALCH ... 176

ECN MAtCh c..cvveic e, 177
Hashlimit matCh.........cccooooiiiiiiii e, 179
Helper matCh ... 182

IP range matCh........coooiiiiiiiiii e 183
Length matchoooiiiiiiii e 184
T 011 1 = (] . 185

MaC MAICH....... i 187
Mark MAatChcovveieiiii e 188
MUIIPOrt MACh......ooiiiiiiii e 189
OWNEI MALCNcuvviiii e 191
Packet type matCh..........cooiiiiiiiiii e 193
Realm matCh..........oouviiiiii e, 194
Recent MatCh.........couvveiiiiii e, 195
State MAtCh ... 201
TCPMSS MALCH ...eeiiiiiiiie e 202

TOS MALCHcceveee e 203
THMAICH e 204
unclean matChuuveviiiiiiieee e, 206
WRALE'S NEXE? .ovviiiiiiee e 206
11. Iptables targets and JUMPS ..o 208
ACCEPT targetlccooeiiiiiiiiiiic i 209
CLASSIFY targetoceeiiiiieeiiiiiie et 209
CLUSTERIP targetccvvvveiiiiiiie et 210
CONNMARK tAIgEL.....ciuviiieiiiiiiie ettt 214
CONNSECMARK argetccoivvieieiiiiiiee e s 216
DINAT targel ...cooeiiiiiiiiii it 217

Vii

DROP targetcoooiiiiiiiiiiiiiee e s 223

DSCP target....ccoooiiiiiiiiiiiiii it 223
ECN targetcoo o 224
LOG target OPtiONSccuveeeiiiieeaiiiiieiie et e e 225
MARK TArgetcooiiiiiiiiiiii s 228
MASQUERADE targetccuvvviiiiiiieceiiiice et 229
MIRROR targetcoooiiiiiiiiiiiiiiiiieeeeeeeiee s 231
NETMAP target... ..ot 232
NFQUEUE targetcooiiiiiiiiiiiiieieieeeiiieieieieei s 233
NOTRACK targerlcooiiiiiiiiiiiiiiieeeeeeeieeie s 234
QUEUE tarQet et 234
REDIRECT targetcovvviieiiiiiie ettt 235
REJECT target....ccooiiiiiiiiiiiiiieeeeieee et s 236
RETURN target.......cooiiiiiiiiiiiiiiiieieeeee e s 238
SAME TargeLoviiiieiiiie e 238
SECMARK AIQEL....ceiiiiiiiiiiiiiiiieee et 239
SNAT TAIGET. ... 240
TCPMSS targel.....ccoiiiiieieee et 242
TOS LANGET v 244
TTL tArget .. 246
ULOG TANGET ...ttt 249
WAHAL'S NEXE? ..o 251
12. Debugging YOUr SCIPLS .oooiiiiiiiieiiiiee ettt 253
Debugging, @ NECESSIY......cuvviiiiiiiii e 253
Bash debugging tipsccoiuiiiiiiiiiie e 254
System tools used for debugging..........ccoceveviiiiiiiiiiiiieiiie, 258
Iptables debugging.........cc.uueeeiiiiiiiiiie e 260
Other debugging tOOIS...........ooiiiiiiiiiiiee e 263
NP s 263
NESSUS ...ttt 265
WARAL'S NEXE? ... 267
13, refirewall file ..o 269
example re.firewall ... 269
explanation of rc.firewall............ccooi 269
Configuration OptioNSc.eeeeiiiiieaiiiiieee e 270
Initial loading of extra modules..............ccccceeeiiiiiiiiiine. 271

viii

PrOC SELUP .eeieiiiiiiiie et ettt ettt sine e
Displacement of rules to different chains
Setting up default poliCiesccceeeveeiiiiiiiis
Setting up user specified chains in the filter table
The bad_tcp_packets chain...........ccccccceeiiiiiiiiinn

The allowed chain............ococeeiiiiiii e

The TCP Chain........ccooiiiiiiiic e

The UDP Chaincoveeiiiiiieiice e

The ICMP Chain........ccccooiiiiiieiie e
INPUT Chain......oviiiiiiiiiiicecceee e
FORWARD Chainccvviiiiiiiiiccciiieec e
OUTPUT ChaiN ..o
PREROUTING chain of the nattable................ccccoeeens
Starting SNAT and the POSTROUTING chain.................
WAHAL'S NEXE? ..o

14, EXAMPIE SCHPLS .eveiiieiiiiiie ittt et

rc.firewall.txt SCript StrUCTUIEovvveee e

The StTUCIUIE ..o,
FC.HITEWALLIXE ..eevieiieieeii e
FC.DMZ.FIrEWAILIXE ...evvviiiiiiiiii e
FC.DHCPAIreWall.tXtvvvviviiiiiic e
FC.UTINLAIrEWaAllEXt. . eeviiiiiiiiiie e
FC.AESt-IPLADIES. XL . i
re.flush-iptableS.tXt
Limit-matCh.tXt ...
1o B0 1V 1 g o«
Recent-matCh.tXt........coooiiiiiiiiiii e
SIO-OWNEIEXE e eeeaaans
THHINCEXE e
Iptables-save rUleSEt...........ooeiiiii i
WRALE'S NEXE? .ovviiiiiiee e

15. Graphical User Interfaces for Iptables/neftfilter —

TWBUITAET ..
Turtle Firewall Project.........oooiiiiiiiieeeeee e
Integrated Secure Communications System...........ccccccceeevennns

291

314

Easy Firewall GENEratorccooiiiiiiiiiieeae e 322

WRALE'S NEXE? ..ot 325
16. Commercial products based on Linux, iptables and netffilt er 326
Ingate Firewall 1200............oouiiiiiiiiiiiiiiiee e 326
WRALE'S NEXE? ..o 328
A. Detailed explanations of special commands cccccceeeeenn. 329
Listing your active rule-Set ... 329
Updating and flushing your tables...........ccccccoiiiiiiiiiiinns 330
B. Common problems and qUestions ... 331
Problems loading modules.............ccooviiiiiiiiiiiie e 331
State NEW packets but no SYN bit Set..........occovveviiiiieiiiiinnen, 333
SYN/ACK and NEW packets.........cccccveiiiiiiiiiiiiiic e 334
Internet Service Providers who use assigned IP addresses..... 335
Letting DHCP requests through iptables............ccccccceeiiiennnns 336
MIRC DCC ProblIEmMS ... 337
C.ICMP YPES .ottt 338
[TR IO o 11 1R 341
E. Other resources and liNksS ... 343
F. ACKNOWIEAGMENTS eeiiiiiiiiiee e 351
G HISEOIY et 352
H. GNU Free Documentation LICENSE ccooviiiiiiiiiiieeeeanieiiiiiee 356
0. PREAMBLE ...ttt ettt 356
1. APPLICABILITY AND DEFINITIONScccviiiiiiiiieee e 356
2. VERBATIM COPYINGccuviiiiiiiiiiie it 358
3. COPYING IN QUANTITY .ottt eiee e 358
4. MODIFICATIONS ..ottt 359
5. COMBINING DOCUMENTScciiiiiieiiiiitie e 362
6. COLLECTIONS OF DOCUMENTScoovviiiiiieiiiiiiee s 362
7. AGGREGATION WITH INDEPENDENT WORKS................. 363
8. TRANSLATION ...outiiiiiiiiee ettt 363
9. TERMINATION.... ot 364
10. FUTURE REVISIONS OF THIS LICENSEc.ccooceeeen. 364
How to use this License for your documentsccccceeeevinnns 365

I. GNU General PUbIiC LICENSEcoovveiiiieeeeeeeeeee e 366

0. Preamble.........cooiiiiiie e 366
1. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
367
2. How to Apply These Terms to Your New Programs............... 373
J. Example scripts code-base ... 376
Example rc.firewall SCrptcoooiiiiiiii e 376
Example rc.DMZ.firewall SCriptoveiieiieiiiiiiie s 386
Example rc.UTIN.firewall SCrpt.........cccuueeeiieiiiiiiiieees 397
Example rc.DHCP.firewall SCript..........c.uevveiieiiiiiiiiieee s 406
Example rc.flush-iptables script.........cccoooeiniiiiiiis 417
Example rc.test-iptables SCript.........cooiviiiiiiiiiiiiieee e 419
INAEX et 422

Xi

List of Tables

2-1. SCTP TYPES ettt ettt e e 38
2-2. EITON CAUSES ...oeiieeeiiieiite ettt e e e 45
2-3. INIT Variable Parametersc..cooiiieeiieiiiiiee e 48
2-4. INIT ACK Variable Parameters..........ccccviveeeiiiiieee i 52
6-1. Destination local host (our own maching)ccccocvvviiviennns 92
6-2. Source local host (our own mMaching)cccoocveeeeiiiiiien e 94
6-3. Forwarded PACKELSeviiiiiiiiie e 95
7-1. User-1and StatesSccoiiuiiiiiiiiiiie e 110
7-2.INterN@l StAtES....ccoi i 116
7-3. Complex protocols SUPPOITcooueiiiiiiiiiee et 125
9-1. TADIES .. 139
9-2. COMMEANTS ...eeeeeiee ettt e e e e e e e e e e e enneeeeee s 142
9-3. OPHIONS ..ttt 145
10-1. GENEeriC MACNESuuiiiiieiii it 150
10-2. TCP MALCNES. ...ttt 154
10-3. UDP MACNES ...ttt 158
10-4. ICMP MALCNESceiiiiiiiiieee e 161
10-5. SCTP MACNESeeeiiiiiiiiie e 162
10-6. ADArESS LY PES. ..ottt a e 165
10-7. Addrtype match optionsccuviiiiiiiieiiiee e 167
10-8. AH MatCh OPLIONSuuiiiiiiiii e 169
10-9. ESP mMatCh OPtiONS......ccviiiaiiiiiiiiiiie et 169
10-10. Comment match OPLiONSccovuiiiiiiiiiiee e 170
10-11. Connmark match OPLioNScccveiiiiiiiiiiiiiiee e 171
10-12. Conntrack match OptioNS.........cccvveiiiiiiiieiiiiiee e 172
10-13. DSCp MAtCh OPLIONSccciiiiiiiieiiiiie e 176
10-14. Ecn MatCh OPLiONS.......cciiiiiiiiieiiiiie et 177
10-15. ECN Field iN TP ..c.viiiiiee et 178
10-16. Hashlimit match optionsScccccveiiiiiiiiiiiie e 179
10-17. Helper match OptioNSeeeveiiiiiiiiiiiiie et 183
10-18. IP range matCh OPtioNScooiuiiiiiiiiiie et 184
10-19. Length match OptioNSeeeeiiiiiiiiiiiee e 184
10-20. Limit match OPtioNScccuviiiiiiiiieieiiiiee e 186
10-21. Mac mMatch OPLiONSccciiiiiiieiiiiie e 187

Xii

10-22. Mark matCh OPtiONScoiiiiiiiiiiiiieeee e 188

10-23. Multiport match optionsc.evveiiiiiiii 189
10-24. Owner Match OptioNScoiiiiiiiiiiiie e 191
10-25. Packet type match Optionsccceveeaiiiiiiiiiiiiieeeee e 194
10-26. Realm matCh OPtioNS.......coooiiiiiiiiiiiiie et 195
10-27. Recent matCh OPtioNS.........ooiiuiiiiiiiiie e 196
10-28. State MmatCh OPLiONS.cooviiiiiiiiiiieiie e 201
10-29. Tcpmss match oOptionsSooceeviiiiiiieeee e 203
10-30. TOS MALCh OPLIONSeveeiieeiiiiiiiiieie et 204
10-31. T MAtCh OPLIONSveeiiiieiii e 205
11-1. CLASSIFY target OptionsSccuvveiieeieeeiiiiiiiiieee e 210
11-2. CLUSTERIP target Optionsceieiiiaaiiiiiiiiiieie e 212
11-3. CONNMARK target optionsS...........cceeeieeeiiiiiiiiiiiiieeeee e 215
11-4. CONNSECMARK target OptionsSccoevviiiiiiiiiiieeeaanieiiiieee 217
11-5. DNAT target OPtioNScceeiiiiiiieeiiiiie e 218
11-6. DSCP target OPtiONS......ccooiviiieeiiiiee ettt e s 224
11-7. ECN target OPtiONSeeieiiiiiiee ittt e e 225
11-8. LOG target OPtiONSceeeiiiiiiieeiiiiee ettt e st snieee e 226
11-9. MARK target OPtioNSccooiiviiiieiiiiie ettt 229
11-10. MASQUERADE target OptionScccveeeiiiiiieeeiiiiiee e siieeeenens 230
11-11. NETMAP target OptionS........ccoiiiieeeeiiiiiee it e e sieeee e 233
11-12. NFQUEUE target OptioNScceveieiiiieieiiiiiee et 233
11-13. REDIRECT target OptioNSccuvveieiiiiieee ittt siieee e 236
11-14. REJECT target OptioNS.........ccoiiieeieeiiiiiee it siieee e siieee e 237
11-15. SAME target OPtioNSc..eeiieiiiiieieiiiee et 238
11-16. SECMARK target OptioNS........cccuvveieiiiieeeiiiiiiee et siieee e 240
11-17. SNAT target OPtioNScocvvveiieiiiiie et 241
11-18. TCPMSS target OPtioNS.......ccceiiiiieeeiiiiiee ittt sieeee e 243
11-19. TOS target OPLIONSceeieeiieiiiiiiieie e 245
11-20. TTL target OPtONSeeeiieeieiiiiiiiieie e 247
11-21. ULOG target OPtioNSccoeviiiiiiieiieieeeaeeiiiiiieee e 250
C-L1. ICMP LYPES ettt e e e e e e e e e e e e e e e e e e e aaaaees 338
D-1. TCP OPLONS ..ccieiiiiiiiieiee ettt 341

Xii

About the author

The author of the iptables tutorial was born in...

No, jokes aside. At age 8 | got my first computer for christmas present,
a Commodore 64 with a C-1541 diskdrive, 8 needle printer and some
games etc. It took me several days to even bother. My father managed
to put it together and after 2 days he finally learned himself how to load
a game and showed how to do it for myself. A life immersed in
computers was born this day | guess. | played mostly games at this
stage, but did venture into the C-64 basic programming language a
couple of times on and off. After some years, | got my hands on an
Amiga 500, which was mainly used for games and some school work
and fiddling around. Amiga 1200 was next.

Back in 1993-94 My father was clearsighted enough to understand that
Amiga was, unfortunately, not the way of the future. PC and i386
computers was. Despite my screams in vain he bought me a PC, 486
50MHz with 16 MB of ram, Compaq computer. This was actually one of
the worst computer designs | have ever seen, everything was
integrated, including speakers and CRT screen. | guess they where
trying to mimic the Apple designs of the day, but failing miserably to do
so. It should be noted though, that this was the computer that got me
really into computers. | started coding for real, started using the Internet
and actually installed Linux on this machine.

| have for a long time been an avid Linux user and administrator. My
Linux experience started in 1994 with a slackware installation from
borrowed CD’s. This first installation was mostly a trial installation. | had
no previous experience and it took me quite some time to get modems
running et cetera, and | kept running a dual boot system. The second
installation, circa 1996, | had no media around so | winded up
downloading the whole slackware A, AP, D and N disksets via FTP on a
28k8 modem. Since | realized | would never learn anything from using
graphical interfaces, | went back to basics. Nothing but console, no X11
or graphics except for svgalib. In the end, | believe this has helped me a
lot. | believe there is nothing to teach you how to use something as to
actually forcing yourself to do it, as | did at this time. | had no choice but

Xiv

About the author

to learn. | continued running like this for close to 2 years. After this, |
finally installed XFree86 from scratch. After an 24 hour compilation, |
realized that | had totally misconfigured the compilation and had to
restart the compilation from scratch. As a human, you are always bound
to do errors. It simply happens and you better get used to it. Also, this
kind of build process teaches you to be patient. Let things have its time
and don't force it.

In 2000-2001 | was part of a small group of people who ran a newssite
mainly focusing on Amiga related news, but also some Linux and
general computer news. The site was called BoingWorld, located at
www.boingworld.com (no long available unfortunately). The Linux 2.3
kernels where reaching their end of line and the 2.4 kernels where
starting to pop up. At this point, | realized there was a half-new concept
of firewalling inside of it. Sure | had run into ipfwadm and ipchains
before and used it to some extent, but never truly gone heads first into
it. | also realized there was embaerassingly little documentation and |
felt it might be an interesting idea to write an iptables tutorial for
boingworld. Said and done, | wrote the first 5-10 pages of what you are
currently reading. Becoming a smashing hit, | continued to add material
to the tutorial. The original pages are no longer anywhere to be found in
this tutorial/documentation, but the concept lives on.

| have worked several different companies during this time with
Linux/network administration, writing documentation and course
material, helped several hundred, if not thousand, people emailing
guestions regarding iptables and netfilter and general networking
guestions. | have attended two CERTconf’s and held three
presentations at the same conference, and also the Netfilter workshop
2003. It has been an hectic and sometimes very ungrateful job to
maintain and update this work, but in the end | am very happy for it and
this is something | am very proud of having done. At the time of writing
this in end of 2006, the project has been close to dead for several years,
and | regret this. | hope to change this in the coming years, and that a
lot of people will find this work to be of future use, possibly adding to the
family of documents with other interesting documentation that might be
needed.

XV

How to read

This document could either be read as a reference or from start to end.
It was originally written as a small introduction to iptables and to some
extent netfilter, but this focus has changed over the years. It aims at
being an as complete reference as possibly to iptables and netfilter and
to at least give a basic and fast primer or repetition to the areas that you
might need to understand. It should be noted that this document will
not, nor will it be able to, deal with specific bugs inside or outside the
scope of iptables and netfilter, nor does it really deal with how to get
around bugs like this.

If you find peculiar bugs or behaviors in iptables or any of the
subcomponents, you should contact the Netfilter mailing lists and tell
them about the problem and they can tell you if this is a real bug or if it
has already been fixed. There are security related bugs found in
iptables and Netfilter, one or two do slip by once in a while, it's
inevitable. These are properly shown on the front page of the Netfilter
main page (http://www.netfilter.org), and that is where you should go to
get information on such topics.

The above also implies that the rule-sets available with this tutorial are
not written to deal with actual bugs inside Netfilter. The main goal of
them is to simply show how to set up rules in a nice simple fashion that
deals with all problems we may run into. For example, this tutorial will
not cover how we would close down the HTTP port for the simple
reason that Apache happens to be vulnerable in version 1.2.12 (This is
covered really, though not for that reason).

This document was written to give everyone a good and simple primer
at how to get started with iptables, but at the same time it was created
to be as complete as possible. It does not contain any targets or
matches that are in patch-o-matic for the simple reason that it would
require too much effort to keep such a list updated. If you need
information about the patch-o-matic updates, you should read the info
that comes with it in patch-o-matic as well as the other documentations
available on the Netfilter main page (http://www.netfilter.org).

XVi

How to read

If you have any suggestions on additions or if you think you find any
problems around the area of iptables and netfilter not covered in this
document feel free to contact me about this. | will be more than happy
to take a look at it and possibly add what might be missing.

XVii

Prerequisites

This document requires some previous knowledge about Linux/Unix,
shell scripting, as well as how to compile your own kernel, and some
simple knowledge about the kernel internals.

| have tried as much as possible to eradicate all prerequisites needed
before fully grasping this document, but to some extent it is simply
impossible to not need some previous knowledge.

XViii

Conventions used in this
document

The following conventions are used in this document when it comes to
commands, files and other specific information.

- Long code excerpts and command-outputs are printed like shown
below. This includes screendumps and larger examples taken from
the console.

[blueflux@workl neigh]$ Is
default ethO lo
[blueflux@work1 neigh]$

- All commands and program names in the tutorial are shown in bold
typeface . This includes all the commands that you might type, or part
of the command that you type.

- All system items such as hardware, and also kernel internals or
abstract system items such as the loopback interface are all shown in
an italic typeface.

- computer output is formatted in this way in the text. Computer output
could be summed up as all the output that the computer will give you
on the console.

- filenames and paths in the file-system are shown like
lusr/local/bin/iptables.

XiX

Chapter 1. Introduction

Why this document was written

Well, | found a big empty space in the HOWTQO's out there lacking in
information about the iptables and Netfilter functions in the new Linux
2.4.x kernels. Among other things, I’'m going to try to answer questions
that some might have about the new possibilities like state matching.
Most of this will be illustrated with an example rc.firewall.txt file that you
can use in your /etc/rc.d/ scripts. Yes, this file was originally based upon
the masquerading HOWTO for those of you who recognize it.

Also, there’s a small script that | wrote just in case you screw up as
much as | did during the configuration available as rc.flush-iptables.txt.

How it was written

| originally wrote this as a very small tutorial for boingworld.com, which
was an Amiga/Linux/General newssite that a small group of people,
including me, ran a couple of years back. Due to the fantastic amount of
readers and comments that | got from it, | continued to write on it. The
original version was approximately 10-15 A4 pages in printed version
and has since been growing slowly but steadily. A huge amount of
people has helped me out, spellchecking, bug corrections, etc. At the
time of writing this, the http://iptables-tutorial.frozentux.net/ site has had
over 600.000 unique hits alone.

This document was written to guide you through the setup process step
by step and hopefully help you to understand some more about the
iptables package. | have based most of the stuff here on the example
rc.firewall file, since | found that example to be a good way to learn how
to use iptables. | decided to just follow the basic chain structure and
from there walk through each and one of the chains traversed and
explain how the script works. That way the tutorial is a little bit harder to

Chapter 1. Introduction

follow, though this way is more logical. Whenever you find something
that's hard to understand, just come back to this tutorial.

Terms used in this document

This document contains a few terms that may need more detailed
explanations before you read them. This section will try to cover the
most obvious ones and how | have chosen to use them within this
document.

Connection - This is generally referred to in this document as a series of
packets relating to each other. These packets refer to each other as an
established kind of connection. A connection is in another word a series
of exchanged packets. In TCP, this mainly means establishing a
connection via the 3-way handshake, and then this is considered a
connection until the release handshake.

DNAT - Destination Network Address Translation. DNAT refers to the
technique of translating the Destination IP address of a packet, or to
change it simply put. This is used together with SNAT to allow several
hosts to share a single Internet routable IP address, and to still provide
Server Services. This is normally done by assigning different ports with
an Internet routable IP address, and then tell the Linux router where to
send the traffic.

IPSEC - Internet Protocol Security is a protocol used to encrypt IPv4
packets and sending them securely over the Internet. For more
information on IPSEC, look in the Other resources and links appendix
for other resources on the topic.

Kernel space - This is more or less the opposite of User space. This
implies the actions that take place within the kernel, and not outside of
the kernel.

Packet - A singular unit sent over a network, containing a header and a
data portion. For example, an IP packet or an TCP packet. In Request
For Comments (RFC'’s) a packet isn't so generalized, instead IP

packets are called datagrams, while TCP packets are called segments.

Chapter 1. Introduction

| have chosen to call pretty much everything packets in this document
for simplicity.

QoS - Quality of Service is a way of specifying how a packet should be
handled and what kind of service quality it should receive while sending
it. For more information on this topic, take a look in the

TCP/IP repetition chapter as well as the Other resources and links
appendix for external resources on the subject.

Segment - A TCP segment is pretty much the same as an packet, but a
formalized word for a TCP packet.

Stream - This term refers to a connection that sends and receives
packets that are related to each other in some fashion. Basically, | have
used this term for any kind of connection that sends two or more
packets in both directions. In TCP this may mean a connection that
sends a SYN and then replies with an SYN/ACK, but it may also mean
a connection that sends a SYN and then replies with an ICMP Host
unreachable. In other words, | use this term very loosely.

SNAT - Source Network Address Translation. This refers to the
techniques used to translate one source address to another in a packet.
This is used to make it possible for several hosts to share a single
Internet routable IP address, since there is currently a shortage of
available IP addresses in IPv4 (IPv6 will solve this).

State - This term refers to which state the packet is in, either according
to RFC 793 - Transmission Control Protocol or according to userside
states used in Netfilter/iptables. Note that the used states internally, and
externally, do not follow the RFC 793 specification fully. The main
reason is that Netfilter has to make several assumptions about the
connections and packets.

User space - With this term | mean everything and anything that takes
place outside the kernel. For example, invoking iptables -h takes place
outside the kernel, while iptables -A FORWARD -p tcp -j ACCEPT
takes place (partially) within the kernel, since a new rule is added to the
ruleset.

Userland - See User space.

Chapter 1. Introduction

VPN - Virtual Private Network is a technique used to create virtually
private networks over non-private networks, such as the Internet.
IPSEC is one technique used to create VPN connections. OpenVPN is
another.

What's next?

This chapter has given some small insight into why this document was
written and how it was written. It also explained some common terms
used throughout the document.

The next chapter will bring up a rather lengthy introduction and
repetition to TCP/IP. Basically this means the IP protocol and some of
its sub-protocols that are commonly used with iptables and netfilter.
These are TCP, UDP, ICMP and SCTP. SCTP is a rather new standard
in comparison to the other protocols, hence quite a lot of space and
time has gone into describing this protocol for all of those who are still
not quite familiar with it. The next chapter will also discuss some basic
and more advanced routing techniques used today.

Chapter 2. TCP/IP repetition

Iptables is an extremely knowledge intensive tool. This means that
iptables takes quite a bit of knowledge to be able to use iptables to it's
full extent. Among other things, you must have a very good
understanding of the TCP/IP protocol.

This chapter aims at explaining the pure "must understands" of TCP/IP
before you can go on and work with iptables. Among the things we will
go through are the IP, TCP, UDP and ICMP protocols and their
headers, and general usages of each of these protocols and how they
correlate to each other. Iptables works inside Internet and Transport
layers, and because of that, this chapter will focus mainly on those
layers as well.

Iptables is also able to work on higher layers, such as the Application
layer. However, it was not built for this task, and should not be used for
that kind of usage. | will explain more about this in the

IP filtering introduction chapter.

TCP/IP Layers

TCP/IP is, as already stated, multi-layered. This means that we have
one functionality running at one depth, and another one at another
level, etcetera. The reason that we have all of these layers is actually
very simple.

The biggest reason is that the whole architecture is very extensible. We
can add new functionality to the application layers, for example, without
having to reimplement the whole TCP/IP stack code, or to include a
complete TCP/IP stack into the actual application. Just the same way
as we don't need to rewrite every single program, every time that we
make a new network interface card. Each layer should need to know as
little as possible about each other, to keep them separated.

Chapter 2. TCP/IP repetition

o€t
\S)When we are talking about the programming code of TCP/IP which
resides inside the kernel, we are often talking about the TCP/IP stack. The
TCP/IP stack simply means all of the sublayers used, from the Network
access layer and all the way up to the Application layer.

There are two basic architectures to follow when talking about layers.
One of them is the OSI (Open Systems Interconnect) Reference Model
and consists of 7 layers. We will only look at it superficially here since
we are more interested in the TCP/IP layers. However, from an
historical point, this is interesting to know about, especially if you are
working with lots of different types of networks. The layers are as
follows in the OSI Reference Model list.

o€t
\S)There is some discussion as to which of these reference models is mostly
used, but it seems that the OSI reference model still is the prevalent
reference model. This might also depend on where you live, however, in
most US and EU countries it seems as you can default to OSI reference
model while speaking to technicians and salespeople.

However, throughout the rest of this document, we will mainly refer to the
TCP/IP reference model, unless otherwise noted.

. Application layer

. Presentation layer
. Session layer

. Transport layer

. Network layer

. Data Link layer

~N O o b~ o WwN P

. Physical layer

A packet that is sent by us, goes from the top and to the bottom of this
list, each layer adding its own set of headers to the packet in what we

Chapter 2. TCP/IP repetition

call the encapsulation phase. When the packet finally reaches it's
destination the packet goes backwards through the list and the headers
are stripped out of the packet, one by one, each header giving the
destination host all of the needed information for the packet data to
finally reach the application or program that it was destined for.

The second and more interesting layering standard that we are more
interested in is the TCP/IP protocol architecture, as shown in the
TCP/IP architecture list. There is no universal agreement among people
on just how many layers there are in the TCP/IP architecture. However,
it is generally considered that there are 3 through 5 layers available,
and in most pictures and explanations, there will be 4 layers discussed.
We will, for simplicities sake, only consider those four layers that are
generally discussed.

1. Application layer

2. Transport layer

3. Internet layer

4. Network Access layer

As you can see, the architecture of the TCP/IP protocol set is very
much like the OSI Reference Model, but yet not. Just the same as with
the OSI Reference Model, we add and subtract headers for each layer
that we enter or leave.

For example, lets use one of the most common analogies to modern
computer networking, the snail-mail letter. Everything is done in steps,
just as is everything in TCP/IP.

You want to send a letter to someone asking how they are, and what
they are doing. To do this, you must first create the data, or questions.
The actual data would be located inside the Application layer.

After this we would put the data written on a sheet of paper inside an
envelope and write on it to whom the letter is destined for within a
specific company or household. Perhaps something like the example
below:

Attn: John Doe

Chapter 2. TCP/IP repetition

This is equivalent to the the Transport layer, as it is known in TCP/IP. In
the Transport layer, if we were dealing with TCP, this would have been
equivalent to some port (e.g., port 25).

At this point we write the address on the envelope of the recipient, such
as this:

V. Andersgardsgatan 2 41715 Gothenburg

This would in the analogy be the same as the Internet layer. The
internet layer contains information telling us where to reach the
recipient, or host, in a TCP/IP network. Just the same way as the
recipient on an envelope. This would be the equivalent of the IP
address in other words (e.g., IP 192.168.0.4).

The final step is to put the whole letter in a postbox. Doing this would
approximately equal to putting a packet into the Network Access Layer.
The network access layer contains the functions and routines for
accessing the actual physical network that the packet should be
transported over.

When the receiver finally receives the letter, he will open the whole
letter from the envelope and address etc (decapsulate it). The letter he
receives may either require a reply or not. In either case, the letter may
be replied upon by the receiver, by reversing the receiver and
transmitter addresses on the original letter he received, so that receiver
becomes transmitter, and transmitter becomes receiver.

o\e\-

\S)It is very important to understand that iptables was and is specifically built
to work on the headers of the Internet and the Transport layers. It is
possible to do some very basic filtering with iptables in the Application and
Network access layers as well, but it was not designed for this, nor is it
very suitable for those purposes.

For example, if we use a string match and match for a specific string
inside the packet, lets say get /index.html . Will that work? Normally, yes.
However, if the packet size is very small, it will not. The reason is that
iptables is built to work on a per packet basis, which means that if the
string is split into several separate packets, iptables will not see that whole
string. For this reason, you are much, much better off using a proxy of

Chapter 2. TCP/IP repetition

some sort for filtering in the application layer. We will discuss these
problems in more detail later on in the IP filtering introduction.

As iptables and netfilter mainly operate in the Internet and Transport
layers, that is the layers that we will put our main focus in, in the
upcoming sections of this chapter. Under the Internet layer, we will
almost exclusively see the IP protocol. There are a few additions to this,
such as, for example, the GRE protocol, but they are very rare on the
internet. Also, iptables is (as the name implies) not focused around
these protocols very well either. Because of all these factors we will
mainly focus around the IP protocol of the Internet layer, and TCP,
UDP and ICMP of the Transport layer.

o€t
\,N)The ICMP protocol is actually sort of a mix between the two layers. It runs
in the Internet layer, but it has the exact same headers as the IP protocol,
but also a few extra headers, and then directly inside that encapsulation,
the data. We will discuss this in more detail further on, in the
ICMP characteristics.

IP characteristics

The IP protocol resides in the Internet layer, as we have already said.
The IP protocol is the protocol in the TCP/IP stack that is responsible
for letting your machine, routers, switches and etcetera, know where a
specific packet is going. This protocol is the very heart of the whole
TCP/IP stack, and makes up the very foundation of everything in the
Internet.

The IP protocol encapsulates the Transport layer packet with
information about which Transport layer protocol it came from, what
host it is going to, and where it came from, and a little bit of other useful
information. All of this is, of course, extremely precisely standardized,

Chapter 2. TCP/IP repetition

down to every single bit. The same applies to every single protocol that
we will discuss in this chapter.

The IP protocol has a couple of basic functionalities that it must be able
to handle. It must be able to define the datagram, which is the next
building block created by the transport layer (this may in other words be
TCP, UDP or ICMP for example). The IP protocol also defines the
Internet addressing system that we use today. This means that the IP
protocol is what defines how to reach between hosts, and this also
affects how we are able to route packets, of course. The addresses we
are talking about are what we generally call an IP address. Usually
when we talk about IP addresses, we talk about dotted quad numbers
(e.g., 127.0.0.1). This is mostly to make the IP addresses more
readable for the human eye, since the IP address is actually just a 32
bit field of 1's and 0’s (127.0.0.1 would hence be read as
01111111000000000000000000000001 within the actual IP header).

The IP protocol has even more magic it must perform up it's sleeve. It
must also be able to decapsulate and encapsulate the IP datagram (IP
data) and send or receive the datagram from either the Network access
layer, or the transport layer. This may seem obvious, but sometimes it
is not. On top of all this, it has two big functions it must perform as well,
that will be of quite interest for the firewalling and routing community.
The IP protocol is responsible for routing packets from one host to
another, as well as packets that we may receive from one host destined
for another. Most of the time on single network access host, this is a
very simple process. You have two different options, either the packet is
destined for our locally attached network, or possibly through a default
gateway. but once you start working with firewalls or security policies
together with multiple network interfaces and different routes, it may
cause quite some headache for many network administrators. The last
of the responsibilities for the IP protocol is that it must fragment and
reassemble any datagram that has previously been fragmented, or that
needs to be fragmented to fit in to the packetsize of this specific network
hardware topology that we are connected to. If these packet fragments
are sufficiently small, they may cause a horribly annoying headache for
firewall administrators as well. The problem is, that once they are
fragmented to small enough chunks, we will start having problems to

10

Chapter 2. TCP/IP repetition
read even the headers of the packet, not to mention the actual data.

To!

\ DAS of Linux kernel 2.4 series, and iptables, this should no longer be a
problem for most linux firewalls. The connection tracking system used by
iptables for state matching and NAT ’'ing etc must be able to read the
packet defragmented. Because of this, conntrack automatically
defragments all packets before they reach the netfilter/iptables structure in
the kernel.

The IP protocol is also a connectionless protocol, which in turn means
that IP does not "negotiate” a connection. a connection-oriented
protocol on the other hand negotiates a connection (called a
handshake) and then when all data has been sent, tears it down. TCP
is an example of this kind of protocol, however, it is implemented on top
of the IP protocol. The reason for not being connection-oriented just yet
are several, but among others, a handshake is not required at this time
yet since there are other protocols that this would add an unnecessarily
high overhead to, and that is made up in such a way that if we don’t get
a reply, we know the packet was lost somewhere in transit anyways,
and resend the original request. As you can see, sending the request
and then waiting for a specified amount of time for the reply in this case,
is much preferred over first sending one packet to say that we want to
open a connection, then receive a packet letting us know it was opened,
and finally acknowledge that we know that the whole connection is
actually open, and then actually send the request, and after that send
another packet to tear the connection down and wait for another reply.

IP is also known as an unreliable protocol, or simply put it does not
know if a packet was received or not. It simply receives a packet from
the transport layer and does its thing, and then passes it on to the
network access layer, and then nothing more to it. It may receive a
return packet, which traverses from network access layer to the IP
protocol which does it's thing again, and then passes it on upwards to
the Transport layer. However, it doesn’t care if it gets a reply packet, or
if the packet was received at the other end. Same thing applies for the
unreliability of IP as for the connectionless-ness, since unreliability

11

Chapter 2. TCP/IP repetition

would require adding an extra reply packet to each packet that is sent.
For example, let us consider a DNS lookup. As it is, we send a DNS
request for servername.com. If we never receive a reply, we know
something went wrong and re-request the lookup, but during normal
use we would send out one request, and get one reply back. Adding
reliability to this protocol would mean that the request would require two
packets (one request, and one confirmation that the packet was
received) and then two packets for the reply (one reply, and one reply to
acknowledge the reply was received). In other words, we just doubled
the amount of packets needed to send, and almost doubled the amount
of data needed to be transmitted.

IP headers

The IP packet contains several different parts in the header as you have
understood from the previous introduction to the IP protocol. The whole
header is meticuluously divided into different parts, and each part of the
header is allocated as small of a piece as possible to do it's work, just to
give the protocol as little overhead as possible. You will see the exact
configuration of the IP headers in the IP headers image.

o\e\-

\,N)Understand that the explanations of the different headers are very brief
and that we will only discuss the absolute basics of them. For each type of
header that we discuss, we will also list the proper RFC’s that you should
read for further understanding and technical explanations of the protocol
in question. As a sidenote to this note, RFC stands for Request For
Comments, but these days, they have a totally different meaning to the
Internet community. They are what defines and standardises the whole
Internet, compared to what they were when the researchers started
writing RFC'’s to each other. Back then, they were simply requests for
comments and a way of asking other researchers about their opinions.

The IP protocol is mainly described in RFC 791 - Internet Protocol.
However, this RFC is also updated by
RFC 1349 - Type of Service in the Internet Protocol Suite, which was

12

Chapter 2. TCP/IP repetition

obsoleted by

RFC 2474 - Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
and which was updated by

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP

and RFC 3260 - New Terminology and Clarifications for Diffserv.

To!

\ DAS you can see, all of these standards can get a little bit hard to follow at
times. One tip for finding the different RFC’s that are related to each other
is to use the search functions available at RFC-editor.org. In the case of
IP, consider that the RFC 791 is the basic RFC, and all of the other are
simply updates and changes to that standard. We will discuss these more
in detail when we get to the specific headers that are changed by these
newer RFC'’s.

One thing to remember is, that sometimes, an RFC can be obsoleted (not
used at all). Normally this means that the RFC has been so drastically
updated and that it is better to simply replace the whole thing. It may also
become obsolete for other reasons as well. When an RFC becomes
obsoleted, a field is added to the original RFC that points to the new RFC
instead.

Table 1-11. Internet Protocol headers

(0] 1 2 <
o|l1|2]|3|a|5]|6|7|8|9]o|1]2]|3|a|5]|6]|7|8|9]o|1]|2]|3|4a|5]|6]|7]|8]9]o)1
Version IHL TOS/DSCP/ECN Total Length
Identification Flags | Fragment Offset
Time To Live [Protocol Header Checksum

Source Address
Destination Address
Options [Padding

Version - bits 0-3. This is a version number of the IP protocol in binary.
IPv4 iscalled 0100, while IPv6 is called 0110. This field is generally not
used for filtering very much. The version described in RFC 791 is IPv4.

IHL (Internet Header Length) - bits 4-7. This field tells us how long the
IP header is in 32 bit words. As you can see, we have split the header
up in this way (32 bits per line) in the image as well. Since the Options

13

Chapter 2. TCP/IP repetition

field is of optional length, we can never be absolutely sure of how long
the whole header is, without this field. The minimum length of this of the
header is 5 words.

Type of Service, DSCP, ECN - bits 8-15. This is one of the most
complex areas of the IP header for the simple reason that it has been
updated 3 times. It has always had the same basic usage, but the
implementation has changed several times. First the field was called the
Type of Service field. Bit [0-2] of the field was called the Precedence
field. Bit [3] was Normal/Low delay, Bit [4] was Normal/High throughput,
Bit [5] was Normal/High reliability and bit [6-7] was reserved for future
usage. This is still used in a lot of places with older hardware, and it still
causes some problems for the Internet. Among other things, bit [6-7]
are specified to be set to 0. In the ECN updates (RFC 3168, we start
using these reserved bits and hence set other values than 0 to these
bits. But a lot of old firewalls and routers have built in checks looking if
these bits are set to 1, and if the packets do, the packet is discarded.
Today, this is clearly a violation of RFC's, but there is not much you can
do about it, except to complain.

The second iteration of this field was when the field was changed into
the DS field as defined in RFC 2474. DS stands for Differentiated
Services. According to this standard bits [0-5] is Differentiated Services
Code Point (DSCP) and the remaining two bits [6-7] are still unused.
The DSCP field is pretty much used the same as in how the ToS field
was used before, to mark what kind of service this packet should be
treated like if the router in question makes any difference between them.
One big change is that a device must ignore the unused bits to be fully
RFC 2474 compliant, which means we get rid of the previous hassle as
explained previously, as long as the device creators follow this RFC.

The third, and almost last, change of the ToS field was when the two,
previously, unused bits were used for ECN (Explicit Congestion
Notification), as defined in RFC 3168. ECN is used to let the end
nodes know about a routers congestion, before it actually starts
dropping packets, so that the end nodes will be able to slow down their
data transmissions, before the router actually needs to start dropping
data. Previously, dropping data was the only way that a router had to tell
that it was overloaded, and the end nodes had to do a slow restart for

14

Chapter 2. TCP/IP repetition

each dropped packet, and then slowly gather up speed again. The two
bits are named ECT (ECN Capable Transport) and CE (Congestion
Experienced) codepoints.

The final iteration of the whole mess is RFC 3260 which gives some
new terminology and clarifications to the usage of the DiffServ system.
It doesn'’t involve too many new updates or changes, except in the
terminology. The RFC is also used to clarify some points that were
discussed between developers.

Total Length - bits 16 - 31. This field tells us how large the packet is in
octets, including headers and everything. The maximum size is 65535
octets, or bytes, for a single packet. The minimum packet size is 576
bytes, not caring if the packet arrives in fragments or not. It is only
recommended to send larger packets than this limit if it can be
guaranteed that the host can receive it, according to RFC 791. However,
these days most networks runs at 1500 byte packet size. This includes
almost all ethernet connections, and most Internet connections.

Identification - bits 32 - 46. This field is used in aiding the reassembly
of fragmented packets.

Flags - bits 47 - 49. This field contains a few miscellaneous flags
pertaining to fragmentation. The first bit is reserved, but still not used,
and must be set to 0. The second bit is set to 0 if the packet may be
fragmented, and to 1 if it may not be fragmented. The third and last bit
can be set to 0 if this was the last fragment, and 1 if there are more
fragments of this same packet.

Fragment Offset - bits 50 - 63. The fragment offset field shows where
in the datagram that this packet belongs. The fragments are calculated
in 64 bits, and the first fragment has offset zero.

Time to live - bits 64 - 72. The TTL field tells us how long the packet
may live, or rather how many "hops" it may take over the Internet. Every
process that touches the packet must remove one point from the TTL
field, and if the TTL reaches zero, the whole packet must be destroyed
and discarded. This is basically used as a safety trigger so that a packet
may not end up in an uncontrollable loop between one or several hosts.
Upon destruction the host should return an ICMP Time exceeded

15

Chapter 2. TCP/IP repetition

message to the sender.

Protocol - bits 73 - 80. In this field the protocol of the next level layer is
indicated. For example, this may be TCP, UDP or ICMP among others.
All of these numbers are defined by the Internet Assigned Numbers
Authority. All numbers can befound on their homepage

Internet Assigned Numbers Authority .

Header checksum - bits 81 - 96. This is a checksum of the IP header
of the packet.This field is recomputed at every host that changes the
header, which means pretty much every host that the packet traverses
over, since they most often change the packets TTL field or some other.

Source address - bits 97 - 128. This is the source address field. It is
generally written in 4 octets, translated from binary to decimal numbers
with dots in between. That is for example, 127.0.0.1. The field lets the
receiver know where the packet came from.

Destination address - bits 129 - 160. The destination address field
contains the destination address, and what a surprise, it is formatted
the same way as the source address.

Options - bits 161 - 192 <> 478. The options field is not optional, as it
may sound. Actually, this is one of the more complex fields in the IP
header. The options field contains different optional settings within the
header, such as Internet timestamps, SACK or record route route
options. Since these options are all optional, the Options field can have
different lengths, and hence the whole IP header. However, since we
always calculate the IP header in 32 bit words, we must always end the
header on an even number, that is the multiple of 32. The field may
contain zero or more options.

The options field starts with a brief 8 bit field that lets us know which
options are used in the packet. The options are all listed in the

TCP Options table, in the TCP options appendix. For more information
about the different options, read the proper RFC'’s. For an updated
listing of the IP options, check at Internet Assigned Numbers Authority.

Padding - bits variable. This is a padding field that is used to make the
header end at an even 32 bit boundary. The field must always be set to
zeroes straight through to the end.

16

Chapter 2. TCP/IP repetition

TCP characteristics

The TCP protocol resides on top of the IP protocol. It is a stateful
protocol and has built-in functions to see that the data was received
properly by the other end host. The main goals of the TCP protocol is to
see that data is reliably received and sent, that the data is transported
between the Internet layer and Application layer correctly, and that the
packet data reaches the proper program in the application layer, and
that the data reaches the program in the right order. All of this is
possible through the TCP headers of the packet.

The TCP protocol looks at data as an continuous data stream with a
start and a stop signal. The signal that indicates that a new stream is
waiting to be opened is called a SYN three-way handshake in TCP, and
consists of one packet sent with the SYN bit set. The other end then
either answers with SYN/ACK or SYN/RST to let the client know if the
connection was accepted or denied, respectively. If the client receives
an SYN/ACK packet, it once again replies, this time with an ACK
packet. At this point, the whole connection is established and data can
be sent. During this initial handshake, all of the specific options that will
be used throughout the rest of the TCP connection is also negotiated,
such as ECN, SACK, etcetera.

While the datastream is alive, we have further mechanisms to see that
the packets are actually received properly by the other end. This is the
reliability part of TCP. This is done in a simple way, using a Sequence
number in the packet. Every time we send a packet, we give a new
value to the Sequence number, and when the other end receives the
packet, it sends an ACK packet back to the data sender. The ACK
packet acknowledges that the packet was received properly. The
sequence number also sees to it that the packet is inserted into the
data stream in a good order.

Once the connection is closed, this is done by sending a FIN packet
from either end-point. The other end then responds by sending a
FINJACK packet. The FIN sending end can then no longer send any
data, but the other end-point can still finish sending data. Once the
second end-point wishes to close the connection totally, it sends a FIN
packet back to the originally closing end-point, and the other end-point

17

Chapter 2. TCP/IP repetition

replies with a FIN/ACK packet. Once this whole procedure is done, the
connection is torn down properly.

As you will also later see, the TCP headers contain a checksum as well.
The checksum consists of a simple hash of the packet. With this hash,
we can with rather high accuracy see if a packet has been corrupted in
any way during transit between the hosts.

TCP headers

The TCP headers must be able to perform all of the tasks above. We
have already explained when and where some of the headers are used,
but there are still other areas that we haven’t touched very deeply at.
Below you see an image of the complete set of TCP headers. It is
formatted in 32 bit words per row, as you can see.

Table 1-31. Transmission Control Protocol headers

0
o|l1]|2]|3]|a|5]|6|7|8]9

1
ol1]2]3]4a]|5]6|7]|8]9

2
o|1]2]|3]|4|5]|6]|7]|8]|9

0|1

Source Port

Destination Port

Sequence Number

Acknowledgment Number

Data Offset] Reserved [cwr]ece[urg[ack[psh[rst]syn][fin]

Window

Checksum

Urgent Pointer

Options

Padding

Data

Source port - bit 0 - 15. This is the source port of the packet. The
source port was originally bound directly to a process on the sending
system. Today, we use a hash between the IP addresses, and both the
destination and source ports to achieve this uniqueness that we can
bind to a single application or program.

Destination port - bit 16 - 31. This is the destination port of the TCP
packet. Just as with the source port, this was originally bound directly to
a process on the receiving system. Today, a hash is used instead,
which allows us to have more open connections at the same time.
When a packet is received, the destination and source ports are
reversed in the reply back to the originally sending host, so that

18

Chapter 2. TCP/IP repetition

destination port is now source port, and source port is destination port.

Sequence Number - bit 32 - 63. The sequence number field is used to
set a number on each TCP packet so that the TCP stream can be
properly sequenced (e.g., the packets winds up in the correct order).
The Sequence number is then returned in the ACK field to
ackonowledge that the packet was properly received.

Acknowledgment Number - bit 64 - 95. This field is used when we
acknowledge a specific packet a host has received. For example, we
receive a packet with one Sequence number set, and if everything is
okey with the packet, we reply with an ACK packet with the
Acknowledgment number set to the same as the original Sequence
number.

Data Offset - bit 96 - 99. This field indicates how long the TCP header
is, and where the Data part of the packet actually starts. It is set with 4

bits, and measures the TCP header in 32 bit words. The header should
always end at an even 32 bit boundary, even with different options set.

This is possible thanks to the Padding field at the very end of the TCP

header.

Reserved - bit 100 - 103. These bits are reserved for future usage. In
RFC 793 this also included the CWR and ECE bits. According to RFC
793 bit 100-105 (i.e., this and the CWR and ECE fields) must be set to
zero to be fully compliant. Later on, when we started introducing ECN,
this caused a lot of troubles because a lot of Internet appliances such
as firewalls and routers dropped packets with them set. This is still true
as of writing this.

CWR - bit 104. This bit was added in RFC 3268 and is used by ECN.
CWR stands for Congestion Window Reduced, and is used by the data
sending part to inform the receiving part that the congestion window
has been reduced. When the congestion window is reduced, we send
less data per timeunit, to be able to cope with the total network load.

ECE - bit 105. This bit was also added with RFC 3268 and is used by
ECN. ECE stands for ECN Echo. It is used by the TCP/IP stack on the
receiver host to let the sending host know that it has received an CE
packet. The same thing applies here, as for the CWR bit, it was

19

Chapter 2. TCP/IP repetition

originally a part of the reserved field and because of this, some
networking appliances will simply drop the packet if these fields contain
anything else than zeroes. This is actually still true for a lot of
appliances unfortunately.

URG - bit 106. This field tells us if we should use the Urgent Pointer
field or not. If set to 0, do not use Urgent Pointer, if setto 1, do use
Urgent pointer.

ACK - bit 107. This bit is set to a packet to indicate that this is in reply
to another packet that we received, and that contained data. An
Acknowledgment packet is always sent to indicate that we have actually
received a packet, and that it contained no errors. If this bit is set, the
original data sender will check the Acknowledgment Number to see
which packet is actually acknowledged, and then dump it from the
buffers.

PSH - bit 108. The PUSH flag is used to tell the TCP protocol on any
intermediate hosts to send the data on to the actual user, including the
TCP implementation on the receiving host. This will push all data
through, unregardless of where or how much of the TCP Window that
has been pushed through yet.

RST - bit 109. The RESET flag is set to tell the other end to tear down
the TCP connection. This is done in a couple of different scenarios, the
main reasons being that the connection has crashed for some reason, if
the connection does not exist, or if the packet is wrong in some way.

SYN - bit 110. The SYN (or Synchronize sequence numbers) is used
during the initial establishment of a connection. It is set in two instances
of the connection, the initial packet that opens the connection, and the
reply SYN/ACK packet. It should never be used outside of those
instances.

FIN -bit 111. The FIN bit indicates that the host that sent the FIN bit
has no more data to send. When the other end sees the FIN bit, it will
reply with a FIN/ACK. Once this is done, the host that originally sent the
FIN bit can no longer send any data. However, the other end can
continue to send data until it is finished, and will then send a FIN packet
back, and wait for the final FIN/ACK, after which the connection is sent

20

Chapter 2. TCP/IP repetition

to a CLOSED state.

Window - bit 112 - 127. The Window field is used by the receiving host
to tell the sender how much data the receiver permits at the moment.
This is done by sending an ACK back, which contains the Sequence
number that we want to acknowledge, and the Window field then
contains the maximum accepted sequence numbers that the sending
host can use before he receives the next ACK packet. The next ACK
packet will update accepted Window which the sender may use.

Checksum - bit 128 - 143. This field contains the checksum of the
whole TCP header. It is a one’s complement of the one’s complement
sum of each 16 bit word in the header. If the header does not end on a
16 bit boundary, the additional bits are set to zero. While the checksum
is calculated, the checksum field is set to zero. The checksum also
covers a 96 bit pseudoheader containing the Destination-,
Source-address, protocol, and TCP length. This is for extra security.

Urgent Pointer - bit 144 - 159. This is a pointer that points to the end of
the data which is considered urgent. If the connection has important
data that should be processed as soon as possible by the receiving
end, the sender can set the URG flag and set the Urgent pointer to
indicate where the urgent data ends.

Options - bit 160 - **. The Options field is a variable length field and
contains optional headers that we may want to use. Basically, this field
contains 3 subfields at all times. An initial field tells us the length of the
Options field, a second field tells us which options are used, and then
we have the actual options. A complete listing of all the TCP Options
can be found in TCP options.

Padding - bit **. The padding field pads the TCP header until the
whole header ends at a 32-bit boundary. This ensures that the data part
of the packet begins on a 32-bit boundary, and no data is lost in the
packet. The padding always consists of only zeros.

21

Chapter 2. TCP/IP repetition

UDP characteristics

The User Datagram Protocol (UDP) is a very basic and simple protocol
on top of the IP protocol. It was developed to allow for very simple data
transmission without any error detection of any kind, and it is stateless.
However, it is very well fit for query/response kind of applications, such
as for example DNS, et cetera, since we know that unless we get a
reply from the DNS server, the query was lost somewhere. Sometimes
it may also be worth using the UDP protocol instead of TCP, such as
when we want only error/loss detection but don’t care about sequencing
of the packets. This removes some overhead that comes from the TCP
protocol. We may also do the other thing around, make our own
protocol on top of UDP that only contains sequencing, but no error or

loss detection.

The UDP protocol is specified in RFC 768 - User Datagram Protocol. It
is a very short and brief RFC, which fits a simple protocol like this very

well.

UDP headers

The UDP header can be said to contain a very basic and simplified
TCP header. It contains destination-, source-ports, header length and a
checksum as seen in the image below.

Table 1-33. User Datagram Protocol headers

0
o|1]2]|3|a|5]|6|7]|8]|9

1
o|1]2]3]a]

5/6|/7]8]|9

2
o|1|2|3|a|5]|6|7]|8]9

3
0|1

Source Port

Destination Port

Length

Checksum

Data

Source port - bit 0-15. This is the source port of the packet, describing
where a reply packet should be sent. This can actually be set to zero if it
doesn’t apply. For example, sometimes we don't require a reply packet,
and the packet can then be set to source port zero. In most
implementations, it is set to some port number.

22

Chapter 2. TCP/IP repetition

Destination port - bit 16-31. The destination port of the packet. This is
required for all packets, as opposed to the source port of a packet.

Length - bit 32-47. The length field specifies the length of the whole
packet in octets, including header and data portions. The shortest
possible packet can be 8 octets long.

Checksum - bit 48-63. The checksum is the same kind of checksum as
used in the TCP header, except that it contains a different set of data. In
other words, it is a one’s complement of the one’s complement sum of
parts of the IP header, the whole UDP header, theUDP data and
padded with zeroes at the end when necessary.

ICMP characteristics

ICMP messages are used for a basic kind of error reporting between
host to host, or host to gateway. Between gateway to gateway, a
protocol called Gateway to Gateway protocol (GGP) should normally be
used for error reporting. As we have already discussed, the IP protocol
is not designed for perfect error handling, but ICMP messages solves
some parts of these problems. The big problem from one standpoint is
that the headers of the ICMP messages are rather complicated, and
differ a little bit from message to message. However, this will not be a
big problem from a filtering standpoint most of the time.

The basic form is that the message contains the standard IP header,
type, code and a checksum. All ICMP messages contains these fields.
The type specifies what kind of error or reply message this packet is,
such as for example destination unreachable, echo, echo reply, or
redirect message. The code field specifies more information, if
necessary. If the packet is of type destination unreachable, there are
several possible values on this code field such as network unreachable,
host unreachable, or port unreachable. The checksum is simply a
checksum for the whole packet.

As you may have noticed, | mentioned the IP header explicitly for the
ICMP packet. This was done since the actual IP header is an integral
part of the ICMP packet, and the ICMP protocol lives on the same level

23

Chapter 2. TCP/IP repetition

as the IP protocol in a sense. ICMP does use the IP protocol as if it
where a higher level protocol, but at the same time not. ICMP is an
integral part of IP, and ICMP must be implemented in every IP
implementation.

ICMP headers

As already explained, the headers differs a little bit from ICMP type to
ICMP type. Most of the ICMP types are possible to group by their
headers. Because of this, we will discuss the basic header form first,
and then look at the specifics for each group of types that should be
discussed.

Table 1-2. Internet Control Message Protocol - Basic Headers

0 1 2 3
o|l1]|2]|3]|4|5|6]|7|8|9)o|1]2]|3]a|5]|6]7|8]|9]o]1]|2|3]a]|5]|6]|7]|8]9]0
Version IHL TOS/DSCP/ECN Total Length
Identification Flags [Fragment Offset
Time to Live [Protocol Header Checksum
Source Address Destination Address
Type | Code Checksum

All packets contain some basic values from the IP headers discussed
previously in this chapter. The headers have previously been discussed
at some length, so this is just a short listing of the headers, with a few
notes about them.

* Version - This should always be set to 4.
 Internet Header Length - The length of the header in 32 bit words.

e Type of Service - See above. This should be set to 0, as this is the
only legit setting according to
RFC 792 - Internet Control Message Protocol.

» Total Length - Total length of the header and data portion of the
packet, counted in octets.

« Identification , Flags and Fragment offsets - Ripped from the IP
protocol.

24

Chapter 2. TCP/IP repetition

Time To Live - How many hops this packet will survive.
Protocol - which version of ICMP is being used (should always be 1).
Header Checksum - See the IP explanation.

Source Address - The source address from whom the packet was
sent. This is not entirely true, since the packet can have another
source address, than that which is located on the machine in
question. The ICMP types that can have this effect will be noted if so.

Destination Address - The destination address of the packet.

There are also a couple of new headers that are used by all of the
ICMP types. The new headers are as follows, this time with a few more
notes about them:

Type - The type field contains the ICMP type of the packet. This is
always different from ICMP type to type. For example ICMP
Destination Unreachable packets will have a type 3 set to it. For a
complete listing of the different ICMP types, see the ICMP types
appendix. This field contains 8 bits total.

Code - All ICMP types can contain different codes as well. Some
types only have a single code, while others have several codes that
they can use. For example, the ICMP Destination Unreachable (type
3) can have at least code 0, 1, 2, 3, 4 or 5 set. Each code has a
different meaning in that context then. For a complete listing of the
different codes, see the ICMP types appendix. This field is 8 bits in
length, total. We will discuss the different codes a little bit more in
detail for each type later on in this section.

Checksum - The Checksum is a 16 bit field containing a one’s
complement of the ones complement of the headers starting with the
ICMP type and down. While calculating the checksum, the checksum
field should be set to zero.

At this point the headers for the different packets start to look different
also. We will describe the most common ICMP Types one by one, with
a brief discussion of its headers and different codes.

25

Chapter 2. TCP/IP repetition

ICMP Echo Request/Reply

Table 1-4. Internet Control Message Protocol - Echo/Echo Reply Message

0
o|1|2]|3]|4|5]6]7

1
8lolo|1]2]|3|a|5]|6]7]|8]9

2
o|l1|2|3]|4|5]6]|7]|8]|9

3
0|1

Type

Code

Checksum

Identifier

Sequence Number

Data

| have chosen to speak about both the reply and the request of the
ICMP echo packets here since they are so closely related to each other.
The first difference is that the echo request is type 8, while echo reply is
type 0. When a host receives a type 8, it replies with a type O.

When the reply is sent, the source and destination addresses switch
places as well. After both of those changes has been done, the
checksum is recomputed, and the reply is sent. There is only one code
for both of these types, they are always set to O.

* Identifier - This is setin the request packet, and echoed back in the
reply, to be able to keep different ping requests and replies together.

e Sequence number - The sequence number for each host, generally
this starts at 1 and is incremented by 1 for each packet.

The packets also contains a data part. Per default, the data part is
generally empty, but it can contain a userspecified amount of random

data.

ICMP Destination Unreachable

Table 1-3. Internet Control Message Protocol - Destination Unreachable Message

0
o|1|2|3]|4]|5]|6]7

1
8lolol1]2]|3|4a|5]|6]7]|8]9

2
o|l1|2|3]|4|5]6]|7|8]|9

0|1

Type

Code

Checksum

Unused

Internet header + 64 bits of original data datagram

26

Chapter 2. TCP/IP repetition

The first three fields seen in the image are the same as previously
described. The Destination Unreachable type has 16 basic codes that
can be used, as seen below in the list.

e Code 0 - Network unreachable - Tells you if a specific network is
currently unreachable.

» Code 1 - Host unreachable - Tells you if a specific host is currently
unreachable.

» Code 2 - Protocol unreachable - This code tells you if a specific
protocol (tcp, udp, etc) can not be reached at the moment.

e Code 3 - Port unreachable - If a port (ssh, http, ftp-data, etc) is not
reachable, you will get this message.

» Code 4 - Fragmentation needed and DF set - If a packet needs to be
fragmented to be delivered, but the Do not fragment bit is set in the
packet, the gateway will return this message.

» Code 5 - Source route failed - If a source route failed for some
reason, this message is returned.

» Code 6 - Destination network unknown - If there is no route to a
specific network, this message is returned.

» Code 7 - Destination host unknown - If there is no route to a specific
host, this message is returned.

» Code 8 - Source host isolated (obsolete) - If a host is isolated, this
message should be returned. This code is obsoleted today.

e Code 9 - Destination network administratively prohibited - If a
network was blocked at a gateway and your packet was unable to
reach it because of this, you should get this ICMP code back.

» Code 10 - Destination host administratively prohibited - If you where
unable to reach a host because it was administratively prohibited
(e.g., routing administration), you will get this message back.

» Code 11 - Network unreachable for TOS - If a network was
unreachable because of a bad TOS setting in your packet, this code
will be generated as a return packet.

27

Chapter 2. TCP/IP repetition

» Code 12 - Host unreachable for TOS - If your packet was unable to
reach a host because of the TOS of the packet, this is the message

you get back.

» Code 13 - Communication administratively prohibited by filtering - If
the packet was prohibited by some kind of filtering (e.g., firewalling),
we get a code 13 back.

e Code 14 - Host precedence violation - This is sent by the first hop
router to notify a connected host, to notify the host that the used
precedence is not permitted for a specific destination/source

combination.

» Code 15 - Precedence cutoff in effect - The first hop router may send
this message to a host if the datagram it received had a too low
precedence level set in it.

On top of this, it also contains a small "data" part, which should be the
whole Internet header (IP header) and 64 bits of the original IP
datagram. If the next level protocol contains any ports, etc, it is
assumed that the ports should be available in the extra 64 bits.

Source Quench

Table 1-8. Internet Control Message Protocol - Source Quench Message

0
o|l1]|2]3]|4a|5]6]7

1 2
8|o]o|1|2|3]|4a|s5|6|7|8|9|o|1]2]|3]|4|5|6]|7]8]9

0|1

Type

Code Checksum

Unused

Internet header + 64 bits of original data datagram

A source quench packet can be sent to tell the originating source of a
packet or stream of packets to slow down when continuing to send data.
Note that gateway or destination host that the packets traverses can
also be quiet and silently discard the packets, instead of sending any
source quench packets.

This packet contains no extra header except the data portion, which
contains the internet header plus 64 bits of the original data datagram.
This is used to match the source quench message to the correct

28

Chapter 2. TCP/IP repetition

process, which is currently sending data through the gateway or to the

destination host.

All source quench packets have their ICMP types set to 4. They have

no codes except 0.

No\e\-

\)Today, there are a couple of new possible ways of notifying the sending
and receiving host that a gateway or destination host is overloaded. One
way for example is the ECN (Explicit Congestion Notification) system.

Redirect

Table 1-7. Internet Control Message Protocol - Redirect Message

0
o|1|2]|3]|4|5]6]7

8|9

1
o|l1|2|3]|4|5]|6]|7]|8]|9

5
o|1|2]|3]4|5]|6]|7]8]|9

o1

Type

Code

Checksum

Gateway Internet address

Internet header + 64 bits of original data datagram

The ICMP Redirect type is sent in a single case. Consider this, you
have a network (192.168.0.0/24) with several clients and hosts on it,
and two gateways. One gateway to a 10.0.0.0/24 network, and a default
gateway to the rest of the Internet. Now consider if one of the hosts on
the 192.168.0.0/24 network has no route set to 10.0.0.0/24, but it has
the default gateway set. It sends a packet to the default gateway, which
of course knows about the 10.0.0.0/24 network. The default gateway
can deduce that it is faster to send the packet directly to the 10.0.0.0/24
gateway since the packet will enter and leave the gateway on the same
interface. The default gateway will hence send out a single ICMP
Redirect packet to the host, telling it about the real gateway, and then
sending the packet on to the 10.0.0.0/24 gateway. The host will now
know about the closest 10.0.0.0/24 gateway, and hopefully use it in the

future.

The main header of the Redirect type is the Gateway Internet Address
field. This field tells the host about the proper gateway, which should

29

Chapter 2. TCP/IP repetition

really be used. The packet also contains the IP header of the original
packet, and the 64 first bits of data in the original packet, which is used
to connect it to the proper process sending the data.

The Redirect type has 4 different codes as well, these are the following.

» Code 0 - Redirect for network - Only used for redirects for a whole
network (e.g., the example above).

» Code 1 - Redirect for host - Only used for redirects of a specific host
(e.g., a host route).

e Code 2 - Redirect for TOS and network - Only used for redirects of a
specific Type of Service and to a whole network. Used as code 0, but
also based on the TOS.

» Code 3 - Redirect for TOS and host - Only used for redirects of a
specific Type of Service and to a specific host. Used as code 1, but
also based on the TOS in other words.

TTL equals O

Table 1-9. Internet Control Message Protocol - Time Exceeded Message

0 1 2 3
o|1]2]|3]|a|5]|6|7|8|9]o|1]2]|3|a|5]|6|7]|8|9]0|1]2]|3|4a|5]|6]7]|8|9]0]1

Type Code Checksum

Unused

Internet header + 64 bits of original data datagram

The TTL equals 0 ICMP type is also known as Time Exceeded
Message and has type 11 set to it, and has 2 ICMP codes available. If
the TTL field reaches 0 during transit through a gateway or fragment
reassembly on the destination host, the packet must be discarded. To
notify the sending host of this problem, we can send a TTL equals 0
ICMP packet. The sender can then raise the TTL of outgoing packets to
this destination if necessary.

The packet only contains the extra data portion of the packet. The data
field contains the Internet header plus 64 bits of the data of the IP

30

Chapter 2. TCP/IP repetition

packet, so that the other end may match the packet to the proper
process. As previously mentioned, the TTL equals 0 type can have two
codes.

e Code 0 - TTL equals 0 during transit - This is sent to the sending
host if the original packet TTL reached 0 when it was forwarded by a
gateway.

* Code 1- TTL equals 0 during reassembly - This is sent if the original
packet was fragmented, and TTL reached O during reassembly of the
fragments. This code should only be sent from the destination host.

Parameter problem

Table 1-6. Internet Control Message Protocol - Parameter Problem Message

0 1 2
o|1]2]|3]|4a|5]|6|7|8|9]|o]1|2|3]|4|5]|6]|7|8|9]0|1|2]|3]|4|5|6]|7]|8]9

Type Code Checksum

Pointer Unused

Internet header + 64 bits of original data datagram

The parameter problem ICMP uses type 12 and it has 2 codes that it
uses as well. Parameter problem messages are used to tell the sending
host that the gateway or receiving host had problems understanding
parts of the IP headers such as errors, or that some required options
where missing.

The parameter problem type contains one special header, which is a
pointer to the field that caused the error in the original packet, if the
code is 0 that is. The following codes are available:

» Code 0 - IP header bad (catchall error) - This is a catchall error
message as discussed just above. Together with the pointer, this code
is used to point to which part of the IP header contained an error.

e Code 1 - Required options missing - If an IP option that is required is
missing, this code is used to tell about it.

31

Chapter 2. TCP/IP repetition

Timestamp request/reply

Table 1-10. Internet Control Message Protocol - Timestamp/Timestamp Reply Message

0 1 2
o|1]2]|3]|a|5]|6|7|8|9]o|1]|2]|3|a|5]|6]7|8|9]0|1]|2]|3|4a|5]|6]|7]|8|9]0]1

Type Code Checksum

Identifier Sequence Number

Originate Timestamp

Receive Timestamp

Transmit Timestamp

The timestamp type is obsolete these days, but we bring it up briefly
here. Both the reply and the request has a single code (0). The request
is type 13 while the reply is type 14. The timestamp packets contains 3
32-bit timestamps counting the milliseconds since midnight UT
(Universal Time).

The first timestamp is the Originate timestamp, which contains the last
time the sender touched the packet. The receive timestamp is the time
that the echoing host first touched the packet and the transmit
timestamp is the last timestamp set just previous to sending the packet.

Each timestamp message also contains the same identifiers and
sequence numbers as the ICMP echo packets.

Information request/reply

Table 1-5. Internet Control Message Protocol - Information Request/Information Reply Message

0 1 2 3
o|1|2|3]|4|5|6]|7|8|9|ol1]2]|3]a|5|6]7|8|9]0]|1|2]|3]4a|5]6]|7|8]9]0]1

Type Code Checksum

Identifier Sequence Number

The information request and reply types are obsolete since there are
protocols on top of the IP protocol that can now take care of this when
necessary (DHCP, etc). The information request generates a reply from
any answering host on the network that we are attached to.

The host that wishes to receive information creates a packet with the

32

Chapter 2. TCP/IP repetition

source address set to the network we are attached to (for example,
192.168.0.0), and the destination network set to 0. The reply will
contain information about our numbers (netmask and ip address).

The information request is run through ICMP type 15 while the reply is
sent via type 16.

SCTP Characteristics

Stream Control Transmission Protocol (SCTP) is a relatively new
protocol in the game, but since it is growing in usage and complements
the TCP and UDP protocols, | have chosen to add this section about it.
It has an even higher reliability than TCP, and at the same time a lower
overhead from protocol headers.

SCTP has a couple of very interesting features that can be interesting.
For those who wish to learn more about this, read the

RFC 3286 - An Introduction to the Stream Control Transmission Protocol
and RFC 2960 - Stream Control Transmission Protocol document. The
first document is an introduction to SCTP and should be very

interesting to people who are still in need of more information. The
second document is the actual specification for the protocol, which
might be less interesting unless you are developing for the protocol or
are really interested.

The protocol was originally developed for Telephony over IP, or Voice
over IP (VoIP), and has some very interesting attributes due to this.
Industry grade VoIP requires very high reliability for one, and this means
that a lot of resilience has to be built into the system to handle different
kind of problems. The following is a list of the basic features of SCTP.

- Unicast with Multicast properties. This means it is a point-to-point
protocol but with the ability to use several addresses at the same end
host. It can in other words use different paths to reach the end host.
TCP in comparison breaks if the transport path breaks, unless the IP
protocol corrects it.

33

Chapter 2. TCP/IP repetition

- Reliable transmission. It uses checksums and SACK to detect
corrupted, damaged, discarded, duplicated and reordered data. It can
then retransmit data as necessary. This is pretty much the same as
TCP, but SCTP is more resilient when it comes to reordered data
and allows for faster pickups.

- Message oriented. Each message can be framed and hence you
can keep tabs on the structure and order of the datastream. TCP is
byte oriented and all you get is a stream of bytes without any order
between different data inside. You need an extra layer of abstraction
in TCP in other words.

- Rate adaptive. It is developed to cooperate and co-exist with TCP for
bandwidth. It scales up and down based on network load conditions
just the same as TCP. It also has the same algorithms for slow
starting when packets where lost. ECN is also supported.

- Multi-homing. As previously mentioned, it is able to set up different
end nodes directly in the protocol, and hence doesn’t have to rely on
the IP layer for resilience.

« Multi-streaming. This allows for multiple simultaneous streams inside
the same stream. Hence the name Stream Control Transmission
Protocol. A single stream can for example be opened to download a
single webpage, and all the images and html documents can then be
downloaded within the same stream simultaneously. Or why not a
database protocol which can create a separate control stream and
then use several streams to receive the output from the different
queries simultaneously.

- Initiation. 4 packet initiation of connections where packet 3 and 4 can
be used to send data. The equivalent of syncookies is implemented
by default to avoid DoS attacks. INIT collision resolution to avoid
several simultaneous SCTP connections.

This list could be made even longer, but | will not. Most of this
information is gathered from the

RFC 3286 - An Introduction to the Stream Control Transmission Protocol
document, so read on there for more information.

34

Chapter 2. TCP/IP repetition

o€t
\S)In SCTP we talk about chunks, not packets or windows anymore. An
SCTP frame can contain several different chunks since the protocol is
message oriented. A chunk can either be a control or a data chunk.
Control chunks is used to control the session, and data chunks are used
to send actual data.

Initialization and association

Each connection is initialized by creating an association between the
two hosts that wants to talk to each other. This association is initialized
when a user needs it. It is later used as needed.

The initialization is done through 4 packets. First an INIT chunk is sent,
which is replied to with an INIT ACK containing a cookie, after this the
connection can start sending data. However, two more packets are sent
in the initialization. The cookie is replied to with a COOKIE ECHO
chunk, which is finally replied to with a COOKIE ACK chunk.

Data sending and control session

SCTP can at this point send data. In SCTP there are control chunks
and data chunks, as previously stated. Data chunks are sent using
DATA chunks, and DATA chunks are acknowledged by sending a SACK
chunk. This works practically the same as a TCP SACK. SACK chunks
are control chunks.

On top of this, there are some other control chunks that can be seen.
HEARTBEAT and HEARTBEAT ACK chunks for one, and ERROR
chunks for another. HEARTBEAT s are used to keep the connection
alive, and ERROR is used to inform of different problems or errors in
the connection, such as invalid stream id’s or missing mandatory
parameters et cetera.

35

Chapter 2. TCP/IP repetition

Shutdown and abort

The SCTP connection is finally closed by either an ABORT chunk or by
a graceful SHUTDOWN chunk. SCTP doesn't have a half-closed state
as TCP, in other words one side can not continue sending data while
the other end has closed its sending socket.

When the user/application wants to close the SCTP socket gracefully, it
tells the protocol to SHUTDOWN. SCTP then sends all the data still in
its buffers, and then sends a SHUTDOWN chunk. When the other end
receives the SHUTDOWN, it will stop accepting data from the
application and finish sending all the data. Once it has gotten all the
SACK's for the data, it will send a SHUTDOWN ACK chunk and once
the closing side has received this chunk, it will finally reply with a
SHUTDOWN COMPLETE chunk. The whole session is now closed.

Another way of closing a session is to ABORT it. This is an ungraceful
way of removing an SCTP association. When a connecting party wants
to remove an SCTP association instantaneously, it sends an ABORT
chunk with all the right values signed. All data in the buffers et cetera
will be discarded and the association will then be removed. The
receiving end will do the same after verifying the ABORT chunk.

SCTP Headers

This will be a very brief introduction to the SCTP headers. SCTP has a
lot of different types of packets, and hence | will try to follow the RFC’s
as close as possible and how they depict the different headers, starting
with a general overview of the headers applicable to all SCTP packets.

36

Chapter 2. TCP/IP repetition

SCTP Generic header format

Table 1-30. Generic chunk headerlayout

0
o|1]2]|3|4a|5]|6]7]|8]|9

(1)[1|2|3|4[5|6[7|8[9

g[1|2[3|4[5|6[7|8[9

0|1

Common header

Chunk #1

Chunk #n

This is a generic overview of how a SCTP packet is laid out. Basically,
you have a common header first with information describing the whole
packet, and the source and destination ports etc. See more below for
information on the common header.

After the common header a variable number of chunks are sent, up to
the maximum possible in the MTU. All chunks can be bundled except
for INIT, INIT ACK and SHUTDOWN COMPLETE, which must not be
bundled. DATA chunks may be broken down to fit inside the MTU of the

packets.

SCTP Common and generic headers

Table 1-29. Common SCTP headers

0
o|1]2]|3|4a|5]|6]|7]|8]|9

(1)11|213|4|5 67|89

g|1|2[3|4[5|6[7|8[9

0|1

Source Port

Destination Port

Verification Tag

Checksum

Every SCTP packet contains the Common header as seen above. The
header contains four different fields and is set for every SCTP packet.

Source port - bit 0-15. This field gives the source port of the packet,
which port it was sent from. The same as for TCP and UDP source port.

Destination port - bit 16-31. This is the destination port of the packet,
ie., the port that the packet is going to. It is the same as for the TCP and

UDP destination port.

37

Chapter 2. TCP/IP repetition

Verification Tag - bit 32-63. The verification tag is used to verify that the
packet comes from the correct sender. It is always set to the same
value as the value received by the other peer in the Initiate Tag during
the association initialization, with a few exceptions:

« An SCTP packet containing an INIT chunk must have the Verification
tag set to O.

+ A SHUTDOWN COMPLETE chunk with the T-bit set must have the
verification tag copied from the verification tag of the
SHUTDOWN-ACK chunk.

- Packets containing ABORT chunk may have the verification tag set to
the same verification tag as the packet causing the ABORT .

Checksum - bit 64-95. A checksum calculated for the whole SCTP
packet based on the Adler-32 algorithm. Read
RFC 2960 - Stream Control Transmission Protocol, appendix B for

more information about this algorithm.

Table 1-25. Generic chunk headers

0
of1]2]

1
3|la|s|e|7|8|9|ol1]2]|3]a]|5

67|89

2
o|1|2|3]|4|5]6]|7]|8]9

0|1

Type Chunk Flags

Chunk Length

Chunk Value

All SCTP chunks has a special layout that they all adhere to as can be
seen above. This isn’t an actual header, but rather a formalized way of
how they do look.

Type - bit 0-7. This field specifies the chunk type of the packet, for
example is it an INIT or SHUTDOWN chunk or what? Each chunk type
has a specific number, and is specified in the image below. Here is a
complete list of Chunk types:

Table 2-1. SCTP Types

Chunk [Chunk Name
Number
0 Payload Data (DATA)

38

Chapter 2. TCP/IP repetition

Chunk [Chunk Name

Number

1 Initiation (INIT)

2 Initiation Acknowledgement (INIT ACK)

3 Selective Acknowledgement (SACK)

4 Heartbeat Request (HEARTBEAT)

5 Heartbeat Acknowledgement (HEARTBEAT ACK)
6 Abort (ABORT)

7 Shutdown (SHUTDOWN)

3 Shutdown Acknowledgement (SHUTDOWN ACK)
9 Operation Error (ERROR)

10 State Cookie (COOKIE ECHO)

11 Cookie Acknowledgement (COOKIE ACK)

12 Reserved for Explicit Congestion Notification Echo (ECNE)
13 Reserved for Congestion Window Reduced (CWR)
14 Shutdown Complete (SHUTDOWN COMPLETE)
15-62 |Reserved for IETF

63 IETF-defined chunk extensions

64-126 [reserved to IETF

127 IETF-defined chunk extensions

128-190 |reserved to IETF

191 IETF-defined chunk extensions

192-254 |reserved to IETF

255 IETF-defined chunk extensions

Chunk Flags - bit 8-15. The chunk flags are generally not used but are
set up for future usage if nothing else. They are chunk specific flags or
bits of information that might be needed for the other peer. According to
specifications, flags are only used in DATA, ABORT and SHUTDOWN
COMPLETE packets at this moment. This may change however.

39

oren

Chapter 2. TCP/IP repetition

g

\)A lot of times when you read an RFC, you might run into some old proven
problems. The RFC 2960 - Stream Control Transmission Protocol
document is one example of this, where they specifically specify that the
Chunk flags should always be set to 0 and ignored unless used for
something. This is written all over the place, and it begs for problems in
the future. If you do firewalling or routing, watch out very carefully for this,
since specifications for fields like this may change in the future and hence
break at your firewall without any legit reason. This happened before with
the implementation of ECN in the IP headers for example. See more in the
IP headers section of this chapter.

Chunk Length - bit 16-31. This is the chunk length calculated in bytes. It
includes all headers, including the chunk type, chunk flags, chunk
length and chunk value. If there is no chunk value, the chunk length will

be set to 4 (bytes).

Chunk Value - bit 32-n. This is specific to each chunk and may contain
more flags and data pertaining to the chunk type. Sometimes it might
be empty, in which case the chunk length will be set to 4.

SCTP ABORT chunk

Table 1-12. ABORT chunk headers

0
o|1]2]|3|4a|5]|6]|7

8|9

1
o|l1]2]|3|a|5]|6|7]|8]|9

2
o|1|2|3]|4a|5]|6]7]8]9

01

Type =6

Reserved T

Length

Zero or more Error Causes

The ABORT chunk is used to abort an association as previously
described in the Shutdown and abort section of this chapter. ABORT is
issued upon unrecoverable errors in the association such as bad

headers or data.

Type - bit 0-7. Always set to 6 for this chunk type.

Reserved - bit 8-14. Reserved for future chunk flags but not used as of
writing this. See the SCTP Common and generic headers for more
information about the chunk flags field.

40

Chapter 2. TCP/IP repetition

T-bit - bit 15. If this bit is set to 0, the sender had a TCB associated with
this packet that it has destroyed. If the sender had no TCB the T-bit
should be set to 1.

Length - bit 16-31. Sets the length of the chunk in bytes including error
causes.

SCTP COOKIE ACK chunk

Table 1-13. COOKIE ACK chunk headers

0 1 2 3
o|1]2]|3]|a|5]|6|7|8|9]o]1|2]|3|4a|5]|6|7|8|9]0]1|2|3|4a|5]|6|7|8|9]0]|1

Type =11 Chunk Flags Length =4

The COOKIE ACK chunk is used during the initialization of the
connection and never anywhere else in the connection. It must precede
all DATA and SACK chunks but may be sent in the same packet as the
first of these packets.

Type - bit 0-7. Always set to 11 for this type.

Chunk flags - bit 8-15. Not used so far. Should always be set to 0
according to RFC 2960 - Stream Control Transmission Protocol. You
should always watch out for this kind of specific behaviour stated by
RFC'’s since it might change in the future, and hence break your
firewalls etc. Just the same as happened with IP and ECN. See the
SCTP Common and generic headers section for more information.

Length - bit 16-31. Should always be 4 (bytes) for this chunk.

SCTP COOKIE ECHO chunk

Table 1-14. COOKIE ECHO chunk headers

0 1 2
o|l1]|2|3]|4a|5|6]|7|8|9|o]1]|2|3|a|5]|6]|7|8|9|0o]|1|2]|3]4a|5]|6]|7|8]|9]0]1

Type = 10 Chunk Flags Length

Cookie

41

Chapter 2. TCP/IP repetition

The COOKIE ECHO chunk is used during the initialization of the SCTP
connection by the initiating party to reply to the cookie sent by the
responding party in the State cookie field in the INIT ACK packet. It
may be sent together with DATA chunks in the same packet, but must
precede the DATA chunks in such case.

Type - bit 0-7. The chunk type is always set to 10 for this chunk.

Chunk flags - bit 8-15. This field is not used today. The RFC specifies
that the flags should always be set to 0, but this might cause trouble as
can be seen in the SCTP Common and generic headers section above,
specifically the Chunk flags explanation.

Length - bit 16-31. Specifies the length of the chunk, including type,
chunk flags, length and cookie fields in bytes.

Cookie - bit 32-n. This field contains the cookie as sent in the previous
INIT ACK chunk. It must be the exact same as the cookie sent by the
responding party for the other end to actually open the connection. The
RFC 2960 - Stream Control Transmission Protocol specifies that the
cookie should be as small as possible to insure interoperability, which is
very vague and doesn’t say much.

SCTP DATA chunk

Table 1-15. DATA chunk headers

0 1 2 3
o|1]2]|3|a|5]|6|7|8|9|o|1]2]|3|a|5]|6|7|8|9|o]1]2|3]|a|5]|6]|7]8]|9]0]1
Type =0 Reserved U|B|E Length
TSN
Stream Identifier S [Stream Sequence Number n

Payload Protocol Identifier

User Data (seq n of of Stream S)

DATA chunks are used to send actual data through the stream and have
rather complex headers in some ways, but not really worse than TCP
headers in general. Each DATA chunk may be part of a different stream,
since each SCTP connection can handle several different streams.

Type - bit 0-7. The Type field should always be set to 0 for DATA chunks.

42

Chapter 2. TCP/IP repetition

Reserved - bit 8-12. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

U-bit - bit 13. The U-bit is used to indicate if this is an unordered DATA
chunk. If it is, the Stream Sequence Number must be ignored by the
receiving host and send it on to the upper layer without delay or tries to
re-order the DATA chunks.

B-bit - bit 14. The B-bit is used to indicate the beginning of a
fragmented DATA chunk. If this bit is set and the E (ending) bit is not
set, it indicates that this is the first fragment of a chunk that has been
fragmented into several DATA chunks.

E-bit - bit 15. The E-bit is used to indicate the ending of a fragmented
DATA chunk. If this flag is set on a chunk, it signals to the SCTP
receiver that it can start reassembling the fragments and pass them on
to the upper layer. If a packet has both the BE-bits set to set to O, it
signals that the chunk is a middle part of a fragmented chunk. If both
BE-bits are set to 1 it signals that the packet is unfragmented and
requires no reassembly et cetera.

Length - bit 16-31. The length of the whole DATA chunk calculated in
bytes,including the chunk type field and on until the end of the chunk.

TSN - bit 32-63. The Transmission Sequence Number (TSN) is sent in
the DATA chunk, and the receiving host uses the TSN to acknowledge
that the chunk got through properly by replying with a SACK chunk.
This is an overall value for the whole SCTP association.

Stream ldentifier - bit 64-79. The Stream Identifier is sent along with the
DATA chunk to identify which stream the DATA chunk is associated with.
This is used since SCTP can transport several streams within a single
association.

Stream Sequence Number - bit 80-95. This is the sequence number of
the chunk for the specific stream identified by the Stream Identifier. This
sequence number is specific for each stream identifier. If a chunk has
been fragmented, the Stream Sequence Number must be the same for
all fragments of the original chunk.

Payload Protocol Identifier - bit 96-127. This value is filled in by the
upper layers, or applications using the SCTP protocol as a way to

43

Chapter 2. TCP/IP repetition

identify to each other the content of the DATA chunk. The field must
always be sent, including in fragments since routers and firewalls, et
cetera, on the way might need the information. If the value was set to 0,
the value was not set by the upper layers.

User data - bit 128-n. This is the actual data that the chunk is
transporting. It can be of variable length, ending on an even octet. It is
the data in the stream as specified by the stream sequence number n in

the stream S.

SCTP ERROR chunk

Table 1-16. ERROR chunk headers

0
o|1]2]|3|a|5|6]|7]|8]|9

1
o|l1]2]|3|a|5]|6]|7]|8]|9

2
o|1|2]|3|a|5]|6]7]8]9

01

Type =9

Chunk Flags

Length

one or more Error Causes

The ERROR chunk is sent to inform the other peer of any problems
within the current stream. Each ERROR chunk can contain one or more
Error Causes, which are more specifically detailed in the

RFC 2960 - Stream Control Transmission Protocol document. | will not
go into further details here than the basic ERROR chunk, since it would
be too much information. The ERROR chunk is not fatal in and of itself,
but rather details an error that has happened. It may however be used
together with an ABORT chunk to inform the peer of the error before

killing the connection.

Type - bit 0-7. This value is always set to 9 for ERROR chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Length - bit 16-31. Specifies the length of the chunk in bytes, including

all the Error Causes.

Error causes - bit 32-n. Each ERROR chunk may contain one or more
Error Causes, which naotifies the opposite peer of a problem with the
connection. Each Error Cause follows a specific format, as described in

44

Chapter 2. TCP/IP repetition

the RFC 2960 - Stream Control Transmission Protocol document. We
will not go into them here more than to say that they all contain an
Cause Code, cause length and cause specific information field. The
following Error Causes are possible:

Table 2-2. Error Causes

Cause |Chunk Code
Value

Invalid Stream ldentifier

Missing Mandatory Parameter

Stale Cookie Error

Out of Resource

Unresolvable Address

Unrecognized Chunk Type

Invalid Mandatory Parameter

Unrecognized Parameters

© [0 [N o O w N [

No User Data

=y
o

Cookie Received While Shutting Down

SCTP HEARTBEAT chunk

Table 1-18. HEARTBEAT chunk headers

0 1 2 3
o|1]2]|3|a|5|6|7|8|9|o]1]|2|3]|a|5]|6]|7|8]|9]0|1|2]|3]|4]5]|6]|7|8|9]0]1

Type = 4 Chunk Flags Length

Heartbeat Information TLV

The HEARTBEAT chunk is sent by one of the peers to probe and find
out if a specific SCTP endpoint address is up. This is sent to the
different addresses that was negotiated during the initialization of the
association to find out if they are all up.

Type - bit 0-7. The type is always set to 4 for HEARTBEAT chunks.

45

Chapter 2. TCP/IP repetition

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Length - bit 16-31. The length of the whole chunk, including the
Heartbeat Information TLV.

Heartbeat Information TLV - bit 32-n. This is a variable-length
parameter as defined inside the
RFC 2960 - Stream Control Transmission Protocol document. This is a
mandatory parameter for the HEARTBEAT chunks that contains 3
fields, info type = 1, info length and a sender-specific Heartbeat
Information parameter. The last field should be a sender-specific
information field of some kind, for example a timestamp when the
heartbeat was sent and a destination IP address. This is then returned
in the HEARTBEAT ACK chunk.

SCTP HEARTBEAT ACK chunk

Table 1-17. HEARTBEAT ACK chunk headers

0
o|1]2]|3|a|s5|6|7]|8]9

1
o|l1]2]|3|a|s5]|6|7]|8]9

2
o|1|2|3|a|5]|6]7]|8]9

3
0|1

Type =5

Chunk Flags

Length

Heartbeat Information TLV

The HEARTBEAT ACK is used to acknowledge that a HEARTBEAT
was received and that the connection is working properly. The chunk is
always sent to the same IP address as the request was sent from.

Type - bit 0-7. Always set to 5 for HEARTBEAT ACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk length - bit 16-31. The length of the HEARTBEAT ACK chunk
including the Heartbeat Information TLV, calculated in bytes.

Heartbeat Information TLV - bit 32-n. This field must contain the
Heartbeat Information parameter that was sent in the original

HEARTBEAT chunk.

46

Chapter 2. TCP/IP repetition

SCTP INIT chunk

Table 1-20. INIT chunk headers

0 1 2
o|1]2]|3|a|5]|6|7|8|9]o|1]2]|3|a|5]|6]|7]|8|9]0|1]2]|3|4a|5|6]7]|8]9

0|1
Type =1 Chunk Flags Length
Initiate Tag
Advertised Receiver Window Credit (a_rwnd)
Number of Outbound Streams [Number of Inbound Streams
Initial TSN

Optional Parameters

The INIT chunk is used to initiate a new association with a destination
host, and is the first chunk to be sent by the connecting host. The INIT
chunk contains several mandatory fixed length parameters, and some
optional variable length parameters. The fixed length mandatory
parameters are already in the above headers, and are the Initiate Tag,
Advertised Receiver Window Credit, Number of Outbound Streams,
Number of Inbound Streams and the Initial TSN parameters. After this
comes a couple of optional parameters, they will be listed with the
optional parameters paragraph below.

Type - bit 0-7. The type field is always set to 1 for INIT chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole
packet, including everything in the headers, including the optional
parameters.

Initiate Tag - bit 32-63. The Initiate Tag is set within the INIT chunk and
must be used by the receiver to acknowledge all packets henceforth,
within the Verification Tag of the established association. The Initiate
Tag may take any value except 0. If the value is 0 anyways, the receiver
must react with an ABORT .

Advertised Receiver Window Credit (a_rwnd)- bit 64-95. This is the
minimum receiving buffer that the sender of the INIT chunk will allocate
for this association, in bytes. This can then be used by the receiver of
the a_rwnd, to know how much data it can send out without being
SACK’ed. This window should not be lessened, but it might by sending

47

Chapter 2. TCP/IP repetition

the new a_rwnd in a SACK chunk.

Number of Outbound Streams - bit 96-111. This specifies the maximum
number of outbound streams that the connecting host wishes to create
to the receiving host. The value must not be 0, and if it is, the receiving
host should ABORT the association immediately. There is no
negotiation of the minimum number of outbound or inbound streams, it
is simply set to the lowest that either host has set in the header.

Number of Inbound Streams - bit 112-127. Specifies the maximum
number of inbound connections that the sending peer will allow the
receiving host to create in this association. This must not be set to 0, or
the receiving host should ABORT the connection. There is no
negotiation of the minimum number of outbound or inbound streams, it
is simply set to the lowest that either host has set in the header.

Initial TSN - bit 128-159. This value sets the initial Transmit Sequence
Number (TSN) that the sender will use when sending data. The field
may be set to the same value as the Initiate Tag.

On top of the above mandatory fixed length headers, there are also
some optional variable length parameters that might be set, and at least
one of the IPv4, IPv6 or Hostname parameters must be set. Only one
Hostname may be set, and if a Hostname is set, no IPv4 or IPv6
parameters may be set. Multiple IPv4 and IPv6 parameters may also be
set in the same INIT chunk. Also, none of these parameters needs to
be set in case the sender only has one address that can be reached,
which is where the chunk should be coming from. These parameters
are used to set up which addresses may be used to connect to the
other end of the association. This is a full list of all the parameters
available in the INIT chunk:

Table 2-3. INIT Variable Parameters

Parameter Name Status Type Value
IPv4 Address Optional 5
IPv6 Address Optional 6
Cookie Preservative Optional 9

48

Chapter 2. TCP/IP repetition

Parameter Name Status Type Value
Host Name Address Optional 11
Supported Address Types Optional 12
Reserved for ECN Capable Optional 32768

Below we describe the three most common Parameters used in the

INIT chunk.

Table 1-22. IPv4 Parameter headers

0
o|1]2]|3|a|5]|6]7]|8]9

1
o|l1]2]|3|a|5]|6]7]|8]9

2
o|1|2|3]|4|5]|6]|7]|8]|9

o1

Type =5

Length =8

IPv4 Address

The IPv4 parameter is used to send an IPv4 address in the INIT chunk.
The IPv4 address can be used to send data through the association.
Multiple IPv4 and IPv6 addresses can be specified for a single SCTP

association.

Parameter Type - bit 0-15. This is always set to 5 for IPv4 address

parameters.

Length - bit 16-31. This is always set to 8 for IPv4 address parameters.
IPv4 Address - bit 32-63. This is an IPv4 address of the sending

endpoint.

Table 1-23. IPv6 Parameter headers

0
o|1]2]|3|a|5]|6|7]|8]|9

1
o|1|2|3|a|5]|6|7]|8]9

2
o|1|2|3]|a|5]|6|7]|8]9

0|1

Type =6

Length = 20

IPv6 Address

This parameter is used to send IPv6 addresses in the INIT chunk. This
address can then be used to contact the sending endpoint with this

association.

Type - bit 0-15. Always set to 6 for the IPv6 parameters.

Length bit 16-31. Always set to 20 for IPv6 parameters.

49

Chapter 2. TCP/IP repetition

IPv6 address - bit 32-159. This is an IPv6 address of the sending
endpoint that can be used to connect to by the receiving endpoint.

Table 1-21. Hostname Parameter headers

0
o|1]2]|3|a|s5]|6|7]|8]|9

1 2
o|l1]2]|3|a|s5|6|7|8|9|o]1]2|3]|a|5]|6]|7]|8]9

0|1

Type =11

Length

Host Name

The Hostname parameter is used to send a single hostname as an

address. Thea receiving

host must then look up the hostname and use

any and/or all of the addresses it receives from there. If a hostname
parameter is sent, no other IPv4, IPv6 or Hosthame parameters may be

sent.

Type - bit 0-15. This is always set to 11 for Hostname Parameters.

Length - bit 16-31. The length of the whole parameter, including type,
length and hostname field. The Hostname field is variable length. The
length is counted in bytes.

Hostname - bit 32-n. A variable length parameter containing a
hostname. The hostname is resolved by the receiving end to get the
addresses that can be used to contact the sending endpoint.

SCTP INIT ACK chunk

Table 1-19. INIT ACK chunk headers

0
o|1]2]|3|a|s5]|6|7]|8]9

1 2
o|l1]2]|3|a|s5|6|7|8|9|o]1]2|3]|4a|5]|6]|7]8]9

o1

Type =2

Chunk Flags Length

Initiate Tag

Advertised Receiver Window Credit

Number of Outbound Streams [Number of Inbound Streams

Initial TSN

Optional/Variable-Length Parameters

The INIT ACK chunk is sent in response to a INIT chunk and contains
basically the same headers, but with values from the recipient of the
original INIT chunk. In addition, it has two extra variable length

50

Chapter 2. TCP/IP repetition

parameters, the State Cookie and the Unrecognized Parameter
parameters.

Type - bit 0-7. This header is always set to 2 for INIT ACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole
packet, including everything in the headers, and the optional
parameters.

Initiate Tag - bit 32-63. The receiver of the Initiate Tag of the INIT ACK
chunk must save this value and copy it into the Verification Tag field of
every packet that it sends to the sender of the INIT ACK chunk. The
Initiate Tag must not be 0, and if it is, the receiver of the INIT ACK
chunk must close the connection with an ABORT .

Advertised Receiver Window Credit (a_rwnd) - bit 64-95. The dedicated
buffers that the sender of this chunk has located for traffic, counted in
bytes. The dedicated buffers should never be lowered to below this
value.

Number of Outbound Streams - bit 96-111. How many outbound
streams that the sending host wishes to create. Must not be 0, or the
receiver of the INIT ACK should ABORT the association. There is no
negotiation of the minimum number of outbound or inbound streams, it
is simply set to the lowest that either host has set in the header.

Number of Inbound Streams - bit 112-127. How many inbound streams
that the sending endpoint is willing to accept. Must not be 0, or the
receiver of the INIT ACK should ABORT the association. There is no
negotiation of the minimum number of outbound or inbound streams, it
is simply set to the lowest that either host has set in the header.

Initial TSN - bit 128-159. This is set to the Initial Transmission
Sequence Number (I-TSN) which will be used by the sending party in
the association to start with.

After this point, the INIT ACK chunk continues with optional
variable-length parameters. The parameters are exactly the same as for
the INIT chunk, with the exception of the addition of the State Cookie

51

Chapter 2. TCP/IP repetition

and the Unrecognized Parameters parameter, and the deletion of the
Supported Address Types parameter. The list in other words look like

this:

Table 2-4. INIT ACK Variable Parameters

Parameter Name Status Type Value
IPv4 Address Optional 5

IPv6 Address Optional 6

State Cookie Mandatory 7
Unrecognized Parameters Optional 8

Cookie Preservative Optional 9

Host Name Address Optional 11
Reserved for ECN Capable Optional 32768

Table 1-20. State Cookie Parameter headers

0
o|1]2]3|a|5|6]|7]|8]9

1
ol1|2]|3|a|5]|6|7]8]9

2
o|1]2]3]|4|5]6|7]|8]9

3
01

Type =7

Length

State Cookie Parameter

The State Cookie is used in INIT ACK to send a cookie to the other
host, and until the receiving host has replied with a COOKIE ECHO
chunk, the association is not guaranteed. This is to prevent basically the
same as a SYN attack in TCP protocaol.

Type - bit 0-15. Always set to 7 for all State Cookie parameters.

Length - bit 16-31. The size of the whole parameter, including the type,
length and State Cookie field in bytes.

State Cookie - bit 31-n. This parameter contains a cookie of variable
length. For a description on how this cookie is created, see the
RFC 2960 - Stream Control Transmission Protocol document.

52

Chapter 2. TCP/IP repetition

SCTP SACK chunk

Table 1-24. SACK chunk headers

0 1 2 3
o|1]2]|3]|a|5]|6|7|8|9]o|1]|2]|3|a|5]|6]|7|8|9]0|1]|2]|3|4a|5]|6]7]|8|9]0]1

Type =3 Chunk Flags Length

Cumulative TSN Ack

Advertised Receiver Window Credit (a_rwnd)

Number of Gap Ack Blocks = N | Number of Duplicate TSNs = X
Gap Ack Block #1 Start | Gap Ack Block #1 End
Gap Ack Block #N Start | Gap Ack Block #N End

Duplicate TSN #1

Duplicate TSN #X

The SACK chunk is used to tell the sender of DATA chunks which
chunks has been received and where there has been a gap in the
stream, based on the received TSN’s. Basically, the SACK chunk
acknowledges that it has received data up to a certain point (the
Cumulative TSN Ack parameter), and then adds Gap Ack Blocks for all
of the data that it has received after the Cumulative TSN Ack point. A
SACK chunk must not be sent more than once for every DATA chunk
that is received.

Type - bit 0-7. This header is always set to 3 for SACK chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole
chunk, including everything in the headers and all the parameters.

Cumulative TSN Ack - bit 32-63. This is the Cumulative TSN Ack
parameter, which is used to acknowledge data. The DATA chunk
receiver will use this field to tell the sending host that it has received all
data up to this point of the association. After this point, all data that has
not been specifically acknowledged by the Gap Ack Blocks will,
basically, be considered unaccounted for.

Advertised Receiver Window Credit (a_rwnd) - bit 64-95. The a_rwnd
field is basically the same as the a_rwnd in the INIT and INIT ACK
chunks, but can be used to raise or lower the a_rwnd value. Please

53

Chapter 2. TCP/IP repetition

read more in the RFC 2960 - Stream Control Transmission Protocol
document about this.

Number of Gap Ack Blocks - bit 96-111. The number of Gap Ack Blocks
listed in this chunk. Each Gap Ack Block takes up 32 bits in the chunk.

Number of Duplicate TSNs - bit 112-127. The number of DATA chunks
that has been duplicated. Each duplicated TSN is listed after the Gap
Ack Blocks in the chunk, and each TSN takes 32 bits to send.

Gap Ack Block #1 Start - bit 128-143. This is the first Gap Ack Block in
the SACK chunk. If there are no gaps in the received DATA chunk TSN
numbers, there will be no Gap Ack Blocks at all. However, if DATA
chunks are received out of order or some DATA chunks where lost
during transit to the host, there will be gaps. The gaps that has been
seen will be reported with Gap Ack Blocks. The Gap Ack Block start
point is calculated by adding the Gap Ack Block Start parameter to the
Cumulative TSN value. The calculated value is the start of the block.

Gap Ack Block #1 End - bit 144-159. This value reports the end of the
first Gap Ack Block in the stream. All the DATA chunks with the TSN
between the Gap Ack Block Start and the Gap Ack Block End has been
received. The Gap Ack Block End value is added to the Cumulative
TSN, just as the Start parameter, to get the actual last TSN of the block
chunks to be Acknowledged.

Gap Ack Block #N Start - bits variable. For every Gap Ack Block
counted in the Number of Gap Ack Blocks parameter, one Gap Ack
Block is added, until the final N block. le, if Number of Gap Ack Blocks
= 2, then there will be two Gap Ack Blocks in the SACK chunk. This is
the last one simply, and contains the same type of value as the Gap Ack
Block #1 Start.

Gap Ack Block #N End - bits variable. Same as for the Gap Ack Block
#N End, but for the end of the gap.

Duplicate TSN #1 - bits variable. These fields report a duplicate TSN, in
which case we have already received a specific chunk, but receive the
same TSN several times more. This can either be router glitches
(retransmitting already sent data) or a case of retransmission from the
sending endpoint, or a score of other possibilities. Each instance of a

54

Chapter 2. TCP/IP repetition

duplicate TSN should be reported once. For example, if 2 duplicate
TSN'’s has been received after acknowledging the first one, each of
these duplicate TSN’s should be sent sent in the next SACK message
that is being sent. If even more duplicate TSN's should appear after this
second SACK is sent, the new duplicates should be added in the next
SACK, and so on.

Duplicate TSN #X - bits variable. This is the last duplicate TSN
parameter, containing the same type of information as the first
parameter.

SCTP SHUTDOWN chunk

Table 1-28. SHUTDOWN chunk headers

0 1 2 3
o|1]2]|3]|a|5]|6|7|8|9]o|1]|2]|3|a|5]|6|7|8|9]0|1]|2]|3|4a|5]|6]|7]|8|9]0]|1

Type =7 Chunk Flags Length =8

Cumulative TSN Ack

The SHUTDOWN chunk is issued when one of the endpoints of a
connection wants to close the current association. The sending party
must empty all of its sending buffers before sending the SHUTDOWN
chunk, and must not send any more DATA chunks afterwards. The
receiver must also empty its sending buffers and must then send the
responding SHUTDOWN ACK chunk.

Type - bit 0-7. This header is always set to 7 for SHUTDOWN chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole
packet, including the Cumulative TSN Ack parameter. The length of the
SHUTDOWN chunk should always be 8.

Cumulative TSN Ack - bit 32-63. This is a Cumulative TSN Ack field,
just the same as in the SACK chunk. The Cumulative TSN Ack
acknowledges the last TSN received in sequence from the opposite
endpoint. This parameter does not, nor can the rest of the SHUTDOWN

55

Chapter 2. TCP/IP repetition

chunk either, acknowledge Gap Ack Blocks. The lack of a Gap Ack
Block in the SHUTDOWN chunk that was acknowledged before should
not be interpreted as if the previously acknowledged block was lost

again.

SCTP SHUTDOWN ACK chunk

Table 1-26. SHUTDOWN ACK chunk headers

0
o|1]2]|3]|4a|5]|6]|7

8|9

1
o|1|2|3]4a]s5

67|89

2
o|1|2|3]|4a|5]|6|7]|8]9

3
0|1

Type =8

Chunk Flags

Length =4

The SHUTDOWN ACK chunk is used to acknowledge a SHUTDOWN
chunk that has been received. Before the SHUTDOWN ACK chunk is
sent, all data in the sending buffers should be sent, but the buffers must
not accept any new data from the application. SCTP does not support
half-open connections as TCP does.

Type - bit 0-7. This header is always set to 8 for SHUTDOWN ACK

chunks.

Chunk flags - bit 8-15. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

Chunk Length - bit 16-31. The chunk length is the length of the whole
chunk. The length of the SHUTDOWN ACK chunk should always be 4.

SCTP SHUTDOWN COMPLETE chunk

Table 1-27. SHUTDOWN COMPLETE chunk headers

0
o|1]2]|3|4a|5]|6]|7

8|9

1
o|l1]2]3]a

5

67|89

2
o|1|2|3|a|5]|6]7]|8]9

3
0|1

Type =14

Reserved

T

Length =4

The SHUTDOWN COMPLETE chunk is sent, by the originating host of
the SHUTDOWN, in response to the SHUTDOWN ACK chunk. Itis
sent to acknowledge that the association is finally closed.

56

Chapter 2. TCP/IP repetition

Type - bit 0-7. Always set to 14 for SHUTDOWN COMPLETE chunks.

Reserved - bit 8-14. Not used today. Might be applicable for change.
See SCTP Common and generic headers for more information.

T-bit - bit 15. The T-bit is not set to signal that the sending host had a
Transmission Control Block (TCB) associated with this connection and
that it destroyed. If the T-bit was set, it had no TCB to destroy.

Length - bit 16-31. This is always set to 4 for SHUTDOWN COMPLETE
chunks, since the chunk should never be any larger, as long as no
updates to the standards are made.

TCP/IP destination driven routing

TCP/IP has grown in complexity quite a lot when it comes to the routing
part. In the beginning, most people thought it would be enough with
destination driven routing. The last few years, this has become more
and more complex however. Today, Linux can route on basically every
single field or bit in the IP header, and even based on TCP, UDP or
ICMP headers as well. This is called policy based routing, or advanced
routing.

This is simply a brief discussion on how the destination driven routing is
performed. When we send a packet from a sending host, the packet is
created. After this, the computer looks at the packet destination address
and compares it to the routing table that it has. If the destination
address is local, the packet is sent directly to that address via its
hardware MAC address. If the packet is on the other side of a gateway,
the packet is sent to the MAC address of the gateway. The gateway will
then look at the IP headers and see the destination address of the
packet. The destination address is looked up in the routing table again,
and the packet is sent to the next gateway, et cetera, until the packet
finally reaches the local network of the destination.

As you can see, this routing is very basic and simple. With the
advanced routing and policy based routing, this gets quite a bit more

57

Chapter 2. TCP/IP repetition

complex. We can route packets differently based on their source
address for example, or their TOS value, et cetera.

What's next?

This chapter has brought you up to date to fully understand the
subsequent chapters. The following has been gone through thoroughly:

TCP/IP structure

IP protocol functionality and headers.

TCP protocol functionality and headers.

UDP protocol functionality and headers.

ICMP protocol functionality and headers.

TCP/IP destination driven routing.

All of this will come in very handy later on when you start to work with
the actual firewall rulesets. All of this information are pieces that fit
together, and will lead to a better firewall design.

58

Chapter 3. IP filtering
iIntroduction

This chapter will discuss the theoretical details about an IP filter, what it
is, how it works and basic things such as where to place firewalls,
policies, etcetera.

Questions for this chapter may be, where to actually put the firewall? In
most cases, this is a simple question, but in large corporate
environments it may get trickier. What should the policies be? Who
should have access where? What is actually an IP filter? All of these
guestions should be fairly well answered later on in this chapter.

What is an IP filter

It is important to fully understand what an IP filter is. Iptables is an IP
filter, and if you don't fully understand this, you will get serious problems
when designing your firewalls in the future.

An IP filter operates mainly in layer 2, of the TCP/IP reference stack.
Iptables however has the ability to also work in layer 3, which actually
most IP filters of today have. But per definition an IP filter works in the
second layer.

If the IP filter implementation is strictly following the definition, it would
in other words only be able to filter packets based on their IP headers
(Source and Destionation address, TOS/DSCP/ECN, TTL, Protocol,
etc. Things that are actually in the IP header.) However, since the
Iptables implementation is not perfectly strict around this definition, it is
also able to filter packets based on other headers that lie deeper into
the packet (TCP, UDP, etc), and shallower (MAC source address).

There is one thing however, that iptables is rather strict about these
days. It does not "follow" streams or puzzle data together. This would
simply be too processor- and memoryconsuming . The implications of
this will be discussed a little bit more further on. It does keep track of

59

Chapter 3. IP filtering introduction

packets and see if they are of the same stream (via sequence numbers,
port numbers, etc.) almost exactly the same way as the real TCP/IP
stack. This is called connection tracking, and thanks to this we can do
things such as Destination and Source Network Address Translation
(generally called DNAT and SNAT), as well as state matching of
packets.

As | implied above, iptables can not connect data from different packets
to each other (per default), and hence you can never be fully certain
that you will see the complete data at all times. | am specifically
mentioning this since there are constantly at least a couple of questions
about this on the different mailing lists pertaining to netfilter and iptables
and how to do things that are generally considered a really bad idea.
For example, every time there is a new windows based virus, there are
a couple of different persons asking how to drop all streams containing
a specific string. The bad idea about this is that it is so easily
circumvented. For example if we match for something like this:

cmd.exe

Now, what happens if the virus/exploit writer is smart enough to make
the packet size so small that cmd winds up in one packet, and .exe
winds up in the next packet? Or what if the packet has to travel through
a network that has this small a packet size on its own? Yes, since these
string matching functions is unable to work across packet boundaries,
the packet will get through anyway.

Some of you may now be asking yourself, why don’t we simply make it
possible for the string matches, etcetera to read across packet
boundaries? It is actually fairly simple. It would be too costly on
processor time. Connection tracking is already taking way to much
processor time to be totally comforting. To add another extra layer of
complexity to connection tracking, such as this, would probably kill more
firewalls than anyone of us could expect. Not to think of how much
memory would be used for this simple task on each machine.

There is also a second reason for this functionality not being developed.
There is a technology called proxies. Proxies were developed to handle
traffic in the higher layers, and are hence much better at fullfilling these

requirements. Proxies were originally developed to handle downloads

60

Chapter 3. IP filtering introduction

and often used pages and to help you get the most out of slow Internet
connections. For example, Squid is a webproxy. A person who wants to
download a page sends the request, the proxy either grabs the request
or receives the request and opens the connection to the web browser,
and then connects to the webserver and downloads the file, and when it
has downloaded the file or page, it sends it to the client. Now, if a
second browser wants to read the same page again, the file or page is
already downloaded to the proxy, and can be sent directly, and saves
bandwidth for us.

As you may understand, proxies also have quite a lot of functionality to
go in and look at the actual content of the files that it downloads.
Because of this, they are much better at looking inside the whole
streams, files, pages etc.

Now, after warning you about the inherent problems of doing level 7
filtering in iptables and netfilter, there is actually a set of patches that
has attacked these problems. This is called
http://17-filter.sourceforge.net/ . It can be used to match on a lot of layer
7 protocols but is mainly to be used together with QoS and traffic
accounting, even though it can be used for pure filtering as well. The
[7-filter is still experimental and developed outside the kernel and
netfilter coreteam, and hence you will not hear more about it here.

IP filtering terms and expressions

To fully understand the upcoming chapters there are a few general
terms and expressions that one must understand, including a lot of
details regarding the TCP/IP chapter. This is a listing of the most
common terms used in IP filtering.

» Drop/Deny - When a packet is dropped or denied, it is simply deleted,
and no further actions are taken. No reply to tell the host it was
dropped, nor is the receiving host of the packet notified in any way.
The packet simply disappears.

61

Chapter 3. IP filtering introduction

Reject - This is basically the same as a drop or deny target or policy,
except that we also send a reply to the host sending the packet that
was dropped. The reply may be specified, or automatically calculated
to some value. (To this date, there is unfortunately no iptables
functionality to also send a packet notifying the receiving host of the
rejected packet what happened (ie, doing the reverse of the Reject
target). This would be very good in certain circumstances, since the
receiving host has no ability to stop Denial of Service attacks from
happening.)

State - A specific state of a packet in comparison to a whole stream
of packets. For example, if the packet is the first that the firewall sees
or knows about, it is considered new (the SYN packet in a TCP
connection), or if it is part of an already established connection that
the firewall knows about, it is considered to be established. States are
known through the connection tracking system, which keeps track of
all the sessions.

Chain - A chain contains a ruleset of rules that are applied on
packets that traverses the chain. Each chain has a specific purpose
(e.g., which table it is connected to, which specifies what this chain is
able to do), as well as a specific application area (e.g., only forwarded
packets, or only packets destined for this host). In iptables, there are
several different chains, which will be discussed in depth in later
chapters.

Table - Each table has a specific purpose, and in iptables there are 4
tables. The raw, nat, mangle and filter tables. For example, the filter
table is specifically designed to filter packets, while the nat table is
specifically designed to NAT (Network Address Translation) packets.

Match - This word can have two different meanings when it comes to
IP filtering. The first meaning would be a single match that tells a rule
that this header must contain this and this information. For example,
the --source match tells us that the source address must be a
specific network range or host address. The second meaning is if a
whole rule is a match. If the packet matches the whole rule, the jump
or target instructions will be carried out (e.g., the packet will be
dropped.)

62

Chapter 3. IP filtering introduction

Target - There is generally a target set for each rule in a ruleset. If
the rule has matched fully, the target specification tells us what to do
with the packet. For example, if we should drop or accept it, or NAT it,
etc. There is also something called a jump specification, for more
information see the jump description in this list. As a last note, there
might not be a target or jump for each rule, but there may be.

Rule - Arule is a set of a match or several matches together with a
single target in most implementations of IP filters, including the
iptables implementation. There are some implementations which let
you use several targets/actions per rule.

Ruleset - A ruleset is the complete set of rules that are put into a
whole IP filter implementation. In the case of iptables, this includes all
of the rules set in the filter, nat, raw and mangle tables, and in all of
the subsequent chains. Most of the time, they are written down in a
configuration file of some sort.

Jump - The jump instruction is closely related to a target. A jump
instruction is written exactly the same as a target in iptables, with the
exception that instead of writing a target name, you write the name of
another chain. If the rule matches, the packet will hence be sent to
this second chain and be processed as usual in that chain.

Connection tracking - A firewall which implements connection
tracking is able to track connections/streams simply put. The ability to
do so is often done at the impact of lots of processor and memory
usage. This is unfortunately true in iptables as well, but much work
has been done to work on this. However, the good side is that the
firewall will be much more secure with connection tracking properly
used by the implementer of the firewall policies.

Accept - To accept a packet and to let it through the firewall rules.
This is the opposite of the drop or deny targets, as well as the reject
target.

Policy - There are two kinds of policies that we speak about most of
the time when implementing a firewall. First we have the chain
policies, which tells the firewall implementation the default behaviour
to take on a packet if there was no rule that matched it. This is the

63

Chapter 3. IP filtering introduction

main usage of the word that we will use in this book. The second type
of policy is the security policy that we may have written
documentation on, for example for the whole company or for this
specific network segment. Security policies are very good documents
to have thought through properly and to study properly before starting
to actually implement the firewall.

How to plan an IP filter

One of the first steps to think about when planning the firewall is their
placement. This should be a fairly simple step since mostly your
networks should be fairly well segmented anyway. One of the first
places that comes to mind is the gateway between your local network(s)
and the Internet. This is a place where there should be fairly tight
security. Also, in larger networks it may be a good idea to separate
different divisions from each other via firewalls. For example, why
should the development team have access to the human resources
network, or why not protect the economic department from other
networks? Simply put, you don’t want an angry employee with the pink
slip tampering with the salary databases.

Simply put, the above means that you should plan your networks as well
as possible, and plan them to be segregated. Especially if the network
is medium- to big-sized (100 workstations or more, based on different
aspects of the network). In between these smaller networks, try to put
firewalls that will only allow the kind of traffic that you would like.

It may also be a good idea to create a De-Militarized Zone (DMZ) in
your network in case you have servers that are reached from the
Internet. A DMZ is a small physical network with servers, which is
closed down to the extreme. This lessens the risk of anyone actually
getting in to the machines in the DMZ, and it lessens the risk of anyone
actually getting in and downloading any trojans etc. from the outside.
The reason that they are called de-militarized zones is that they must
be reachable from both the inside and the outside, and hence they are
a kind of grey zone (DMZ simply put).

64

Chapter 3. IP filtering introduction

There are a couple of ways to set up the policies and default behaviours
in a firewall, and this section will discuss the actual theory that you
should think about before actually starting to implement your firewall,
and helping you to think through your decisions to the fullest extent.

Before we start, you should understand that most firewalls have default
behaviours. For example, if no rule in a specific chain matches, it can
be either dropped or accepted per default. Unfortunately, there is only
one policy per chain, but this is often easy to get around if we want to
have different policies per network interface etc.

There are two basic policies that we normally use. Either we drop
everything except that which we specify, or we accept everything except
that which we specifically drop. Most of the time, we are mostly
interested in the drop policy, and then accepting everything that we
want to allow specifically. This means that the firewall is more secure
per default, but it may also mean that you will have much more work in
front of you to simply get the firewall to operate properly.

Your first decision to make is to simply figure out which type of firewall
you should use. How big are the security concerns? What kind of
applications must be able to get through the firewall? Certain
applications are horrible to firewalls for the simple reason that they
negotiate ports to use for data streams inside a control session. This
makes it extremely hard for the firewall to know which ports to open up.
The most common applications works with iptables, but the more rare
ones do not work to this day, unfortunately.

o\e\-

\S)There are also some applications that work partially, such as ICQ. Normal
ICQ usage works perfectly, but not the chat or file sending functions, since
they require specific code to handle the protocol. Since the ICQ protocols
are not standardized (they are proprietary and may be changed at any
time) most IP filters have chosen to either keep the ICQ protocol handlers
out, or as patches that can be applied to the firewalls. Iptables have
chosen to keep them as separate patches.

It may also be a good idea to apply layered security measures, which
we have actually already discussed partially so far. What we mean with

65

Chapter 3. IP filtering introduction

this, is that you should use as many security measures as possible at
the same time, and don’t rely on any one single security concept.
Having this as a basic concept for your security will increase security
tenfold at least. For an example, let’s look at this.

LAN DMZ
Linux Web Servers

N
V.

{

Internet

Cisco PIX

As you can see, in this example | have in this example chosen to place
a Cisco PIX firewall at the perimeter of all three network connections. It
may NAT the internal LAN, as well as the DMZ if necessary. It may also
block all outgoing traffic except http return traffic as well as ftp and ssh
traffic. It can allow incoming http traffic from both the LAN and the
Internet, and ftp and ssh traffic from the LAN. On top of this, we note
that each webserver is based on Linux, and can hence throw iptables
and netfilter on each of the machines as well and add the same basic
policies on these. This way, if someone manages to break the Cisco
PIX, we can still rely on the netfilter firewalls locally on each machine,
and vice versa. This allows for so called layered security.

On top of this, we may add Snort on each of the machines. Snort is an

66

Chapter 3. IP filtering introduction

excellent open source network intrusion detection system (NIDS)
which looks for signatures in the packets that it sees, and if it sees a
signature of some kind of attack or breakin it can either e-mail the
administrator and notify him about it, or even make active responses to
the attack such as blocking the IP from which the attack originated. It
should be noted that active responses should not be used lightly since
snhort has a bad behaviour of reporting lots of false positives (e.g.,
reporting an attack which is not really an attack).

It could also be a good idea to throw in an proxy in front of the
webservers to catch some of the bad packets as well, which could also
be a possibility to throw in for all of the locally generated
webconnections. With a webproxy you can narrow down on traffic used
by webtraffic from your employees, as well as restrict their webusage to
some extent. As for a webproxy to your own webservers, you can use it
to block some of the most obvious connections to get through. A good
proxy that may be worth using is the Squid.

Another precaution that one can take is to install Tripwire. This is an
excellent last line of defense kind of application, it is generally
considered to be a Host Intrusion Detection System. What it does is to
make checksums of all the files specified in a configuration file, and
then it is run from cron once in a while to see that all of the specified
files are the same as before, or have not changed in an illegit way. This
program will in other words be able to find out if anyone has actually
been able to get through and tampered with the system. A suggestion is
to run this on all of the webservers.

One last thing to note is that it is always a good thing to follow
standards, as we know. As you have already seen with the ICQ
example, if you don't use standardized systems, things can go terribly
wrong. For your own environments, this can be ignored to some extent,
but if you are running a broadband service or modempool, it gets all the
more important. People who connect through you must always be able
to rely on your standardization, and you can’t expect everyone to run
the specific operating system of your choice. Some people want to run
Windows, some want to run Linux or even VMS and so on. If you base
your security on proprietary systems, you are in for some trouble.

67

Chapter 3. IP filtering introduction

A good example of this is certain broadband services that have popped
up in Sweden who base lots of security on Microsoft network logon.
This may sound like a great idea to begin with, but once we start
considering other operating systems and so on, this is no longer such a
good idea. How will someone running Linux get online? Or VAX/VMS?
Or HP/UX? With Linux it can be done of course, if it wasn't for the fact
that the network administrator refuses anyone to use the broadband
service if they are running linux by simply blocking them in such case.
However, this book is not a theological discussion of what is best, so
let's leave it as an example of why it is a bad idea to use non-standards.

What's next?

This chapter has gone through several of the basic IP filtering and
security measures that you can take to secure your networks,
workstations and servers. The following subjects have been brought up:

* |P filtering usage

* |P filtering policies

* Network planning
 Firewall planning

» Layered security techniques
* Network segmentation

In the next chapter we will take a quick look at what Network Address
Translation (NAT) is, and after that we will start looking closer at
Iptables and it’s functionality and actually start getting hands on with the
beast.

68

Chapter 4. Network Address
Translation Introduction

NAT is one of the biggestattractions of Linux and Iptables to this day it
seems. Instead of using fairly expensive third party solutions such as
Cisco PIX etc, a lot of smaller companies and personal users have
chosen to go with these solutions instead. One of the main reasons is
that it is cheap, and secure. It requires an old computer, a fairly new
Linux distribution which you can download for free from the Internet, a
spare network card or two and cabling.

This chapter will describe a little bit of the basic theory about NAT , what
it can be used for, how it works and what you should think about before
starting to work on these subjects.

What NAT is used for and basic terms
and expressions

Basically, NAT allows a host or several hosts to share the same IP
address in a way. For example, let's say we have a local network
consisting of 5-10 clients. We set their default gateways to point through
the NAT server. Normally the packet would simply be forwarded by the
gateway machine, but in the case of an NAT server it is a little bit
different.

NAT servers translates the source and destination addresses of
packets as we already said to different addresses. The NAT server
receives the packet, rewrites the source and/or destination address and
then recalculates the checksum of the packet. One of the most common
usages of NAT is the SNAT (Source Network Address Translation)
function. Basically, this is used in the above example if we can't afford
or see any real idea in having a real public IP for each and every one of
the clients. In that case, we use one of the private IP ranges for our
local network (for example, 192.168.1.0/24), and then we turn on SNAT

69

Chapter 4. Network Address Translation Introduction

for our local network. SNAT will then turn all 192.168.1.0 addresses into
it's own public IP (for example, 217.115.95.34). This way, there will be
5-10 clients or many many more using the same shared IP address.

There is also something called DNAT, which can be extremely helpful
when it comes to setting up servers etc. First of all, you can help the
greater good when it comes to saving IP space, second, you can get an
more or less totally impenetrable firewall in between your server and the
real server in an easy fashion, or simply share an IP for several servers
that are separated into several physically different servers. For example,
we may run a small company server farm containing a webserver and
ftp server on the same machine, while there is a physically separated
machine containing a couple of different chat services that the
employees working from home or on the road can use to keep in touch
with the employees that are on-site. We may then run all of these
services on the same IP from the outside via DNAT .

The above example is also based on separate port NAT ’ing, or often
called PNAT . We don't refer to this very often throughout this book,
since it is covered by the DNAT and SNAT functionality in netfilter.

In Linux, there are actually two separate types of NAT that can be used,
either Fast-NAT or Netfilter-NAT . Fast-NAT is implemented inside the
IP routing code of the Linux kernel, while Netfilter-NAT is also
implemented in the Linux kernel, but inside the netfilter code. Since this
book won't touch the IP routing code too closely, we will pretty much
leave it here, except for a few notes. Fast-NAT is generally called by this
name since it is much faster than the netfilter NAT code. It doesn’t keep
track of connections, and this is both its main pro and con. Connection
tracking takes a lot of processor power, and hence it is slower, which is
one of the main reasons that the Fast-NAT is faster than Netfilter-NAT .
As we also said, the bad thing about Fast-NAT doesn’t track
connections, which means it will not be able to do SNAT very well for
whole networks, neither will it be able to NAT complex protocols such
as FTP, IRC and other protocols that Netfilter-NAT is able to handle
very well. It is possible, but it will take much, much more work than
would be expected from the Netfilter implementation.

There is also a final word that is basically a synonym to SNAT, which is

70

Chapter 4. Network Address Translation Introduction

the Masquerade word. In Netfilter, masquerade is pretty much the same
as SNAT with the exception that masquerading will automatically set
the new source IP to the default IP address of the outgoing network
interface.

Caveats using NAT

As we have already explained to some extent, there are quite a lot of
minor caveats with using NAT . The main problem is certain protocols
and applications which may not work at all. Hopefully, these
applications are not too common in the networks that you administer,
and in such case, it should cause no huge problems.

The second and smaller problem is applications and protocols which
will only work partially. These protocols are more common than the
ones that will not work at all, which is quite unfortunate, but there isn’t
very much we can do about it as it seems. If complex protocols continue
to be built, this is a problem we will have to continue living with.
Especially if the protocols aren’t standardized.

The third, and largest problem, in my point of view, is the fact that the
user who sits behind a NAT server to get out on the internet will not be
able to run his own server. It could be done, of course, but it takes a lot
more time and work to set this up. In companies, this is probably
preferred over having tons of servers run by different employees that
are reachable from the Internet, without any supervision. However,
when it comes to home users, this should be avoided to the very last.
You should never as an Internet service provider NAT your customers
from a private IP range to a public IP. It will cause you more trouble than
it is worth having to deal with, and there will always be one or another
client which will want this or that protocol to work flawlessly. When it
doesn’t, you will be called down upon.

As one last note on the caveats of NAT, it should be mentioned that
NAT is actually just a hack more or less. NAT was a solution that was
worked out while the IANA and other organisations noted that the
Internet grew exponentially, and that the IP addresses would soon be in

71

Chapter 4. Network Address Translation Introduction

shortage. NAT was and is a short term solution to the problem of the
IPv4 (Yes, IP which we have talked about before is a short version of
IPv4 which stands for Internet Protocol version 4). The long term
solution to the IPv4 address shortage is the IPv6 protocol, which also
solves a ton of other problems. IPv6 has 128 bits assigned to their
addresses, while IPv4 only have 32 bits used for IP addresses. This is
an incredible increase in address space. It may seem like ridiculous to
have enough IP addresses to set one IP address for every atom in our
planet, but on the other hand, noone expected the IPv4 address range
to be too small either.

Example NAT machine in theory

This is a small theoretical scenario where we want a NAT server
between 2 different networks and an Internet connection. What we want
to do is to connect 2 networks to each other, and both networks should
have access to each other and the Internet. We will discuss the
hardware questions you should take into consideration, as well as other
theory you should think about before actually starting to implement the
NAT machine.

What is needed to build a NAT machine

Before we discuss anything further, we should start by looking at what
kind of hardware is needed to build a Linux machine doing NAT . For
most smaller networks, this should be no problem, but if you are starting
to look at larger networks, it can actually become one. The biggest
problem with NAT is that it eats resources quite fast. For a small private
network with possibly 1-10 users, a 486 with 32 MB of ram will do more
than enough. However, if you are starting to get up around 100 or more
users, you should start considering what kind of hardware you should
look at. Of course, it is also a good idea to consider bandwidth usage,
and how many connections will be open at the same time. Generally,
spare computers will do very well however, and this is one of the big
pros of using a Linux based firewall. You can use old scrap hardware

72

Chapter 4. Network Address Translation Introduction

that you have left over, and hence the firewall will be very cheap in
comparison to other firewalls.

You will also need to consider network cards. How many separate
networks will connect to your NAT/filter machine? Most of the time it is
simply enough to connect one network to an Internet connection. If you
connect to the Internet via ethernet, you should generally have 2
ethernet cards, etcetera. It can be a good idea to choose 10/100 mbit/s
network cards of relatively good brands for this for scalability, but most
any kinds of cards will do as long as they have drivers in the Linux
kernel. A note on this matter: avoid using or getting network cards that
don’t have drivers actually in the Linux kernel distribution. | have on
several occasions found network cards/brands that have separately
distributed drivers on discs that work dismally. They are generally not
very well maintained, and if you get them to work on your kernel of
choice to begin with, the chance that they will actually work on the next
major Linux kernel upgrade is very small. This will most of the time
mean that you may have to get a little bit more costly network cards, but
in the end it is worth it.

As a note, if you are going to build your firewall on really old hardware, it
is suggested that you at least try to use PCI buses or better as far as
possible. First of all, the network cards will hopefully be possible to use
in the future when you upgrade. Also, ISA buses are extremely slow and
heavy on the CPU usage. This means that putting a lot of load onto ISA
network cards can next to kill your machine.

Finally, one thing more to consider is how much memory you put into
the NAT/firewall machine. It is a good idea to put in at least more than
64 MB of memory if possible, even if it is possible run it on 32MB of
memory. NAT isn’t extremely huge on memory consumption, but it may
be wise to add as much as possible just in case you will get more traffic
than expected.

As you can see, there is quite a lot to think about when it comes to
hardware. But, to be completely honest, in most cases you don’'t need
to think about these points at all, unless you are building a NAT
machine for a large network or company. Most home users need not
think about this, but may more or less use whatever hardware they have

73

Chapter 4. Network Address Translation Introduction

handy. There are no complete comparisons and tests on this topic, but
you should fare rather well with just a little bit of common sense.

Placement of NAT machines

This should look fairly simple, however, it may be harder than you
originally thought in large networks. In general, the NAT machine
should be placed on the perimeter of the network, just like any filtering
machine out there. This, most of the time, means that the NAT and
filtering machines are the same machine, of course. Also worth a
thought, if you have very large networks, it may be worth splitting the
network into smaller networks and assign a NAT/filtering machine for
each of these networks. Since NAT takes quite a lot of processing
power, this will definitely help keep round trip time (RTT, the time it
takes for a packet to reach a destination and the return packet to get
back) down.

In our example network as we described above, with two networks and
an Internet connection we should, in other words, look at how large the
two networks are. If we can consider them to be small and depending
on what requirements the clients have, a couple of hundred clients
should be no problem on a decent NAT machine. Otherwise, we could
have split up the load over several machines by setting public IP’s on
smaller NAT machines, each handling their own smaller segment of the
network and then let the traffic congregate over a specific routing only
machine. This of course takes into consideration that you must have
enough public IP’s for all of your NAT machines, and that they are
routed through your routing machine.

How to place proxies

Proxies are a general problem when it comes to NAT in most cases
unfortunately, especially transparent proxies. Normal proxies should not
cause too much trouble, but creating a transparent proxy is a dog to get
to work, especially on larger networks. The first problem is that proxies

74

Chapter 4. Network Address Translation Introduction

take quite a lot of processing power, just the same as NAT does. To put
both of these on the same machine is not advisable if you are going to
handle large network traffic. The second problem is that if you NAT the
source IP as well as the destination IP, the proxy will not be able to
know what hosts to contact. E.g., which server is the client trying to
contact? Since all that information is lost during the NAT translation
since the packets can’t contain that information as well if they are

NAT ’ed, it's a problem. Locally, this has been solved by adding the
information in the internal data structures that are created for the
packets, and hence proxies such as squid can get the information.

As you can see, the problem is that you don’t have much of a choice if
you are going to run a transparent proxy. There are, of course,
possibilities, but they are not advisable really. One possibility is to create
a proxy outside the firewall and create a routing entry that routes all web
traffic through that machine, and then locally on the proxy machine NAT
the packets to the proper ports for the proxy. This way, the information
is preserved all the way to the proxy machine and is still available on it.

The second possibility is to simply create a proxy outside the firewall,
and then block all webtraffic except the traffic going to the proxy. This
way, you will force all users to actually use the proxy. It's a crude way of
doing it, but it will hopefully work.

The final stage of our NAT machine

As a final step, we should bring all of this information together, and see
how we would solve the NAT machine then. Let’s take a look at a
picture of the networks and how it looks. We have decided to put a
proxy just outside the NAT/filtering machine as described above, but
inside counting from the router. This area could be counted upon as an
DMZ in a sense, with the NAT/filter machine being a router between the
DMZ and the two company networks. You can see the exact layout we
are discussing in the image below.

75

Chapter 4. Network Address Translation Introduction

LAN 1 LAN 2
N/ ’
%li!"a NAT machine
Exl
v
DMZ

Internet

All the normal traffic from the NAT 'ed networks will be sent through the
DMZ directly to the router, which will send the traffic on out to the
internet. Except, yes, you guessed it, webtraffic which is instead marked
inside the netfilter part of the NAT machine, and then routed based on
the mark and to the proxy machine. Let's take a look at what | am

76

Chapter 4. Network Address Translation Introduction

talking about. Say a http packet is seen by the NAT machine. The
mangle table can then be used to mark the packet with a netfilter mark
(also known as nfmark). Even later when we should route the packets
to our router, we will be able to check for the nfmark within the routing
tables, and based on this mark, we can choose to route the http packets
to the proxy server. The proxy server will then do it's work on the
packets. We will touch these subjects to some extent later on in the
document, even though much of the routing based part is happening
inside the advanced routing topics.

The NAT machine has a public IP available over the internet, as well as
the router and any other machines that may be available on the Internet.
All of the machines inside the NAT 'ed networks will be using private
IP’s, hence saving both a lot of cash, and the Internet address space.

What's next?

We have in this chapter in detail explained NAT and the theory around
it. In special we have discussed a couple of different angles to use, and
some of the normal problems that may arise from using NAT together
with proxies. This chapter has covered the following areas in detail.

* NAT usage

* NAT components

* NAT history

» Terms and words used about NAT

» Hardware discussions regarding NAT
* Problems with NAT

All of this will always be of use when you are working with netfilter and
iptables. NAT is very widely used in today’s networks, even though it is
only an intermediary solution for a very unfortunate and unexpected

problem. NAT will of course be discussed more in depth later on when

77

Chapter 4. Network Address Translation Introduction

we start looking at the Linux netfilter and iptables implementations in
more depth.

78

Chapter 5. Preparations

This chapter is aimed at getting you started and to help you understand
the role Netfilter and iptables play in Linux today. This chapter should
hopefully get you set up and finished to go with your experimentation,
and installation of your firewall. Given time and perseverance, you'll
then get it to perform exactly as you want it to.

Where to get iptables

The iptables user-space package can be downloaded from the
http://www.netfilter.org/ . The iptables package also makes use of
kernel space facilities which can be configured into the kernel during
make configure . The necessary steps will be discussed a bit further
down in this document.

Kernel setup

To run the pure basics of iptables you need to configure the following
options into the kernel while doing make config or one of its related
commands:

CONFIG_PACKET - This option allows applications and utilities that
need to work directly with various network devices. Examples of such
utilities are tcpdump or snort.

No\e\-

\)CONFIG_PACKET is strictly speaking not needed for iptables to work,
but since it contains so many uses, | have chosen to include it here. If you
do not want it, don’t include it.

CONFIG_NETFILTER - This option is required if you're going to use
your computer as a firewall or gateway to the Internet. In other words,

79

Chapter 5. Preparations

this is most definitely required for anything in this tutorial to work at all. |
assume you will want this, since you are reading this.

And of course you need to add the proper drivers for your interfaces to
work properly, i.e. Ethernet adapter, PPP and SLIP interfaces. The
above will only add some of the pure basics in iptables. You won't be
able to do anything productive to be honest, it just adds the framework
to the kernel. If you want to use the more advanced options in Iptables,
you need to set up the proper configuration options in your kernel. Here
we will show you the options available in a basic 2.4.9 kernel and a brief
explanation:

CONFIG_IP_NF_CONNTRACK - This module is needed to make
connection tracking. Connection tracking is used by, among other
things, NAT and Masquerading. If you need to firewall machines on a
LAN you most definitely should mark this option. For example, this
module is required by the rc.firewall.txt script to work.

CONFIG_IP_NF_FTP - This module is required if you want to do
connection tracking on FTP connections. Since FTP connections are
quite hard to do connection tracking on in normal cases, conntrack
needs a so called helper; this option compiles the helper. If you do not
add this module you won't be able to FTP through a firewall or gateway
properly.

CONFIG_IP_NF_IPTABLES - This option is required if you want do any
kind of filtering, masquerading or NAT . It adds the whole iptables
identification framework to the kernel. Without this you won't be able to
do anything at all with iptables.

CONFIG_IP_NF_MATCH_LIMIT - This module isn’t exactly required
but it's used in the example rc.firewall.txt. This option provides the
LIMIT match, that adds the possibility to control how many packets per
minute that are to be matched, governed by an appropriate rule. For
example, -m limit --limit 3/minute would match a maximum of 3
packets per minute. This module can also be used to avoid certain
Denial of Service attacks.

CONFIG_IP_NF_MATCH_MAC - This allows us to match packets
based on MAC addresses. Every Ethernet adapter has its own MAC

80

Chapter 5. Preparations

address. We could for instance block packets based on what MAC
address is used and block a certain computer pretty well since the MAC
address very seldom changes. We don't use this option in the
rc.firewall.txt example or anywhere else.

CONFIG_IP_NF_MATCH_MARK - This allows us to use a MARK
match. For example, if we use the target MARK we could mark a packet
and then depending on if this packet is marked further on in the table,
we can match based on this mark. This option is the actual match
MARK, and further down we will describe the actual target MARK.

CONFIG_IP_NF_MATCH_MULTIPORT - This module allows us to
match packets with a whole range of destination ports or source ports.
Normally this wouldn’t be possible, but with this match it is.

CONFIG_IP_NF_MATCH_TOS - With this match we can match
packets based on their TOS field. TOS stands for Type Of Service. TOS
can also be set by certain rules in the mangle table and via the ip/tc
commands.

CONFIG_IP_NF_MATCH_TCPMSS - This option adds the possibility
for us to match TCP packets based on their MSS field.

CONFIG_IP_NF_MATCH_STATE - This is one of the biggest news in
comparison to ipchains . With this module we can do stateful matching
on packets. For example, if we have already seen traffic in two
directions in a TCP connection, this packet will be counted as
ESTABLISHED . This module is used extensively in the rc.firewall.txt
example.

CONFIG_IP_NF_MATCH_UNCLEAN - This module will add the
possibility for us to match IP, TCP, UDP and ICMP packets that don’t
conform to type or are invalid. We could for example drop these
packets, but we never know if they are legitimate or not. Note that this
match is still experimental and might not work perfectly in all cases.

CONFIG_IP_NF_MATCH_OWNER - This option will add the possibility
for us to do matching based on the owner of a socket. For example, we
can allow only the user root to have Internet access. This module was
originally just written as an example on what could be done with the

81

Chapter 5. Preparations

new iptables . Note that this match is still experimental and might not
work for everyone.

CONFIG_IP_NF_FILTER - This module will add the basic filter table
which will enable you to do IP filtering at all. In the filter table you'll find
the INPUT, FORWARD and OUTPUT chains. This module is required if
you plan to do any kind of filtering on packets that you receive and send.

CONFIG_IP_NF_TARGET_REJECT - This target allows us to specify
that an ICMP error message should be sent in reply to incoming
packets, instead of plainly dropping them dead to the floor. Keep in
mind that TCP connections, as opposed to ICMP and UDP, are always
reset or refused with a TCP RST packet.

CONFIG_IP_NF_TARGET_MIRROR - This allows packets to be
bounced back to the sender of the packet. For example, if we set up a
MIRROR target on destination port HTTP on our INPUT chain and
someone tries to access this port, we would bounce his packets back to
him and finally he would probably see his own homepage.

W““\.‘“g\

\)The MIRROR target is not to be used lightly. It was originally built as a
test and example module, and will most probably be very dangerous to the
person setting it up (resulting in serious DDoS if among other things).

CONFIG_IP_NF_NAT - This module allows network address
translation, or NAT, in its different forms. This option gives us access to
the nat table in iptables. This option is required if we want to do port
forwarding, masquerading, etc. Note that this option is not required for
firewalling and masquerading of a LAN, but you should have it present
unless you are able to provide unique IP addresses for all hosts. Hence,
this option is required for the example rc.firewall.txt script to work
properly, and most definitely on your network if you do not have the
ability to add unique IP addresses as specified above.

CONFIG_IP_NF_TARGET_MASQUERADE - This module adds the
MASQUERADE target. For instance if we don’t know what IP we have
to the Internet this would be the preferred way of getting the IP instead
of using DNAT or SNAT . In other words, if we use DHCP, PPP, SLIP or

82

Chapter 5. Preparations

some other connection that assigns us an IP, we need to use this target
instead of SNAT . Masquerading gives a slightly higher load on the
computer than NAT, but will work without us knowing the IP address in
advance.

CONFIG_IP_NF_TARGET_REDIRECT - This target is useful together
with application proxies, for example. Instead of letting a packet pass
right through, we remap them to go to our local box instead. In other
words, we have the possibility to make a transparent proxy this way.

CONFIG_IP_NF_TARGET_LOG - This adds the LOG target and its
functionality to iptables . We can use this module to log certain packets
to syslogd and hence see what is happening to the packet. This is
invaluable for security audits, forensics or debugging a script you are
writing.

CONFIG_IP_NF_TARGET_TCPMSS - This option can be used to
counter Internet Service Providers and servers who block ICMP
Fragmentation Needed packets. This can result in web-pages not
getting through, small mails getting through while larger mails don't, ssh
works but scp dies after handshake, etc. We can then use the TCPMSS
target to overcome this by clamping our MSS (Maximum Segment Size)
to the PMTU (Path Maximum Transmit Unit).

CONFIG_IP_NF_COMPAT_IPCHAINS - Adds a compatibility mode
with the obsolete ipchains . Do not look to this as any real long term
solution for solving migration from Linux 2.2 kernels to 2.4 kernels,
since it may well be gone with kernel 2.6.

CONFIG_IP_NF_COMPAT_IPFWADM - Compatibility mode with
obsolescent ipfwadm . Definitely don't look to this as a real long term
solution.

As you can see, there is a heap of options. | have briefly explained here
what kind of extra behaviors you can expect from each module. These
are only the options available in a vanilla Linux 2.4.9 kernel. If you
would like to take a look at more options, | suggest you look at the
patch-o-matic (POM) functions in Netfilter user-land which will add
heaps of other options in the kernel. POM fixes are additions that are
supposed to be added in the kernel in the future but have not quite

83

Chapter 5. Preparations

reached the kernel yet. This may be for various reasons - such as the
patch not being stable yet, to Linus Torvalds being unable to keep up, or
not wanting to let the patch in to the mainstream kernel yet since it is
still experimental.

You will need the following options compiled into your kernel, or as
modules, for the rc.firewall.txt script to work. If you need help with the
options that the other scripts need, look at the example firewall scripts
section.

« CONFIG_PACKET
« CONFIG_NETFILTER

« CONFIG_IP_NF_CONNTRACK

« CONFIG_IP_NF_FTP

« CONFIG_IP_NF_IRC

« CONFIG_IP_NF_IPTABLES

« CONFIG_IP_NF_FILTER

« CONFIG_IP_NF_NAT

« CONFIG_IP_NF_MATCH_STATE

« CONFIG_IP_NF_TARGET_LOG

« CONFIG_IP_NF_MATCH_LIMIT

« CONFIG_IP_NF_TARGET_MASQUERADE

At the very least the above will be required for the rc.firewall.txt script.
In the other example scripts | will explain what requirements they have
in their respective sections. For now, let’s try to stay focused on the
main script which you should be studying now.

User-land setup

First of all, let's look at how we compile the iptables package. It's
important to realize that for the most part configuration and compilation

84

Chapter 5. Preparations

of iptables goes hand in hand with the kernel configuration and
compilation. Certain distributions come with the iptables package
preinstalled, one of these is Red Hat. However, in old Red Hat it is
disabled per default. We will check closer on how to enable it and take a
look at other distributions further on in this chapter.

Compiling the user-land applications

First of all unpack the iptables package. Here, we have used the
iptables 1.2.6a package and a vanilla 2.4 kernel. Unpack as usual,
using bzip2 -cd iptables-1.2.6a.tar.bz2 | tar -xvf - (this can also be
accomplished with the tar -xjvf iptables-1.2.6a.tar.bz2 , which should
do pretty much the same as the first command. However, this may not
work with older versions of tar). The package should now be unpacked
properly into a directory named iptables-1.2.6a. For more information
read the iptables-1.2.6a/INSTALL file which contains pretty good
information on compiling and getting the program to run.

After this, there you have the option of configuring and installing extra
modules and options etcetera for the kernel. The step described here
will only check and install standard patches that are pending for
inclusion to the kernel, there are some even more experimental patches
further along, which may only be available when you carry out other
steps.

o€t
\,N 2 Some of these patches are highly experimental and may not be such a
good idea to install them. However, there are heaps of extremely
interesting matches and targets in this installation step so don’t be afraid
of at least looking at them.

To carry out this step we do something like this from the root of the
iptables package:

make pending-patches KERNEL_DIR=/usr/src/linux/

85

Chapter 5. Preparations

The variable KERNEL_DIR should point to the actual place that your
kernel source is located at. Normally this should be /usr/src/linux/ but this
may vary, and most probably you will know yourself where the kernel
source is available.

The above command only asks about certain patches that are just
about to enter the kernel anyway. There might be more patches and
additions that the developers of Netfilter are about to add to the kernel,
but is a bit further away from actually getting there. One way to install
these is by doing the following:

make most-of-pom KERNEL_DIR=/usr/src/linux/

The above command would ask about installing parts of what in
Netfilter world is called patch-o-matic , but still skip the most extreme
patches that might cause havoc in your kernel. Note that we say ask,
because that's what these commands actually do. They ask you before
anything is changed in the kernel source. To be able to install all of the
patch-o-matic stuff you will need to run the following command:

make patch-o-matic KERNEL_DIR=/ustr/src/linux/

Don't forget to read the help for each patch thoroughly before doing
anything. Some patches will destroy other patches while others may
destroy your kernel if used together with some patches from
patch-o-matic etc.

o€t
\,N)You may totally ignore the above steps if you don’t want to patch your
kernel, it is in other words not necessary to do the above. However, there
are some really interesting things in the patch-o-matic that you may want
to look at so there’s nothing bad in just running the commands and see
what they contain.

After this you are finished doing the patch-o-matic parts of installation,
you may now compile a new kernel making use of the new patches that
you have added to the source. Don't forget to configure the kernel again
since the new patches probably are not added to the configured
options. You may wait with the kernel compilation until after the
compilation of the user-land program iptables if you feel like it, though.

86

Chapter 5. Preparations

Continue by compiling the iptables user-land application. To compile
iptables you issue a simple command that looks like this:

make KERNEL_DIR=/usr/src/linux/

The user-land application should now compile properly. If not, you are
on your own, or you could subscribe to the Netfilter mailing list, where
you have the chance of asking for help with your problems. There are a
few things that might go wrong with the installation of iptables , so don't
panic if it won’t work. Try to think logically about it and find out what's
wrong, or get someone to help you.

If everything has worked smoothly, you're ready to install the binaries by
now. To do this, you would issue the following command to install them:

make install KERNEL _DIR=/usr/src/linux/

Hopefully everything should work in the program now. To use any of the
changes in the iptables user-land applications you should now
recompile and reinstall your kernel and modules, if you hadn’t done so
before. For more information about installing the user-land applications
from source, check the INSTALL file in the source which contains
excellent information on the subject of installation.

Installation on Red Hat 7.1

Red Hat 7.1 comes preinstalled with a 2.4.x kernel that has Netfilter
and iptables compiled in. It also contains all the basic user-land
programs and configuration files that are needed to run it. However, the
Red Hat people have disabled the whole thing by using the backward
compatible ipchains module. Annoying to say the least, and a lot of
people keep asking different mailing lists why iptables doesn’t work.
So, let’s take a brief look at how to turn the ipchains module off and how
to install iptables instead.

nNote!
\ The default Red Hat 7.1 installation today comes with a hopelessly old

version of the user-space applications, so you might want to compile a

87

Chapter 5. Preparations

new version of the applications as well as install a new and custom
compiled kernel before fully exploiting iptables .

First of all you will need to turn off the ipchains modules so it won't
start in the future. To do this, you will need to change some filenames in
the /etc/rc.d/ directory-structure. The following command should do it:

chkconfig --level 0123456 ipchains off

By doing this we move all the soft links that points to the
letc/re.d/init.d/ipchains script to K92ipchains. The first letter which per
default would be S, tells the initscripts to start the script. By changing
this to K we tell it to Kill the service instead, or to not run it if it was not
previously started. Now the service won't be started in the future.

However, to stop the service from actually running right now we need to
run another command. This is the service command which can be
used to work on currently running services. We would then issue the
following command to stop the ipchains service:

service ipchains stop

Finally, to start the iptables service. First of all, we need to know which
run-levels we want it to run in. Normally this would be in run-level 2, 3
and 5. These run-levels are used for the following things:

e 2. Multiuser without NFS or the same as 3 if there is no networking.
e 3. Full multiuser mode, i.e. the normal run-level to run in.

e 5. X11. This is used if you automatically boot into Xwindows.

To make iptables run in these run-levels we would do the following
commands:

chkconfig --level 235 iptables on

The above commands would in other words make the iptables service
run in run-level 2, 3 and 5. If you'd like the iptables service to run in
some other run-level you would have to issue the same command in
those. However, none of the other run-levels should be used, so you

88

Chapter 5. Preparations

should not really need to activate it for those run-levels. Level 1 is for
single user mode, i.e, when you need to fix a screwedup box. Level 4
should be unused, and level 6 is for shutting the computer down.

To activate the iptables service, we just run the following command:
service iptables start

There are no rules in the iptables script. To add rules to an Red Hat 7.1
box, there is two common ways. Firstly, you could edit the
/etc/rc.d/init.d/iptables script. This would have the undesired effect of
deleting all the rules if you updated the iptables package by RPM. The
other way would be to load the rule-set and then save it with the
iptables-save command and then have it loaded automatically by the
rc.d scripts.

First we will describe the how to set up iptables by cutting and pasting
to the iptables init.d script. To add rules that are to be run when the
computer starts the service, you add them under the start) section, or in
the start() function. Note, if you add the rules under the start) section
don't forget to stop the start() function in the start) section from running.
Also, don't forget to edit a the stop) section either which tells the script
what to do when the computer is going down for example, or when we
are entering a run-level that doesn’t require iptables . Also, don’t forget
to check out the restart section and condrestart. Note that all this work
will probably be trashed if you have, for example, Red Hat Network
automatically update your packages. It may also be trashed by updating
from the iptables RPM package.

The second way of doing the set up would require the following: First of
all, make and write a rule-set in a shell script file, or directly with
iptables , that will meet your requirements, and don't forget to
experiment a bit. When you find a set up that works without problems,
or as you can see without bugs, use the iptables-save command. You
could either use it normally, i.e. iptables-save >

/etc/sysconfig/iptables , which would save the rule-set to the file
letc/sysconfig/iptables. This file is automatically used by the iptables rc.d
script to restore the rule-set in the future. The other way is to save the
script by doing service iptables save , which would save the script
automatically to /etc/sysconfig/iptables. The next time you reboot the

89

Chapter 5. Preparations

computer, the iptables rc.d script will use the command
iptables-restore to restore the rule-set from the save-file
/etc/sysconfig/iptables. Do not intermix these two methods, since they
may heavily damage each other and render your firewall configuration
useless.

When all of these steps are finished, you can deinstall the currently
installed ipchains and iptables packages. This because we don’t want
the system to mix up the new iptables user-land application with the
old preinstalled iptables applications. This step is only necessary if you
are going to install iptables from the source package. It's not unusual
for the new and the old package to get mixed up, since the rpm based
installation installs the package in non-standard places and won't get
overwritten by the installation for the new iptables package. To carry
out the deinstallation, do as follows:

rpm -e iptables

And why keep ipchains lying around if you won't be using it any more?
Removing it is done the same way as with the old iptables binaries, etc:

rpm -e ipchains

Atfter all this has been completed, you will have finished with the update
of the iptables package from source, having followed the source
installation instructions. None of the old binaries, libraries or include
files etc should be lying around any more.

What's next?

This chapter has discussed how to get and how to install iptables and
netfilter on some common platforms. In most modern Linux distributions
iptables will come with the default installation, but sometimes it might be
necessary to compile your own kernel and iptables binaries to get the
absolutely latest updates. This chapter should have been a small help
managing this.

90

Chapter 5. Preparations

The next chapter will discuss how tables and chains are traversed, and
in what order this happens and so forth. This is very important to
comprehend to be able to build your own working rulesets in the future.
All the different tables will be discussed in some depth also since they
are created for different purposes.

91

Chapter 6. Traversing of tables
and chains

In this chapter we’'ll discuss how packets traverse the different chains,
and in which order. We will also discuss the order in which the tables
are traversed. We'll see how valuable this is later on, when we write our
own specific rules. We will also look at the points which certain other
components, that also are kernel dependent, enter into the picture.
Which is to say the different routing decisions and so on. This is
especially necessary if we want to write iptables rules that could
change routing patterns/rules for packets; i.e. why and how the packets
get routed, good examples of this are DNAT and SNAT. Not to be
forgotten are, of course, the TOS bits.

General

When a packet first enters the firewall, it hits the hardware and then
gets passed on to the proper device driver in the kernel. Then the
packet starts to go through a series of steps in the kernel, before it is
either sent to the correct application (locally), or forwarded to another
host - or whatever happens to it.

First, let us have a look at a packet that is destined for our own local
host. It would pass through the following steps before actually being
delivered to our application that receives it:

Table 6-1. Destination local host (our own machine)

Step [Table |Chain Comment
1 On the wire (e.g., Internet)
2 Comes in on the interface (e.g., eth0)

92

Chapter 6. Traversing of tables and chains

Step

Table

Chain

Comment

raw

PREROUTING

This chain is used to handle packets
before the connection tracking takes
place. It can be used to set a specific
connection not to be handled by the
connection tracking code for example.

This is when the connection tracking
code takes place as discussed in the
The state machine chapter.

mangle

PREROUTING

This chain is normally used for
mangling packets, i.e., changing TOS
and so on.

nat

PREROUTING

This chain is used for DNAT mainly.
Avoid filtering in this chain since it will
be bypassed in certain cases.

Routing decision, i.e., is the packet
destined for our local host or to be
forwarded and where.

mangle

INPUT

At this point, the mangle INPUT chain
is hit. We use this chain to mangle
packets, after they have been routed,
but before they are actually sent to the
process on the machine.

filter

INPUT

This is where we do filtering for all
incoming traffic destined for our local
host. Note that all incoming packets
destined for this host pass through this
chain, no matter what interface or in
which direction they came from.

10

Local process or application (i.e.,
server or client program).

Note that this time the packet was passed through the INPUT chain
instead of the FORWARD chain. Quite logical. Most probably the only

93

Chapter 6. Traversing of tables and chains

thing that'’s really logical about the traversing of tables and chains in
your eyes in the beginning, but if you continue to think about it, you'll
find it will get clearer in time.

Now we look at the outgoing packets from our own local host and what
steps they go through.

Table 6-2. Source local host (our own machine)

Step [Table |Chain Comment

1 Local process/application (i.e.,
server/client program)

2 Routing decision. What source address
to use, what outgoing interface to use,
and other necessary information that
needs to be gathered.

3 raw OUTPUT This is where you do work before the
connection tracking has taken place for
locally generated packets. You can
mark connections so that they will not
be tracked for example.

4 This is where the connection tracking
takes place for locally generated
packets, for example state changes et
cetera. This is discussed in more detalil
in the The state machine chapter.

5 mangle OUTPUT This is where we mangle packets, it is
suggested that you do not filter in this
chain since it can have side effects.

6 nat OUTPUT This chain can be used to NAT
outgoing packets from the firewall itself.

94

Chapter 6. Traversing of tables and chains

Step

Table

Chain

Comment

Routing decision, since the previous
mangle and nat changes may have
changed how the packet should be
routed.

filter

OUTPUT

This is where we filter packets going
out from the local host.

mangle

POSTROUTING

The POSTROUTING chain in the
mangle table is mainly used when we
want to do mangling on packets before
they leave our host, but after the actual
routing decisions. This chain will be hit
by both packets just traversing the
firewall, as well as packets created by
the firewall itself.

10

nat

POSTROUTING

This is where we do SNAT as
described earlier. It is suggested that
lyou don'’t do filtering here since it can
have side effects, and certain packets
might slip through even though you set
a default policy of DROP.

11

Goes out on some interface (e.g., eth0)

12

On the wire (e.g., Internet)

In this example, we're assuming that the packet is destined for another
host on another network. The packet goes through the different steps in
the following fashion:

Table 6-3. Forwarded packets

Step [Table |Chain Comment
1 On the wire (i.e., Internet)
2 Comes in on the interface (i.e., eth0)

95

Chapter 6. Traversing of tables and chains

Step

Table

Chain

Comment

raw

PREROUTING

Here you can set a connection to not
be handled by the connection tracking
system.

This is where the non-locally generated
connection tracking takes place, and is
also discussed more in detail in the
The state machine chapter.

mangle

PREROUTING

This chain is normally used for
mangling packets, i.e., changing TOS
and so on.

nat

PREROUTING

This chain is used for DNAT mainly.
SNAT is done further on. Avoid filtering
in this chain since it will be bypassed in
certain cases.

Routing decision, i.e., is the packet
destined for our local host or to be
forwarded and where.

mangle

FORWARD

The packet is then sent on to the
FORWARD chain of the mangle table.
This can be used for very specific
needs, where we want to mangle the
packets after the initial routing decision,
but before the last routing decision
made just before the packet is sent out.

filter

FORWARD

The packet gets routed onto the
FORWARD chain. Only forwarded
packets go through here, and here we
do all the filtering. Note that all traffic
that's forwarded goes through here (not
only in one direction), so you need to
think about it when writing your

rule-set.

96

Chapter 6. Traversing of tables and chains

Step

Table

Chain

Comment

10

mangle

POSTROUTING

This chain is used for specific types of
packet mangling that we wish to take
place after all kinds of routing decisions
have been done, but still on this
machine.

11

nat

POSTROUTING

This chain should first and foremost be
used for SNAT . Avoid doing filtering
here, since certain packets might pass
this chain without ever hitting it. This is
also where Masquerading is done.

12

Goes out on the outgoing interface (i.e.,
ethl).

13

Out on the wire again (i.e., LAN).

As you can see, there are quite a lot of steps to pass through. The
packet can be stopped at any of the iptables chains, or anywhere else
if it is malformed; however, we are mainly interested in the iptables
aspect of this lot. Do note that there are no specific chains or tables for
different interfaces or anything like that. FORWARD is always passed
by all packets that are forwarded over this firewall/router.

fiont

cat
\)Do not use the INPUT chain to filter on in the previous scenario! INPUT

is meant solely for packets to our local host that do not get routed to any
other destination.

We have now seen how the different chains are traversed in three
separate scenarios. If we were to figure out a good map of all this, it
would look something like this:

97

Chapter 6. Traversing of tables and chains

Routing
Decision

mangle

OUTPUT
filter

OUTPUT

NETWORK

raw
PREROUTING

mangle
PREROUTING

nat
PREROUTING

Routing
Decision

Routing
Decision

mangle
POSTROUTING

nat
POSTROUTING

NETWORK

98

mangle
FORWARD

filter
FORWARD

Chapter 6. Traversing of tables and chains

To clarify this image, consider this. If we get a packet into the first
routing decision that is not destined for the local machine itself, it will be
routed through the FORWARD chain. If the packet is, on the other
hand, destined for an IP address that the local machine is listening to,
we would send the packet through the INPUT chain and to the local
machine.

Also worth a note, is the fact that packets may be destined for the local
machine, but the destination address may be changed within the
PREROUTING chain by doing NAT . Since this takes place before the
first routing decision, the packet will be looked upon after this change.
Because of this, the routing may be changed before the routing decision
is done. Do note, that all packets will be going through one or the other
path in this image. If you DNAT a packet back to the same network that
it came from, it will still travel through the rest of the chains until it is
back out on the network.

T
\)If you feel that you want more information, you could use the
rc.test-iptables.txt script. This test script should give you the necessary
rules to test how the tables and chains are traversed.

Mangle table

This table should as we've already noted mainly be used for mangling
packets. In other words, you may freely use the mangle targets within
this table, to change TOS (Type Of Service) fields and the like.

caviont
\ 2 You are strongly advised not to use this table for any filtering; nor will any
DNAT, SNAT or Masquerading work in this table.

The following targets are only valid in the mangle table. They can not be
used outside the mangle table.

99

Chapter 6. Traversing of tables and chains

- TOS
. TTL

MARK
SECMARK

» CONNSECMARK

The TOS target is used to set and/or change the Type of Service field in
the packet. This could be used for setting up policies on the network
regarding how a packet should be routed and so on. Note that this has
not been perfected and is not really implemented on the Internet and
most of the routers don’t care about the value in this field, and
sometimes, they act faulty on what they get. Don't set this in other
words for packets going to the Internet unless you want to make routing
decisions on it, with iproute2.

The TTL target is used to change the TTL (Time To Live) field of the
packet. We could tell packets to only have a specific TTL and so on.
One good reason for this could be that we don’t want to give ourself
away to nosy Internet Service Providers. Some Internet Service
Providers do not like users running multiple computers on one single
connection, and there are some Internet Service Providers known to
look for a single host generating different TTL values, and take this as
one of many signs of multiple computers connected to a single
connection.

The MARK target is used to set special mark values to the packet.
These marks could then be recognized by the iproute2 programs to do
different routing on the packet depending on what mark they have, or if
they don’t have any. We could also do bandwidth limiting and Class
Based Queuing based on these marks.

The SECMARK target can be used to set security context marks on
single packets for usage in SELinux and other security systems that are
able to handle these marks. This is then used for very fine grained
security on what subsystems of the system can touch what packets et
cetera. The SECMARK can also be set on a whole connection with the
CONNSECMARK target.

100

Chapter 6. Traversing of tables and chains

CONNSECMARK is used to copy a security context to or from a single
packet from or to the whole connection. This is then used by the
SELinux and other security systems to do more fine-grained security on
a connection level.

Nat table

This table should only be used for NAT (Network Address Translation)
on different packets. In other words, it should only be used to translate
the packet’s source field or destination field. Note that, as we have said
before, only the first packet in a stream will hit this table. After this, the
rest of the packets will automatically have the same action taken on
them as the first packet. The actual targets that do these kind of things
are:

DNAT

SNAT
MASQUERADE
REDIRECT

The DNAT target is mainly used in cases where you have a public IP
and want to redirect accesses to the firewall to some other host (on a
DMz for example). In other words, we change the destination address
of the packet and reroute it to the host.

SNAT is mainly used for changing the source address of packets. For
the most part you'll hide your local networks or DMZ, etc. A very good
example would be that of a firewall of which we know outside IP
address, but need to substitute our local network’s IP numbers with that
of our firewall. With this target the firewall will automatically SNAT and
De-SNAT the packets, hence making it possible to make connections
from the LAN to the Internet. If your network uses 192.168.0.0/netmask
for example, the packets would never get back from the Internet,
because IANA has regulated these networks (among others) as private
and only for use in isolated LANSs.

101

Chapter 6. Traversing of tables and chains

The MASQUERADE target is used in exactly the same way as SNAT,
but the MASQUERADE target takes a little bit more overhead to
compute. The reason for this, is that each time that the MASQUERADE
target gets hit by a packet, it automatically checks for the IP address to
use, instead of doing as the SNAT target does - just using the single
configured IP address. The MASQUERADE target makes it possible to
work properly with Dynamic DHCP IP addresses that your ISP might
provide for your PPP, PPPoE or SLIP connections to the Internet.

Raw table

The raw table is mainly only used for one thing, and that is to set a mark
on packets that they should not be handled by the connection tracking
system. This is done by using the NOTRACK target on the packet. If a
connection is hit with the NOTRACK target, then conntrack will simply
not track the connection. This has been impossible to solve without
adding a new table, since none of the other tables are called until after
conntrack has actually been run on the packets, and been added to the
conntrack tables, or matched against an already available connection.
You can read more about this in the The state machine chapter.

This table only has the PREROUTING and OUTPUT chains. No other
chains are required since these are the only places that you can deal
with packets before they actually hit the connection tracking.

No\e\-

\)For this table to work, the iptable_raw module must be loaded. It will be
loaded automatically if iptables is run with the -t raw keywords, and if the
module is available.

Nc\e)
\ The raw table is a relatively new addition to iptables and the kernel. It
might not be available in early 2.6 and 2.4 kernels unless patched.

102

Chapter 6. Traversing of tables and chains

Filter table

The filter table is mainly used for filtering packets. We can match
packets and filter them in whatever way we want. This is the place that
we actually take action against packets and look at what they contain
and DROP or /ACCEPT them, depending on their content. Of course
we may also do prior filtering; however, this particular table is the place
for which filtering was designed. Almost all targets are usable in this
table. We will be more prolific about the filter table here; however you
now know that this table is the right place to do your main filtering.

User specified chains

If a packet enters a chain such as the INPUT chain in the filter table, we
can specify a jump rule to a different chain within the same table. The
new chain must be userspecified, it may not be a built-in chain such as
the INPUT or FORWARD chain for example. If we consider a pointer
pointing at the rule in the chain to execute, the pointer will go down from
rule to rule, from top to bottom until the chain traversal is either ended
by a target or the main chain (I.e., FORWARD, INPUT, et cetera) ends.
Once this happens, the default policy of the built-in chain will be applied.

103

Chapter 6. Traversing of tables and chains

rule5

7/ chainl

N rulel ?, chain2
— rule2 o rulel
= rule3 > 1l
S rule4 (—') rule3
_)

If one of the rules that matches points to another userspecified chain in
the jump specification, the pointer will jump over to this chain and then
start traversing that chain from the top to bottom. For example, see how
the rule execution jumps from rule number 3 to chain 2 in the above
image. The packet matched the matches contained in rule 3, and the
jumpl/target specification was set to send the packet on for further
examination in chain 2.

\ ot

\N)Userspecified chains can not have a default policy at the end of the chain.
Only built in chains can have this. This can be circumvented by appending
a single rule at the end of the chain that has no matches, and hence it will
behave as a default policy. If no rule is matched in a userspecified chain,
the default behaviour is to jump back to the originating chain. As seen in
the image above, the rule execution jumps from chain 2 and back to chain
1 rule 4, below the rule that sent the rule execution into chain 2 to begin
with.

Each and every rule in the user specified chain is traversed until either
one of the rules matches -- then the target specifies if the traversing

104

Chapter 6. Traversing of tables and chains

should end or continue -- or the end of the chain is reached. If the end
of the user specified chain is reached, the packet is sent back to the
invoking chain. The invoking chain can be either a user specified chain
or a built-in chain.

What's next?

In this chapter we have discussed several of the chains and tables and
how they are traversed, including the standard built-in chains and
userspecified chains. This is a very important area to understand. It
may be simple, but unless fully understood, fatal mistakes can be
equally easily.

The next chapter will deal in depth with the state machine of netffilter,
and how states are traversed and set on packets in a connection
tracking machine. The next chapter is in other words just as important
as this chapter has been.

105

Chapter 7. The state machine

This chapter will deal with the state machine and explain it in detail.
After reading through it, you should have a complete understanding of
how the State machine works. We will also go through a large set of
examples on how states are dealt with within the state machine itself.
These should clarify everything in practice.

Introduction

The state machine is a special part within iptables that should really not
be called the state machine at all, since it is really a connection tracking
machine. However, most people recognize it under the first name.
Throughout this chapter | will use these names more or less as if they
were synonymous. This should not be overly confusing. Connection
tracking is done to let the Netfilter framework know the state of a
specific connection. Firewalls that implement this are generally called
stateful firewalls. A stateful firewall is generally much more secure than
non-stateful firewalls since it allows us to write much tighter rule-sets.

Within iptables, packets can be related to tracked connections in four
different so called states. These are known as NEW, ESTABLISHED ,
RELATED and INVALID. We will discuss each of these in more depth
later. With the --state match we can easily control who or what is
allowed to initiate new sessions.

All of the connection tracking is done by special framework within the
kernel called conntrack. conntrack may be loaded either as a module, or
as an internal part of the kernel itself. Most of the time, we need and
want more specific connection tracking than the default conntrack
engine can maintain. Because of this, there are also more specific parts
of conntrack that handles the TCP, UDP or ICMP protocols among
others. These modules grab specific, unique, information from the
packets, so that they may keep track of each stream of data. The
information that conntrack gathers is then used to tell conntrack in
which state the stream is currently in. For example, UDP streams are,

106

Chapter 7. The state machine

generally, uniquely identified by their destination IP address, source IP
address, destination port and source port.

In previous kernels, we had the possibility to turn on and off
defragmentation. However, since iptables and Netfilter were introduced
and connection tracking in particular, this option was gotten rid of. The
reason for this is that connection tracking can not work properly without
defragmenting packets, and hence defragmenting has been
incorporated into conntrack and is carried out automatically. It can not
be turned off, except by turning off connection tracking.
Defragmentation is always carried out if connection tracking is turned
on.

All connection tracking is handled in the PREROUTING chain, except
locally generated packets which are handled in the OUTPUT chain.
What this means is that iptables will do all recalculation of states and so
on within the PREROUTING chain. If we send the initial packet in a
stream, the state gets set to NEW within the OUTPUT chain, and when
we receive a return packet, the state gets changed in the
PREROUTING chain to ESTABLISHED, and so on. If the first packet is
not originated by ourself, the NEW state is set within the PREROUTING
chain of course. So, all state changes and calculations are done within
the PREROUTING and OUTPUT chains of the nat table.

The conntrack entries

Let’s take a brief look at a conntrack entry and how to read them in
/proc/net/ip_conntrack. This gives a list of all the current entries in your
conntrack database. If you have the ip_conntrack module loaded, a cat
of /proc/net/ip_conntrack might look like:

tcp 6 117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775\
dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22 \
dport=32775 [ASSURED] use=2

107

Chapter 7. The state machine

This example contains all the information that the conntrack module
maintains to know which state a specific connection is in. First of all, we
have a protocol, which in this case is tcp. Next, the same value in
normal decimal coding. After this, we see how long this conntrack entry
has to live. This value is set to 117 seconds right now and is
decremented regularly until we see more traffic. This value is then reset
to the default value for the specific state that it is in at that relevant point
of time. Next comes the actual state that this entry is in at the present
point of time. In the above mentioned case we are looking at a packet
that is in the SYN_SENT state. The internal value of a connection is
slightly different from the ones used externally with iptables . The value
SYN_SENT tells us that we are looking at a connection that has only
seen a TCP SYN packet in one direction. Next, we see the source IP
address, destination IP address, source port and destination port. At
this point we see a specific keyword that tells us that we have seen no
return traffic for this connection. Lastly, we see what we expect of return
packets. The information details the source IP address and destination
IP address (which are both inverted, since the packet is to be directed
back to us). The same thing goes for the source port and destination
port of the connection. These are the values that should be of any
interest to us.

The connection tracking entries may take on a series of different values,
all specified in the conntrack headers available in
linux/include/netfilter-ipv4/ip_conntrack*.h files. These values are
dependent on which sub-protocol of IP we use. TCP, UDP or ICMP
protocols take specific default values as specified in
linux/include/netfilter-ipv4/ip_conntrack.h. We will look closer at this when
we look at each of the protocols; however, we will not use them
extensively through this chapter, since they are not used outside of the
conntrack internals. Also, depending on how this state changes, the
default value of the time until the connection is destroyed will also
change.

No\e\-
\)Recently there was a new patch made available in iptables patch-o-matic,
called tcp-window-tracking. This patch adds, among other things, all of the

108

Chapter 7. The state machine

above timeouts to special sysctl variables, which means that they can be
changed on the fly, while the system is still running. Hence, this makes it
unnecessary to recompile the kernel every time you want to change the
timeouts.

These can be altered via using specific system calls available in the
Iproc/sys/net/ipva/netfilter directory. You should in particular look at the
Iproc/sys/net/ipv4/netfilter/ip_ct_* variables.

When a connection has seen traffic in both directions, the conntrack
entry will erase the [UNREPLIED] flag, and then reset it. The entry that
tells us that the connection has not seen any traffic in both directions,
will be replaced by the [ASSURED] flag, to be found close to the end of
the entry. The [ASSURED] flag tells us that this connection is assured
and that it will not be erased if we reach the maximum possible tracked
connections. Thus, connections marked as [ASSURED] will not be
erased, contrary to the non-assured connections (those not marked as
[ASSURED]). How many connections that the connection tracking table
can hold depends upon a variable that can be set through the ip-sysctl
functions in recent kernels. The default value held by this entry varies
heavily depending on how much memory you have. On 128 MB of RAM
you will get 8192 possible entries, and at 256 MB of RAM, you will get
16376 entries. You can read and set your settings through the
Iproc/sys/net/ipvalip_conntrack_max setting.

A different way of doing this, that is more efficient, is to set the hashsize
option to the ip_conntrack module once this is loaded. Under normal
circumstances ip_conntrack_max equals 8 * hashsize. In other words,
setting the hashsize to 4096 will result in ip_conntrack_max being set to
32768 conntrack entries. An example of this would be:

work3:/home/blueflux# modprobe ip_conntrack hashsize=4096
work3:/home/blueflux# cat /proc/sys/net/ipv4/ip_conntrack_max
32768

work3:/home/blueflux#

109

Chapter 7. The state machine

User-land states

As you have seen, packets may take on several different states within
the kernel itself, depending on what protocol we are talking about.
However, outside the kernel, we only have the 4 states as described
previously. These states can mainly be used in conjunction with the
state match which will then be able to match packets based on their
current connection tracking state. The valid states are NEW,
ESTABLISHED, RELATED and INVALID. The following table will briefly
explain each possible state.

Table 7-1. User-land states

State

Explanation

NEW

The NEW state tells us that the packet is the first packet
that we see. This means that the first packet that the
conntrack module sees, within a specific connection,
will be matched. For example, if we see a SYN packet
and it is the first packet in a connection that we see, it
will match. However, the packet may as well not be a
SYN packet and still be considered NEW. This may
lead to certain problems in some instances, but it may
also be extremely helpful when we need to pick up lost
connections from other firewalls, or when a connection
has already timed out, but in reality is not closed.

ESTABLISHED

The ESTABLISHED state has seen traffic in both
directions and will then continuously match those
packets. ESTABLISHED connections are fairly easy to
understand. The only requirement to get into an
ESTABLISHED state is that one host sends a packet,
and that it later on gets a reply from the other host. The
NEW state will upon receipt of the reply packet to or
through the firewall change to the ESTABLISHED
state. ICMP reply messages can also be considered as
ESTABLISHED, if we created a packet that in turn
generated the reply ICMP message.

110

Chapter 7. The state machine

State

Explanation

RELATED

The RELATED state is one of the more tricky states. A
connection is considered RELATED when it is related
to another already ESTABLISHED connection. What
this means, is that for a connection to be considered as
RELATED, we must first have a connection that is
considered ESTABLISHED . The ESTABLISHED
connection will then spawn a connection outside of the
main connection. The newly spawned connection will
then be considered RELATED, if the conntrack module
is able to understand that it is RELATED. Some good
examples of connections that can be considered as
RELATED are the FTP-data connections that are
considered RELATED to the FTP control port, and the
DCC connections issued through IRC. This could be
used to allow ICMP error messages, FTP transfers and
DCC'’s to work properly through the firewall. Do note
that most TCP protocols and some UDP protocols that
rely on this mechanism are quite complex and send
connection information within the payload of the TCP
or UDP data segments, and hence require special
helper modules to be correctly understood.

INVALID

The INVALID state means that the packet can’t be
identified or that it does not have any state. This may
be due to several reasons, such as the system running
out of memory or ICMP error messages that do not
respond to any known connections. Generally, it is a

good idea to DROP everything in this state.

111

Chapter 7. The state machine

State Explanation

UNTRACKED [This is the UNTRACKED state. In brief, if a packet is
marked within the raw table with the NOTRACK target,
then that packet will show up as UNTRACKED in the
state machine. This also means that all RELATED
connections will not be seen, so some caution must be
taken when dealing with the UNTRACKED connections
since the state machine will not be able to see related
ICMP messages et cetera.

These states can be used together with the --state match to match
packets based on their connection tracking state. This is what makes
the state machine so incredibly strong and efficient for our firewall.
Previously, we often had to open up all ports above 1024 to let all traffic
back into our local networks again. With the state machine in place this
is not necessary any longer, since we can now just open up the firewall
for return traffic and not for all kinds of other traffic.

TCP connections

In this section and the upcoming ones, we will take a closer look at the
states and how they are handled for each of the three basic protocols
TCP, UDP and ICMP. Also, we will take a closer look at how
connections are handled per default, if they can not be classified as
either of these three protocols. We have chosen to start out with the
TCP protocol since it is a stateful protocol in itself, and has a lot of
interesting details with regard to the state machine in iptables.

A TCP connection is always initiated with the 3-way handshake, which
establishes and negotiates the actual connection over which data will
be sent. The whole session is begun with a SYN packet, then a
SYN/ACK packet and finally an ACK packet to acknowledge the whole
session establishment. At this point the connection is established and
able to start sending data. The big problem is, how does connection
tracking hook up into this? Quite simply really.

112

Chapter 7. The state machine

As far as the user is concerned, connection tracking works basically the
same for all connection types. Have a look at the picture below to see
exactly what state the stream enters during the different stages of the
connection. As you can see, the connection tracking code does not
really follow the flow of the TCP connection, from the users viewpoint.
Once it has seen one packet(the SYN), it considers the connection as
NEW. Once it sees the return packet(SYN/ACK), it considers the
connection as ESTABLISHED . If you think about this a second, you will
understand why. With this particular implementation, you can allow
NEW and ESTABLISHED packets to leave your local network, only
allow ESTABLISHED connections back, and that will work perfectly.
Conversely, if the connection tracking machine were to consider the
whole connection establishment as NEW, we would never really be able
to stop outside connections to our local network, since we would have
to allow NEW packets back in again. To make things more complicated,
there are a number of other internal states that are used for TCP
connections inside the kernel, but which are not available for us in
User-land. Roughly, they follow the state standards specified within
RFC 793 - Transmission Control Protocol on pages 21-23. We will
consider these in more detail further along in this section.

Client Firewall Server

SYN
NEW

SYN/ACK

As you can see, it is really quite simple, seen from the user’s point of
view. However, looking at the whole construction from the kernel's point
of view, it’s a little more difficult. Let's look at an example. Consider

ESTABLISHED
ACK

113

Chapter 7. The state machine

exactly how the connection states change in the /proc/net/ip_conntrack
table. The first state is reported upon receipt of the first SYN packet in a
connection.

tcp 6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031\
dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23\
dport=1031 use=1

As you can see from the above entry, we have a precise state in which
a SYN packet has been sent, (the SYN_SENT flag is set), and to which
as yet no reply has been sent (witness the [UNREPLIED] flag). The
next internal state will be reached when we see another packet in the
other direction.

tcp 657 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031\
use=1

Now we have received a corresponding SYN/ACK in return. As soon as
this packet has been received, the state changes once again, this time
to SYN_RECV. SYN_RECYV tells us that the original SYN was
delivered correctly and that the SYN/ACK return packet also got
through the firewall properly. Moreover, this connection tracking entry
has now seen traffic in both directions and is hence considered as
having been replied to. This is not explicit, but rather assumed, as was
the [UNREPLIED] flag above. The final step will be reached once we
have seen the final ACK in the 3-way handshake.

tcp 6431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35\
sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5\
sport=23 dport=1031 [ASSURED] use=1

In the last example, we have gotten the final ACK in the 3-way
handshake and the connection has entered the ESTABLISHED state,
as far as the internal mechanisms of iptables are aware. Normally, the
stream will be ASSURED by now.

114

Chapter 7. The state machine

A connection may also enter the ESTABLISHED state, but not
be[ASSURED]. This happens if we have connection pickup turned on
(Requires the tcp-window-tracking patch, and the
ip_conntrack_tcp_loose to be setto 1 or higher). The default, without
the tcp-window-tracking patch, is to have this behaviour, and is not
changeable.

When a TCP connection is closed down, it is done in the following way
and takes the following states.

Pl ESTABLISHED
ACK
ESTABLISHED
ACK
FIN/ACK
ESTABLISHED
ACK
CLOSED

As you can see, the connection is never really closed until the last ACK
is sent. Do note that this picture only describes how it is closed down
under normal circumstances. A connection may also, for example, be
closed by sending a RST (reset), if the connection were to be refused.
In this case, the connection would be closed down immediately.

When the TCP connection has been closed down, the connection
enters the TIME_WAIT state, which is per default set to 2 minutes. This
is used so that all packets that have gotten out of order can still get
through our rule-set, even after the connection has already closed. This

115

Chapter 7. The state machine

is used as a kind of buffer time so that packets that have gotten stuck in
one or another congested router can still get to the firewall, or to the
other end of the connection.

If the connection is reset by a RST packet, the state is changed to
CLOSE. This means that the connection per default has 10 seconds
before the whole connection is definitely closed down. RST packets are
not acknowledged in any sense, and will break the connection directly.
There are also other states than the ones we have told you about so far.
Here is the complete list of possible states that a TCP stream may take,
and their timeout values.

Table 7-2. Internal states

State Timeout value
NONE 30 minutes
ESTABLISHED 5 days
SYN_SENT 2 minutes
SYN_RECV 60 seconds
FIN_WAIT 2 minutes
TIME_WAIT 2 minutes
CLOSE 10 seconds
CLOSE_WAIT 12 hours
LAST_ACK 30 seconds
LISTEN 2 minutes

These values are most definitely not absolute. They may change with
kernel revisions, and they may also be changed via the proc file-system
in the /proc/sys/net/ipva/netfilter/ip_ct_tcp_* variables. The default values
should, however, be fairly well established in practice. These values are
set in seconds. Early versions of the patch used jiffies (which was a
bug).

116

Chapter 7. The state machine

o€t
\S)Also note that the User-land side of the state machine does not look at
TCP flags (i.e., RST, ACK, and SYN are flags) set in the TCP packets.
This is generally bad, since you may want to allow packets in the NEW
state to get through the firewall, but when you specify the NEW flag, you
will in most cases mean SYN packets.

This is not what happens with the current state implementation; instead,
even a packet with no bit set or an ACK flag, will count as NEW. This can
be used for redundant firewalling and so on, but it is generally extremely
bad on your home network, where you only have a single firewall. To get
around this behavior, you could use the command explained in the

State NEW packets but no SYN bit set section of the

Common problems and questions appendix. Another way is to install the
tcp-window-tracking extension from patch-o-matic , and set the
/proc/sys/net/ipv4/netfilter/ip_conntrack_tcp_loose to zero, which will make the
firewall drop all NEW packets with anything but the SYN flag set.

UDP connections

UDP connections are in themselves not stateful connections, but rather
stateless. There are several reasons why, mainly because they don't
contain any connection establishment or connection closing; most of all
they lack sequencing. Receiving two UDP datagrams in a specific order
does not say anything about the order in which they were sent. It is,
however, still possible to set states on the connections within the kernel.
Let's have a look at how a connection can be tracked and how it might
look in conntrack.

117

Chapter 7. The state machine

Client Firewall Server
UDP Packet
NEW

UDP Packet

As you can see, the connection is brought up almost exactly in the
same way as a TCP connection. That is, from the user-land point of
view. Internally, conntrack information looks quite a bit different, but
intrinsically the details are the same. First of all, let's have a look at the
entry after the initial UDP packet has been sent.

ESTABLISHED

udp 17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025\
[UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025\
dport=137 use=1

As you can see from the first and second values, this is an UDP packet.
The first is the protocol name, and the second is protocol number. This
is just the same as for TCP connections. The third value marks how
many seconds this state entry has to live. After this, we get the values
of the packet that we have seen and the future expectations of packets
over this connection reaching us from the initiating packet sender.
These are the source, destination, source port and destination port. At
this point, the [UNREPLIED] flag tells us that there’s so far been no
response to the packet. Finally, we get a brief list of the expectations for
returning packets. Do note that the latter entries are in reverse order to
the first values. The timeout at this point is set to 30 seconds, as per
default.

udp 17 170 src=192.168.1.2 dst=192.168.1.5 sport=137 \
dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025\

118

Chapter 7. The state machine

dport=137 [ASSURED] use=1

At this point the server has seen a reply to the first packet sent out and
the connection is now considered as ESTABLISHED . This is not shown
in the connection tracking, as you can see. The main difference is that
the [UNREPLIED] flag has now gone. Moreover, the default timeout
has changed to 180 seconds - but in this example that’s by now been
decremented to 170 seconds - in 10 seconds’ time, it will be 160
seconds. There’s one thing that's missing, though, and can change a
bit, and that is the [ASSURED] flag described above. For the
[ASSURED] flag to be set on a tracked connection, there must have
been a legitimate reply packet to the NEW packet.

udp 17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025\
dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53 \
dport=1025 [ASSURED] use=1

At this point, the connection has become assured. The connection
looks exactly the same as the previous example. If this connection is
not used for 180 seconds, it times out. 180 Seconds is a comparatively
low value, but should be sufficient for most use. This value is reset to its
full value for each packet that matches the same entry and passes
through the firewall, just the same as for all of the internal states.

ICMP connections

ICMP packets are far from a stateful stream, since they are only used
for controlling and should never establish any connections. There are
four ICMP types that will generate return packets however, and these
have 2 different states. These ICMP messages can take the NEW and
ESTABLISHED states. The ICMP types we are talking about are Echo
request and reply, Timestamp request and reply, Information request
and reply and finally Address mask request and reply. Out of these, the
timestamp request and information request are obsolete and could

119

Chapter 7. The state machine

most probably just be dropped. However, the Echo messages are used
in several setups such as pinging hosts. Address mask requests are not
used often, but could be useful at times and worth allowing. To get an
idea of how this could look, have a look at the following image.

Client Firewall Server

CMP Echo
NEW request
ESTABLISHED Client
processing

As you can see in the above picture, the host sends an echo request to
the target, which is considered as NEW by the firewall. The target then
responds with a echo reply which the firewall considers as state
ESTABLISHED . When the first echo request has been seen, the
following state entry goes into the ip_conntrack.

icmp 125src=192.168.1.6 dst=192.168.1.10 type=8 code=0\
id=33029 [UNREPLIED] src=192.168.1.10 dst=192.168.1.6 \
type=0 code=0 id=33029 use=1

This entry looks a little bit different from the standard states for TCP
and UDP as you can see. The protocol is there, and the timeout, as well
as source and destination addresses. The problem comes after that
however. We now have 3 new fields called type, code and id. They are
not special in any way, the type field contains the ICMP type and the
code field contains the ICMP code. These are all available in

ICMP types appendix. The final id field, contains the ICMP ID. Each
ICMP packet gets an ID set to it when it is sent, and when the receiver

120

Chapter 7. The state machine

gets the ICMP message, it sets the same ID within the new ICMP
message so that the sender will recognize the reply and will be able to
connect it with the correct ICMP request.

The next field, we once again recognize as the [UNREPLIED] flag,
which we have seen before. Just as before, this flag tells us that we are
currently looking at a connection tracking entry that has seen only traffic
in one direction. Finally, we see the reply expectation for the reply ICMP
packet, which is the inversion of the original source and destination IP
addresses. As for the type and code, these are changed to the correct
values for the return packet, so an echo request is changed to echo
reply and so on. The ICMP ID is preserved from the request packet.

The reply packet is considered as being ESTABLISHED, as we have
already explained. However, we can know for sure that after the ICMP
reply, there will be absolutely no more legal traffic in the same
connection. For this reason, the connection tracking entry is destroyed
once the reply has traveled all the way through the Netfilter structure.

In each of the above cases, the request is considered as NEW, while
the reply is considered as ESTABLISHED . Let’s consider this more
closely. When the firewall sees a request packet, it considers it as NEW.
When the host sends a reply packet to the request it is considered
ESTABLISHED.

No\e\-

\)Note that this means that the reply packet must match the criterion given
by the connection tracking entry to be considered as established, just as
with all other traffic types.

ICMP requests has a default timeout of 30 seconds, which you can
change in the /proc/sys/net/ipva/netfilter/ip_ct_icmp_timeout entry. This
should in general be a good timeout value, since it will be able to catch
most packets in transit.

Another hugely important part of ICMP is the fact that it is used to tell
the hosts what happened to specific UDP and TCP connections or
connection attempts. For this simple reason, ICMP replies will very
often be recognized as RELATED to original connections or connection

121

Chapter 7. The state machine

attempts. A simple example would be the ICMP Host unreachable or
ICMP Network unreachable. These should always be spawned back to
our host if it attempts an unsuccessful connection to some other host,
but the network or host in question could be down, and hence the last
router trying to reach the site in question will reply with an ICMP
message telling us about it. In this case, the ICMP reply is considered
as a RELATED packet. The following picture should explain how it
would look.

Client Firewall Server

SYN
NEW

Client RELATED
Aborts

In the above example, we send out a SYN packet to a specific address.
This is considered as a NEW connection by the firewall. However, the
network the packet is trying to reach is unreachable, so a router returns
a network unreachable ICMP error to us. The connection tracking code
can recognize this packet as RELATED. thanks to the already added
tracking entry, so the ICMP reply is correctly sent to the client which will
then hopefully abort. Meanwhile, the firewall has destroyed the
connection tracking entry since it knows this was an error message.

ICMP Net
Unreach

The same behavior as above is experienced with UDP connections if
they run into any problem like the above. All ICMP messages sent in
reply to UDP connections are considered as RELATED. Consider the
following image.

122

Chapter 7. The state machine

Client Firewall Server
UDP Packet
NEW
ICMP Net
Prohibited
Client RELATED
Abort

This time an UDP packet is sent to the host. This UDP connection is
considered as NEW. However, the network is administratively prohibited
by some firewall or router on the way over. Hence, our firewall receives
a ICMP Network Prohibited in return. The firewall knows that this ICMP
error message is related to the already opened UDP connection and
sends it as a RELATED packet to the client. At this point, the firewall
destroys the connection tracking entry, and the client receives the ICMP
message and should hopefully abort.

Default connections

In certain cases, the conntrack machine does not know how to handle a
specific protocol. This happens if it does not know about that protocol in
particular, or doesn’t know how it works. In these cases, it goes back to
a default behavior. The default behavior is used on, for example,
NETBLT, MUX and EGP. This behavior looks pretty much the same as
the UDP connection tracking. The first packet is considered NEW, and
reply traffic and so forth is considered ESTABLISHED .

When the default behavior is used, all of these packets will attain the
same default timeout value. This can be set via the
Iproc/sys/net/ipv4/netfilter/ip_ct_generic_timeout variable. The default value
here is 600 seconds, or 10 minutes. Depending on what traffic you are

123

Chapter 7. The state machine

trying to send over a link that uses the default connection tracking
behavior, this might need changing. Especially if you are bouncing
traffic through satellites and such, which can take a long time.

Untracked connections and the raw
table

UNTRACKED is a rather special keyword when it comes to connection
tracking in Linux. Basically, it is used to match packets that has been
marked in the raw table not to be tracked.

The raw table was created specifically for this reason. In this table, you
set a NOTRACK mark on packets that you do not wish to track in
netfilter.

o™

\\.)Notice how | say packets, not connection, since the mark is actually set
for each and every packet that enters. Otherwise, we would still have to do
some kind of tracking of the connection to know that it should not be
tracked.

As we have already stated in this chapter, conntrack and the state
machine is rather resource hungry. For this reason, it might sometimes
be a good idea to turn off connection tracking and the state machine.

One example would be if you have a heavily trafficked router that you
want to firewall the incoming and outgoing traffic on, but not the routed
traffic. You could then set the NOTRACK mark on all packets not
destined for the firewall itself by ACCEPT'ing all packets with
destination your host in the raw table, and then set the NOTRACK for
all other traffic. This would then allow you to have stateful matching on
incoming traffic for the router itself, but at the same time save
processing power from not handling all the crossing traffic.

Another example when NOTRACK can be used is if you have a highly
trafficked webserver and want to do stateful tracking, but don’t want to

124

Chapter 7. The state machine

waste processing power on tracking the web traffic. You could then set
up a rule that turns of tracking for port 80 on all the locally owned IP
addresses, or the ones that are actually serving web traffic. You could
then enjoy statefull tracking on all other services, except for webtraffic
which might save some processing power on an already overloaded
system.

There is however some problems with NOTRACK that you must take
into consideration. If a whole connection is set with NOTRACK, then
you will not be able to track related connections either, conntrack and
nat helpers will simply not work for untracked connections, nor will
related ICMP errors do. You will have to open up for these manually in
other words. When it comes to complex protocols such as FTP and
SCTP et cetera, this can be very hard to manage. As long as you are
aware of this, you should be able to handle this however.

Complex protocols and connection
tracking

Certain protocols are more complex than others. What this means when
it comes to connection tracking, is that such protocols may be harder to
track correctly. Good examples of these are the ICQ, IRC and FTP
protocols. Each and every one of these protocols carries information
within the actual data payload of the packets, and hence requires
special connection tracking helpers to enable it to function correctly.

This is a list of the complex protocols that has support inside the linux
kernel, and which kernel version it was introduced in.

Table 7-3. Complex protocols support

Protocol name Kernel versions
FTP 2.3
IRC 2.3

125

Chapter 7. The state machine

Protocol name Kernel versions
TFTP 2.5

Amanda 2.5

e FTP

* IRC

 TFTP

Let’s take the FTP protocol as the first example. The FTP protocol first
opens up a single connection that is called the FTP control session.
When we issue commands through this session, other ports are
opened to carry the rest of the data related to that specific command.
These connections can be done in two ways, either actively or
passively. When a connection is done actively, the FTP client sends the
server a port and IP address to connect to. After this, the FTP client
opens up the port and the server connects to that specified port from a
random unprivileged port (>1024) and sends the data over it.

The problem here is that the firewall will not know about these extra
connections, since they were negotiated within the actual payload of the
protocol data. Because of this, the firewall will be unable to know that it
should let the server connect to the client over these specific ports.

The solution to this problem is to add a special helper to the connection
tracking module which will scan through the data in the control
connection for specific syntaxes and information. When it runs into the
correct information, it will add that specific information as RELATED
and the server will be able to track the connection, thanks to that
RELATED entry. Consider the following picture to understand the states
when the FTP server has made the connection back to the client.

126

Chapter 7. The state machine

Client Firewall Server

SYN

RELATED

SYN/ACK

Passive FTP works the opposite way. The FTP client tells the server
that it wants some specific data, upon which the server replies with an
IP address to connect to and at what port. The client will, upon receipt
of this data, connect to that specific port, from its own port 20(the
FTP-data port), and get the data in question. If you have an FTP server
behind your firewall, you will in other words require this module in
addition to your standard iptables modules to let clients on the Internet
connect to the FTP server properly. The same goes if you are extremely
restrictive to your users, and only want to let them reach HTTP and FTP
servers on the Internet and block all other ports. Consider the following
image and its bearing on Passive FTP.

ESTABLISHED

ACK

Client Firewall Server

SYN
RELATED

SYN/ACK

ESTABLISHED
ACK

127

Chapter 7. The state machine

Some conntrack helpers are already available within the kernel itself.
More specifically, the FTP and IRC protocols have conntrack helpers as
of writing this. If you can not find the conntrack helpers that you need
within the kernel itself, you should have a look at the patch-o-matic tree
within user-land iptables. The patch-o-matic tree may contain more
conntrack helpers, such as for the ntalk or H.323 protocols. If they are
not available in the patch-o-matic tree, you have a number of options.
Either you can look at the CVS source of iptables, if it has recently gone
into that tree, or you can contact the Netfilter-devel mailing list and ask if
it is available. If it is not, and there are no plans for adding it, you are left
to your own devices and would most probably want to read the

Rusty Russell's Unreliable Netfilter Hacking HOW-TO which is linked
from the Other resources and links appendix.

Conntrack helpers may either be statically compiled into the kernel, or
as modules. If they are compiled as modules, you can load them with
the following command

modprobe ip_conntrack_ftp
modprobe ip_conntrack_irc
modprobe ip_conntrack_tftp
modprobe ip_conntrack_amanda

Do note that connection tracking has nothing to do with NAT, and hence
you may require more modules if you are NAT’ing connections as well.
For example, if you were to want to NAT and track FTP connections,
you would need the NAT module as well. All NAT helpers starts with
ip_nat_ and follow that naming convention; so for example the FTP NAT
helper would be named ip_nat_ftp and the IRC module would be named
ip_nat_irc. The conntrack helpers follow the same naming convention,
and hence the IRC conntrack helper would be named ip_conntrack_irc,
while the FTP conntrack helper would be named ip_conntrack_ftp.

What's next?

This chapter has discussed how the state machine in netfilter works

128

Chapter 7. The state machine

and how it keeps state of different connections. The chapter has also
discussed how it is represented toward you, the end user and what you
can do to alter its behavior, as well as different protocols that are more
complex to do connection tracking on, and how the different conntrack
helpers come into the picture.

The next chapter will discuss how to save and restore rulesets using the
iptables-save and iptables-restore programs distributed with the
iptables applications. This has both pros and cons, and the chapter will
discuss it in detail.

129

Chapter 8. Saving and restoring
large rule-sets

The iptables package comes with two more tools that are very useful,
specially if you are dealing with larger rule-sets. These two tools are
called iptables-save and iptables-restore and are used to save and
restore rule-sets to a specific file-format that looks quite a bit different
from the standard shell code that you will see in the rest of this tutorial.

T
\ Diptables-restore can be used together with scripting languages. The big
problem is that you will need to output the results into the stdin of
iptables-restore. If you are creating a very big ruleset (several thousand
rules) this might be a very good idea, since it will be much faster to insert
all the new rules. For example, you would then run make_rules.sh |
iptables-restore .

Speed considerations

One of the largest reasons for using the iptables-save and
iptables-restore commands is that they will speed up the loading and
saving of larger rule-sets considerably. The main problem with running
a shell script that contains iptables rules is that each invocation of
iptables within the script will first extract the whole rule-set from the
Netfilter kernel space, and after this, it will insert or append rules, or do
whatever change to the rule-set that is needed by this specific
command. Finally, it will insert the new rule-set from its own memory
into kernel space. Using a shell script, this is done for each and every
rule that we want to insert, and for each time we do this, it takes more
time to extract and insert the rule-set.

To solve this problem, there is the iptables-save and restore
commands. The iptables-save command is used to save the rule-set
into a specially formatted text-file, and the iptables-restore command

130

Chapter 8. Saving and restoring large rule-sets

is used to load this text-file into kernel again. The best parts of these
commands is that they will load and save the rule-set in one single
request. iptables-save will grab the whole rule-set from kernel and
save it to a file in one single movement. iptables-restore will upload
that specific rule-set to kernel in a single movement for each table. In
other words, instead of dropping the rule-set out of kernel some 30,000
times, for really large rule-sets, and then upload it to kernel again that
many times, we can now save the whole thing into a file in one
movement and then upload the whole thing in as little as three
movements depending on how many tables you use.

As you can understand, these tools are definitely something for you if
you are working on a huge set of rules that needs to be inserted.
However, they do have drawbacks that we will discuss more in the next
section.

Drawbacks with restore

As you may have already wondered, can iptables-restore handle any
kind of scripting? So far, no, it cannot and it will most probably never be
able to. This is the main flaw in using iptables-restore since you will
not be able to do a huge set of things with these files. For example,
what if you have a connection that has a dynamically assigned IP
address and you want to grab this dynamic IP every-time the computer
boots up and then use that value within your scripts? With
iptables-restore , this is more or less impossible.

One possibility to get around this is to make a small script which grabs
the values you would like to use in the script, then sed the
iptables-restore file for specific keywords and replace them with the
values collected via the small script. At this point, you could save it to a
temporary file, and then use iptables-restore to load the new values.
This causes a lot of problems however, and you will be unable to use
iptables-save properly since it would probably erase your manually
added keywords in the restore script. It is, in other words, a clumsy
solution.

131

Chapter 8. Saving and restoring large rule-sets

A second possibility is to do as previously described. Make a script that
outputs rules in iptables-restore format, and then feed them on
standard input of iptables-restore . For very large rulesets this would
be to be preferred over running iptables itself, since it has a bad habit of
taking a lot of processing power on very large rulesets as previously
described in this chapter.

Another solution is to load the iptables-restore scripts first, and then
load a specific shell script that inserts more dynamic rules in their
proper places. Of course, as you can understand, this is just as clumsy
as the first solution. iptables-restore is simply not very well suited for
configurations where IP addresses are dynamically assigned to your
firewall or where you want different behaviors depending on
configuration options and so on.

Another drawback with iptables-restore and iptables-save is that it is
not fully functional as of writing this. The problem is simply that not a lot
of people use it as of today and hence there are not a lot of people
finding bugs, and in turn some matches and targets will simply be
inserted badly, which may lead to some strange behaviors that you did
not expect. Even though these problems exist, | would highly
recommend using these tools which should work extremely well for
most rule-sets as long as they do not contain some of the new targets
or matches that it does not know how to handle properly.

iptables-save

The iptables-save command is, as we have already explained, a tool to
save the current rule-set into a file that iptables-restore can use. This
command is quite simple really, and takes only two arguments. Take a
look at the following example to understand the syntax of the command.

iptables-save [-c] [-t table]

132

Chapter 8. Saving and restoring large rule-sets

The -c argument tells iptables-save to keep the values specified in the
byte and packet counters. This could for example be useful if we would
like to reboot our main firewall, but not lose byte and packet counters
which we may use for statistical purposes. Issuing a iptables-save
command with the -c argument would then make it possible for us to
reboot without breaking our statistical and accounting routines. The
default value is, of course, to not keep the counters intact when issuing
this command.

The -t argument tells the iptables-save command which tables to save.
Without this argument the command will automatically save all tables
available into the file. The following is an example on what output you
can expect from the iptables-save command if you do not have any
rule-set loaded.

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*ilter

(INPUT ACCEPT [404:19766]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [530:43376]

COMMIT

Completed on Wed Apr 24 10:19:17 2002

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*mangle

:PREROUTING ACCEPT [451:22060]

:(INPUT ACCEPT [451:22060]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [594:47151]

:POSTROUTING ACCEPT [594:47151]

COMMIT

Completed on Wed Apr 24 10:19:17 2002

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
*nat

:PREROUTING ACCEPT [0:0]

:POSTROUTING ACCEPT [3:450]

:OUTPUT ACCEPT [3:450]

COMMIT

Completed on Wed Apr 24 10:19:17 2002

133

Chapter 8. Saving and restoring large rule-sets

This contains a few comments starting with a # sign. Each table is
marked like *<table-name>, for example *mangle. Then within each
table we have the chain specifications and rules. A chain specification
looks like :<chain-name> <chain-policy>
[<packet-counter>:<byte-counter>]. The chain-name may be for
example PREROUTING, the policy is described previously and can, for
example, be ACCEPT . Finally the packet-counter and byte-counters
are the same counters as in the output from iptables -L -v . Finally,
each table declaration ends in a COMMIT keyword. The COMMIT
keyword tells us that at this point we should commit all rules currently in
the pipeline to kernel.

The above example is pretty basic, and hence | believe it is nothing
more than proper to show a brief example which contains a very small
Iptables-save ruleset. If we would run iptables-save on this, it would
look something like this in the output:

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*ilter

(INPUT DROP [1:229]

:FORWARD DROP [0:0]

:OUTPUT DROP [0:0]

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

-A FORWARD -i ethO -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i eth1 -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
COMMIT

Completed on Wed Apr 24 10:19:55 2002

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*mangle

:PREROUTING ACCEPT [658:32445]

(INPUT ACCEPT [658:32445]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [891:68234]

:POSTROUTING ACCEPT [891:68234]

COMMIT

Completed on Wed Apr 24 10:19:55 2002

Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
*nat

134

Chapter 8. Saving and restoring large rule-sets

:PREROUTING ACCEPT [1:229]

:POSTROUTING ACCEPT [3:450]

:OUTPUT ACCEPT [3:450]

-A POSTROUTING -0 ethO -j SNAT --to-source 195.233.192.1
COMMIT

Completed on Wed Apr 24 10:19:55 2002

As you can see, each command has now been prefixed with the byte
and packet counters since we used the -c argument. Except for this, the
command-line is quite intact from the script. The only problem now, is
how to save the output to a file. Quite simple, and you should already
know how to do this if you have used linux at all before. It is only a
matter of piping the command output on to the file that you would like to
save it as. This could look like the following:

iptables-save -c > /etc/iptables-save

The above command will in other words save the whole rule-set to a file
called /etc/iptables-save with byte and packet counters still intact.

iptables-restore

The iptables-restore command is used to restore the iptables rule-set
that was saved with the iptables-save command. It takes all the input
from standard input and can’t load from files as of writing this,
unfortunately. This is the command syntax for iptables-restore:

iptables-restore [-c] [-n]

The -c argument restores the byte and packet counters and must be
used if you want to restore counters that were previously saved with
iptables-save . This argument may also be written in its long form
--counters .

135

Chapter 8. Saving and restoring large rule-sets

The -n argument tells iptables-restore to not overwrite the previously
written rules in the table, or tables, that it is writing to. The default
behavior of iptables-restore is to flush and destroy all previously
inserted rules. The short -n argument may also be replaced with the
longer format --noflush .

To load a rule-set with the iptables-restore command, we could do this
in several ways, but we will mainly look at the simplest and most
common way here.

cat /etc/iptables-save | iptables-restore -c

The following will also work:

iptables-restore -c < /etc/iptables-save

This would cat the rule-set located within the /etc/iptables-save file and
then pipe it to iptables-restore which takes the rule-set on the standard
input and then restores it, including byte and packet counters. It is that
simple to begin with. This command could be varied until oblivion and
we could show different piping possibilities, however, this is a bit out of
the scope of this chapter, and hence we will skip that part and leave it
as an exercise for the reader to experiment with.

The rule-set should now be loaded properly to kernel and everything
should work. If not, you may possibly have run into a bug in these
commands.

What's next?

This chapter has discussed the iptables-save and iptables-restore
programs to some extent and how they can be used. Both applications
are distributed with the iptables package, and can be used to quickly
save large rulesets and then inserting them into the kernel again.

136

Chapter 8. Saving and restoring large rule-sets
The next chapter will take a look at the syntax of a iptables rule and how

to write properly formatted rule-sets. It will also show some basic good
coding styles to adhere to, as required.

137

Chapter 9. How a rule is built

This chapter and the upcoming three chapters will discuss at length
how to build your own rules. A rule could be described as the directions
the firewall will adhere to when blocking or permitting different
connections and packets in a specific chain. Each line you write that’s
inserted in a chain should be considered a rule. We will also discuss the
basic matches that are available, and how to use them, as well as the
different targets and how we can construct new targets of our own
(i.e.,new sub chains).

This chapter will deal with the raw basics of how a rule is created and
how you write it and enter it so that it will be accepted by the userspace
program iptables , the different tables, as well as the commands that
you can issue to iptables. After that we will in the next chapter look at all
the matches that are available to iptables , and then get more into detalil
of each type of target and jump.

Basics of the iptables command

As we have already explained, each rule is a line that the kernel looks
at to find out what to do with a packet. If all the criteria - or matches -
are met, we perform the target - or jump - instruction. Normally we
would write our rules in a syntax that looks something like this:

iptables [-t table] command [match] [target/jump]

There is nothing that says that the target instruction has to be the last
function in the line. However, you would usually adhere to this syntax to
get the best readability. Anyway, most of the rules you'll see are written
in this way. Hence, if you read someone else’s script, you'll most likely
recognize the syntax and easily understand the rule.

138

Chapter 9. How a rule is built

If you want to use a table other than the standard table, you could insert
the table specification at the point at which [table] is specified. However,
it is not necessary to state explicitly what table to use, since by default
iptables uses the filter table on which to implement all commands.
Neither do you have to specify the table at just this point in the rule. It
could be set pretty much anywhere along the line. However, it is more
or less standard to put the table specification at the beginning.

One thing to think about though: The command should always come
first, or alternatively directly after the table specification. We use
'command’ to tell the program what to do, for example to insert a rule or
to add a rule to the end of the chain, or to delete a rule. We shall take a
further look at this below.

The match is the part of the rule that we send to the kernel that details
the specific character of the packet, what makes it different from all
other packets. Here we could specify what IP address the packet comes
from, from which network interface, the intended IP address, port,
protocol or whatever. There is a heap of different matches that we can
use that we will look closer at further on in this chapter.

Finally we have the target of the packet. If all the matches are met for a
packet, we tell the kernel what to do with it. We could, for example, tell
the kernel to send the packet to another chain that we've created
ourselves, and which is part of this particular table. We could tell the
kernel to drop the packet dead and do no further processing, or we
could tell the kernel to send a specified reply to the sender. As with the
rest of the content in this section, we’ll look closer at it further on in the
chapter.

Tables

The -t option specifies which table to use. Per default, the filter table is
used. We may specify one of the following tables with the -t option. Do
note that this is an extremely brief summary of some of the contents of
the Traversing of tables and chains chapter.

139

Chapter 9. How a rule is built

Table 9-1. Tables

Table

Explanation

nat

The nat table is used mainly for Network Address Translation.
"NAT "ed packets get their IP addresses altered, according to
our rules. Packets in a stream only traverse this table once. We
assume that the first packet of a stream is allowed. The rest of
the packets in the same stream are automatically "NAT "ed or
Masqueraded etc, and will be subject to the same actions as
the first packet. These will, in other words, not go through this
table again, but will nevertheless be treated like the first packet
in the stream. This is the main reason why you should not do
any filtering in this table, which we will discuss at greater length
further on. The PREROUTING chain is used to alter packets as
soon as they get in to the firewall. The OUTPUT chain is used
for altering locally generated packets (i.e., on the firewall)
before they get to the routing decision. Finally we have the
POSTROUTING chain which is used to alter packets just as

they are about to leave the firewall.

140

Chapter 9. How a rule is built

Table

Explanation

mangle

This table is used mainly for mangling packets. Among other
things, we can change the contents of different packets and
that of their headers. Examples of this would be to change the
TTL, TOS or MARK. Note that the MARK is not really a change
to the packet, but a mark value for the packet is set in kernel
space. Other rules or programs might use this mark further
along in the firewall to filter or do advanced routing on; tc is one
example. The table consists of five built in chains, the
PREROUTING, POSTROUTING, OUTPUT, INPUT and
FORWARD chains. PREROUTING is used for altering packets
just as they enter the firewall and before they hit the routing
decision. POSTROUTING is used to mangle packets just after
all routing decisions have been made. OUTPUT is used for
altering locally generated packets after they enter the routing
decision. INPUT is used to alter packets after they have been
routed to the local computer itself, but before the user space
application actually sees the data. FORWARD is used to
mangle packets after they have hit the first routing decision, but
before they actually hit the last routing decision. Note that
mangle can't be used for any kind of Network Address
Translation or Masquerading, the nat table was made for these
kinds of operations.

filter

The filter table should be used exclusively for filtering packets.
For example, we could DROP, LOG, ACCEPT or REJECT
packets without problems, as we can in the other tables. There
are three chains built in to this table. The first one is named
FORWARD and is used on all non-locally generated packets
that are not destined for our local host (the firewall, in other
words). INPUT is used on all packets that are destined for our
local host (the firewall) and OUTPUT is finally used for all
locally generated packets.

141

Chapter 9. How a rule is built

Table |[Explanation

raw The raw table and its chains are used before any other tables in
netfilter. It was introduced to use the NOTRACK target. This
table is rather new and is only available, if compiled, with late
2.6 kernels and later. The raw table contains two chains. The
PREROUTING and OUTPUT chain, where they will handle
packets before they hit any of the other netfilter subsystems.
The PREROUTING chain can be used for all incoming packets
to this machine, or that are forwarded, while the OUTPUT
chain can be used to alter the locally generated packets before
they hit any of the other netfilter subsystems.

The above details should have explained the basics about the three
different tables that are available. They should be used for totally
different purposes, and you should know what to use each chain for. If
you do not understand their usage, you may well dig a pit for yourself in
your firewall, into which you will fall as soon as someone finds it and
pushes you into it. We have already discussed the requisite tables and
chains in more detail within the Traversing of tables and chains chapter.
If you do not understand this fully, | advise you to go back and read
through it again.

Commands

In this section we will cover all the different commands and what can be
done with them. The command tells iptables what to do with the rest of
the rule that we send to the parser. Normally we would want either to
add or delete something in some table or another. The following
commands are available to iptables:

Table 9-2. Commands

Command |-A, --append

Example iptables -A INPUT ...

142

Chapter 9. How a rule is built

Explanation

This command appends the rule to the end of the chain.
The rule will in other words always be put last in the
rule-set and hence be checked last, unless you append
more rules later on.

Command

-D, --delete

Example

iptables -D INPUT --dport 80 -j DROP , iptables -D
INPUT 1

Explanation

This command deletes a rule in a chain. This could be
done in two ways; either by entering the whole rule to
match (as in the first example), or by specifying the rule
number that you want to match. If you use the first method,
your entry must match the entry in the chain exactly. If you
use the second method, you must match the number of
the rule you want to delete. The rules are numbered from
the top of each chain, starting with number 1.

Command

-R, --replace

Example

iptables -R INPUT 1 -s 192.168.0.1 -j DROP

Explanation

This command replaces the old entry at the specified line.
It works in the same way as the --delete command, but
instead of totally deleting the entry, it will replace it with a
new entry. The main use for this might be while you're
experimenting with iptables.

Command

-1, --insert

Example

iptables -1 INPUT 1 --dport 80 -j ACCEPT

Explanation

Insert a rule somewhere in a chain. The rule is inserted as
the actual number that we specify. In other words, the
above example would be inserted as rule 1 in the INPUT
chain, and hence from now on it would be the very first
rule in the chain.

Command

-L, --list

Example

iptables -L INPUT

143

Chapter 9. How a rule is built

Explanation

This command lists all the entries in the specified chain. In
the above case, we would list all the entries in the INPUT
chain. It's also legal to not specify any chain at all. In the
last case, the command would list all the chains in the
specified table (To specify a table, see the Tables section).
The exact output is affected by other options sent to the
parser, for example the -n and -v options, etc.

Command

-F, --flush

Example

iptables -F INPUT

Explanation

This command flushes all rules from the specified chain
and is equivalent to deleting each rule one by one, but is
quite a bit faster. The command can be used without
options, and will then delete all rules in all chains within
the specified table.

Command

-Z, --Zero

Example

iptables -Z INPUT

Explanation

This command tells the program to zero all counters in a
specific chain, or in all chains. If you have used the -v
option with the -L command, you have probably seen the
packet counter at the beginning of each field. To zero this
packet counter, use the -Z option. This option works the
same as -L, except that -Z won't list the rules. If -L and -Z
is used together (which is legal), the chains will first be
listed, and then the packet counters are zeroed.

Command

-N, --new-chain

Example

iptables -N allowed

Explanation

This command tells the kernel to create a new chain of the
specified name in the specified table. In the above
example we create a chain called allowed . Note that there
must not already be a chain or target of the same name.

Command

-X, --delete-chain

Example

iptables -X allowed

144

Chapter 9. How a rule is built

Explanation

This command deletes the specified chain from the table.
For this command to work, there must be no rules that
refer to the chain that is to be deleted. In other words, you
would have to replace or delete all rules referring to the
chain before actually deleting the chain. If this command is
used without any options, all chains but those built in to the
specified table will be deleted.

Command |-P, --policy

Example iptables -P INPUT DROP

Explanation [This command tells the kernel to set a specified default
target, or policy, on a chain. All packets that don’t match
any rule will then be forced to use the policy of the chain.
Legal targets are DROP and ACCEPT (There might be
more, mail me if so).

Command |-E, --rename-chain

Example iptables -E allowed disallowed

Explanation [The -E command tells iptables to change the first name of

a chain, to the second name. In the example above we
would, in other words, change the name of the chain from
allowed to disallowed. Note that this will not affect the actual
way the table will work. It is, in other words, just a cosmetic
change to the table.

You should always enter a complete command line, unless you just
want to list the built-in help for iptables or get the version of the
command. To get the version, use the -v option and to get the help
message, use the -h option. As usual, in other words. Next comes a few
options that can be used with various different commands. Note that we
tell you with which commands the options can be used and what effect
they will have. Also note that we do not include any options here that
affect rules or matches. Instead, we’ll take a look at matches and
targets in a later section of this chapter.

145

Chapter 9. How a rule is built

Table 9-3. Options

Option -v, --verbose

Commands [-list, --append, --insert , --delete, --replace

used with

Explanation [This command gives verbose output and is mainly used
together with the --list command. If used together with the
--list command, it outputs the interface address, rule
options and TOS masks. The --list command will also
include a bytes and packet counter for each rule, if the
--verbose option is set. These counters uses the K
(x1000), M (x1,000,000) and G (x1,000,000,000)
multipliers. To overrule this and get exact output, you can
use the -x option, described later. If this option is used with
the --append, --insert , --delete or --replace commands,
the program will output detailed information on how the
rule was interpreted and whether it was inserted correctly,
etc.

Option -X, --exact

Commands |-list

used with

Explanation [This option expands the numerics. The output from --list
will in other words not contain the K, M or G multipliers.
Instead we will get an exact output from the packet and
byte counters of how many packets and bytes that have
matched the rule in question. Note that this option is only
usable in the --list command and isn't really relevant for
any of the other commands.

Option -n, --numeric

Commands |-list

used with

146

Chapter 9. How a rule is built

Explanation

This option tells iptables to output numerical values. IP
addresses and port numbers will be printed by using their
numerical values and not host-names, network names or
application names. This option is only applicable to the
--list command. This option overrides the default of
resolving all numerics to hosts and names, where this is
possible.

Option --line-numbers

Commands |-list

used with

Explanation [The --line-numbers command, together with the --list
command, is used to output line numbers. Using this
option, each rule is output with its number. It could be
convenient to know which rule has which number when
inserting rules. This option only works with the --list
command.

Option -c, --set-counters

Commands [-insert , --append , --replace

used with

Explanation [This option is used when creating a rule or modifying it in
some way. We can then use the option to initialize the
packet and byte counters for the rule. The syntax would be|
something like --set-counters 20 4000 , which would tell
the kernel to set the packet counter to 20 and byte counter
to 4000.

Option --modprobe

Commands All

used with

147

Chapter 9. How a rule is built

Explanation [The --modprobe option is used to tell iptables which
module to use when probing for modules or adding them
to the kernel. It could be used if your modprobe command
is not somewhere in the search path etc. In such cases, it
might be necessary to specify this option so the program
knows what to do in case a needed module is not loaded.
This option can be used with all commands.

What's next?

This chapter has discussed some of the basic commands for iptables
and the tables very briefly that can be used in netfilter. The commands
makes it possible to do quite a lot of different operations on the netfilter
package loaded inside kernel as you have seen.

The next chapter will discuss all the available matches in iptables and
netfilter. This is a very heavy and long chapter, and | humbly suggest
that you don’t need to actually learn every single match available in any
detail, except the ones that you are going to use. A good idea might be
to get a brief understanding of what each match does, and then get a
better grasp on them as you need them.

148

Chapter 10. Iptables matches

In this chapter we’'ll talk a bit more about matches. I've chosen to
narrow down the matches into five different subcategories. First of all
we have the generic matches, which can be used in all rules. Then we
have the TCP matches which can only be applied to TCP packets. We
have UDP matches which can only be applied to UDP packets, and
ICMP matches which can only be used on ICMP packets. Finally we
have special matches, such as the state, owner and limit matches and
so on. These final matches have in turn been narrowed down to even
more subcategories, even though they might not necessarily be
different matches at all. | hope this is a reasonable breakdown and that
all people out there can understand it.

As you may already understand if you have read the previous chapters,
a match is something that specifies a special condition within the packet
that must be true (or false). A single rule can contain several matches of
any kind. For example, we may want to match packets that come from a
specific host on a our local area network, and on top of that only from
specific ports on that host. We could then use matches to tell the rule to
only apply the target - or jump specification - on packets that have a
specific source address, that come in on the interface that connects to
the LAN and the packets must be one of the specified ports. If any one
of these matches fails (e.g., the source address isn’t correct, but
everything else is true), the whole rule fails and the next rule is tested
on the packet. If all matches are true, however, the target specified by
the rule is applied.

Generic matches

This section will deal with Generic matches. A generic match is a kind
of match that is always available, whatever kind of protocol we are
working on, or whatever match extensions we have loaded. No special
parameters at all are needed to use these matches; in other words. |
have also included the --protocol match here, even though it is more

149

Chapter 10. Iptables matches

specific to protocol matches. For example, if we want to use a TCP
match, we need to use the --protocol match and send TCP as an
option to the match. However, --protocol is also a match in itself, since
it can be used to match specific protocols. The following matches are
always available.

Table 10-1. Generic matches

Match

-p, --protocol

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -p tcp

Explanation

This match is used to check for certain protocols.
Examples of protocols are TCP, UDP and ICMP. The
protocol must either be one of the internally specified TCP,
UDP or ICMP. It may also take a value specified in the
etc/protocols file, and if it can’t find the protocol there it
will reply with an error. The protocl may also be an integer
value. For example, the ICMP protocol is integer value 1,
TCP is 6 and UDP is 17. Finally, it may also take the value
ALL. ALL means that it matches only TCP, UDP and ICMP.
If this match is given the integer value of zero (0), it means
ALL protocols, which in turn is the default behavior, if the
--protocol match is not used. This match can also be
inversed with the ! sign, so --protocol ! tcp would mean to
match UDP and ICMP.

Match

-S, --SIC, --Source

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -s 192.168.1.1

150

Chapter 10. Iptables matches

Explanation

This is the source match, which is used to match packets,
based on their source IP address. The main form can be
used to match single IP addresses, such as 192.168.1.1. It
could also be used with a netmask in a CIDR "bit" form, by,
specifying the number of ones (1's) on the left side of the
network mask. This means that we could for example add
24 to use a 255.255.255.0 netmask. We could then match
whole IP ranges, such as our local networks or network
segments behind the firewall. The line would then look
something like 192.168.0.0/24. This would match all
packets in the 192.168.0.x range. Another way is to do it
with a regular netmask in the 255.255.255.255 form (i.e.,
192.168.0.0/255.255.255.0). We could also invert the
match with an ! just as before. If we were, in other words,
to use a match in the form of --source ! 192.168.0.0/24 ,
we would match all packets with a source address not
coming from within the 192.168.0.x range. The default is
to match all IP addresses.

Match

-d, --dst, --destination

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -d 192.168.1.1

Explanation

The --destination match is used for packets based on
their destination address or addresses. It works pretty
much the same as the --source match and has the same
syntax, except that the match is based on where the
packets are going to. To match an IP range, we can add a
netmask either in the exact netmask form, or in the
number of ones (1's) counted from the left side of the
netmask bits. Examples are: 192.168.0.0/255.255.255.0
and 192.168.0.0/24. Both of these are equivalent. We
could also invert the whole match with an ! sign, just as
before. --destination ! 192.168.0.1 would in other words
match all packets except those destined to the
192.168.0.1 IP address.

151

Chapter 10. Iptables matches

Match

-i, --in-interface

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -i ethO

Explanation

This match is used for the interface the packet came in on.
Note that this option is only legal in the INPUT,
FORWARD and PREROUTING chains and will return an
error message when used anywhere else. The default
behavior of this match, if no particular interface is
specified, is to assume a string value of +. The + value is
used to match a string of letters and numbers. A single +
would, in other words, tell the kernel to match all packets
without considering which interface it came in on. The +
string can also be appended to the type of interface, so
eth+ would be all Ethernet devices. We can also invert the
meaning of this option with the help of the ! sign. The line
would then have a syntax looking something like -i ! ethO,
which would match all incoming interfaces, except ethO.

Match

-0, --out-interface

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A FORWARD -0 ethO

Explanation

The --out-interface match is used for packets on the
interface from which they are leaving. Note that this match
is only available in the OUTPUT, FORWARD and
POSTROUTING chains, the opposite in fact of the
--in-interface match. Other than this, it works pretty much
the same as the --in-interface match. The + extension is
understood as matching all devices of similar type, so
eth+ would match all eth devices and so on. To invert the
meaning of the match, you can use the ! sign in exactly
the same way as for the --in-interface match. If no
--out-interface is specified, the default behavior for this
match is to match all devices, regardless of where the

packet is going.

152

Chapter 10. Iptables matches

Match -f, --fragment

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -f

Explanation [This match is used to match the second and third part of a

fragmented packet. The reason for this is that in the case
of fragmented packets, there is no way to tell the source or
destination ports of the fragments, nor ICMP types, among
other things. Also, fragmented packets might in rather
special cases be used to compound attacks against other
computers. Packet fragments like this will not be matched
by other rules, and hence this match was created. This
option can also be used in conjunction with the ! sign;
however, in this case the ! sign must precede the match,
i.e. I -f. When this match is inverted, we match all header
fragments and/or unfragmented packets. What this means,
is that we match all the first fragments of fragmented
packets, and not the second, third, and so on. We also
match all packets that have not been fragmented during
transfer. Note also that there are really good
defragmentation options within the kernel that you can use
instead. As a secondary note, if you use connection
tracking you will not see any fragmented packets, since
they are dealt with before hitting any chain or table in
iptables .

Implicit matches

This section will describe the matches that are loaded implicitly. Implicit
matches are implied, taken for granted, automatic. For example when
we match on --protocol tcp without any further criteria. There are
currently three types of implicit matches for three different protocols.
These are TCP matches, UDP matches and ICMP matches. The TCP

153

Chapter 10. Iptables matches

based matches contain a set of unique criteria that are available only for
TCP packets. UDP based matches contain another set of criteria that
are available only for UDP packets. And the same thing for ICMP
packets. On the other hand, there can be explicit matches that are
loaded explicitly. Explicit matches are not implied or automatic, you
have to specify them specifically. For these you use the -m or --match
option, which we will discuss in the next section.

TCP matches

These matches are protocol specific and are only available when
working with TCP packets and streams. To use these matches, you
need to specify --protocol tcp on the command line before trying to
use them. Note that the --protocol tcp match must be to the left of the
protocol specific matches. These matches are loaded implicitly in a
sense, just as the UDP and ICMP matches are loaded implicitly. The
other matches will be looked over in the continuation of this section,
after the TCP match section.

Table 10-2. TCP matches

Match --sport , --source-port
Kernel 2.3,2.4,25and 2.6
Example iptables -A INPUT -p tcp --sport 22

154

Chapter 10. Iptables matches

Explanation

The --source-port match is used to match packets based
on their source port. Without it, we imply all source ports.
This match can either take a service name or a port
number. If you specify a service name, the service name
must be in the /etc/services file, since iptables uses this
file in which to find. If you specify the port by its number,
the rule will load slightly faster, since iptables don’t have
to check up the service name. However, the match might
be a little bit harder to read than if you use the service
name. If you are writing a rule-set consisting of a 200 rules
or more, you should definitely use port numbers, since the
difference is really noticeable. (On a slow box, this could
make as much as 10 seconds’ difference, if you have
configured a large rule-set containing 1000 rules or so).
'You can also use the --source-port match to match any
range of ports, --source-port 22:80 for example. This
example would match all source ports between 22 and 80.
If you omit specifying the first port, port 0 is assumed (is
implicit). --source-port :80 would then match port 0
through 80. And if the last port specification is omitted,
port 65535 is assumed. If you were to write --source-port
22:, you would have specified a match for all ports from
port 22 through port 65535. If you invert the port range,
iptables automatically reverses your inversion. If you write
--source-port 80:22 , it is simply interpreted as
--source-port 22:80 . You can also invert a match by
adding a ! sign. For example, --source-port ! 22 means
that you want to match all ports but port 22. The inversion
could also be used together with a port range and would
then look like --source-port ! 22:80 , which in turn would
mean that you want to match all ports but ports 22 through
80. Note that this match does not handle multiple
separated ports and port ranges. For more information
about those, look at the multiport match extension.

Match

--dport , --destination-port

155

Chapter 10. Iptables matches

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -p tcp --dport 22

Explanation

This match is used to match TCP packets, according to
their destination port. It uses exactly the same syntax as
the --source-port match. It understands port and port
range specifications, as well as inversions. It also reverses
high and low ports in port range specifications, as above.
The match will also assume values of 0 and 65535 if the
high or low port is left out in a port range specification. In
other words, exactly the same as the --source-port
syntax. Note that this match does not handle multiple
separated ports and port ranges. For more information
about those, look at the multiport match extension.

Match

--tcp-flags

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -p tcp --tcp-flags SYN,FIN,ACK SYN

Explanation

This match is used to match on the TCP flags in a packet.
First of all, the match takes a list of flags to compare (a
mask) and secondly it takes list of flags that should be set
to 1, or turned on. Both lists should be comma-delimited.
The match knows about the SYN, ACK, FIN, RST, URG,
PSH flags, and it also recognizes the words ALL and
NONE. ALL and NONE is pretty much self describing: ALL|
means to use all flags and NONE means to use no flags
for the option. --tcp-flags ALL NONE would in other words
mean to check all of the TCP flags and match if none of
the flags are set. This option can also be inverted with the
I sign. For example, if we specify ! SYN,FIN,ACK SYN, we
would get a match that would match packets that had the
IACK and FIN bits set, but not the SYN bit. Also note that
the comma delimitation should not include spaces. You
can see the correct syntax in the example above.

Match

--syn

156

Chapter 10. Iptables matches

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -p tcp --syn

Explanation

The --syn match is more or less an old relic from the
ipchains days and is still there for backward compatibility
and for and to make transition one to the other easier. It is
used to match packets if they have the SYN bit set and the
ACK and RST bits unset. This command would in other
words be exactly the same as the --tcp-flags
SYN,RST,ACK SYN match. Such packets are mainly used
to request new TCP connections from a server. If you
block these packets, you should have effectively blocked
all incoming connection attempts. However, you will not
have blocked the outgoing connections, which a lot of
exploits today use (for example, hacking a legitimate
service and then installing a program or suchlike that
enables initiating an existing connection to your host,
instead of opening up a new port on it). This match can
also be inverted with the ! sign in this, ! --syn , way. This
would match all packets with the RST or the ACK bits set,
in other words packets in an already established
connection.

Match

--tcp-option

Kernel

2.3,2.4,25and 2.6

Example

iptables -p tcp --tcp-option 16

157

Chapter 10. Iptables matches

Explanation

This match is used to match packets depending on their
TCP options. A TCP Option is a specific part of the
header. This part consists of 3 different fields. The first one
is 8 bits long and tells us which Options are used in this
stream, the second one is also 8 bits long and tells us how
long the options field is. The reason for this length field is
that TCP options are, well, optional. To be compliant with
the standards, we do not need to implement all options,
but instead we can just look at what kind of option it is, and
if we do not support it, we just look at the length field and
can then jump over this data. This match is used to match
different TCP options depending on their decimal values. It
may also be inverted with the ! flag, so that the match
matches all TCP options but the option given to the match.
For a complete list of all options, take a closer look at the
Internet Engineering Task Force who maintains a list of all

the standard numbers used on the Internet.

UDP matches

This section describes matches that will only work together with UDP
packets. These matches are implicitly loaded when you specify the
--protocol UDP match and will be available after this specification. Note
that UDP packets are not connection oriented, and hence there is no
such thing as different flags to set in the packet to give data on what the
datagram is supposed to do, such as open or closing a connection, or if
they are just simply supposed to send data. UDP packets do not require
any kind of acknowledgment either. If they are lost, they are simply lost
(Not taking ICMP error messaging etc into account). This means that
there are quite a lot less matches to work with on a UDP packet than
there is on TCP packets. Note that the state machine will work on all
kinds of packets even though UDP or ICMP packets are counted as
connectionless protocols. The state machine works pretty much the
same on UDP packets as on TCP packets.

158

Chapter 10. Iptables matches

Table 10-3. UDP matches

Match

--sport , --source-port

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -p udp --sport 53

Explanation

This match works exactly the same as its TCP
counterpart. It is used to perform matches on packets
based on their source UDP ports. It has support for port
ranges, single ports and port inversions with the same
syntax. To specify a UDP port range, you could use 22:80
which would match UDP ports 22 through 80. If the first
\value is omitted, port O is assumed. If the last port is
omitted, port 65535 is assumed. If the high port comes
before the low port, the ports switch place with each other
automatically. Single UDP port matches look as in the
example above. To invert the port match, add a ! sign,
--source-port ! 53 . This would match all ports but port 53.
The match can understand service names, as long as they;
are available in the /etc/services file. Note that this match
does not handle multiple separated ports and port ranges.
For more information about this, look at the multiport
match extension.

Match

--dport , --destination-port

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -p udp --dport 53

159

Chapter 10. Iptables matches

Explanation [The same goes for this match as for --source-port above.
It is exactly the same as for the equivalent TCP match, but
here it applies to UDP packets. It matches packets based
on their UDP destination port. The match handles port
ranges, single ports and inversions. To match a single port
lyou use, for example, --destination-port 53 , to invert this
you would use --destination-port ! 53 . The first would
match all UDP packets going to port 53 while the second
would match packets but those going to the destination
port 53. To specify a port range, you would, for example,
use --destination-port 9:19 . This example would match
all packets destined for UDP port 9 through 19. If the first
port is omitted, port O is assumed. If the second port is
omitted, port 65535 is assumed. If the high port is placed
before the low port, they automatically switch place, so the
low port winds up before the high port. Note that this
match does not handle multiple ports and port ranges. For
more information about this, look at the multiport match
extension.

ICMP matches

These are the ICMP matches. These packets are even more
ephemeral, that is to say short lived, than UDP packets, in the sense
that they are connectionless. The ICMP protocol is mainly used for error
reporting and for connection controlling and suchlike. ICMP is not a
protocol subordinated to the IP protocol, but more of a protocol that
augments the IP protocol and helps in handling errors. The headers of
ICMP packets are very similar to those of the IP headers, but differ in a
number of ways. The main feature of this protocol is the type header,
that tells us what the packet is for. One example is, if we try to access
an unaccessible IP address, we would normally get an ICMP host
unreachable in return. For a complete listing of ICMP types, see the
ICMP types appendix. There is only one ICMP specific match available

160

Chapter 10. Iptables matches

for ICMP packets, and hopefully this should suffice. This match is
implicitly loaded when we use the --protocol ICMP match and we get
access to it automatically. Note that all the generic matches can also be
used, so that among other things we can match on the source and
destination addresses.

Table 10-4. ICMP matches

Match --icmp-type

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p icmp --icmp-type 8

Explanation | This match is used to specify the ICMP type to match.

ICMP types can be specified either by their numeric
values or by their names. Numerical values are specified
in RFC 792. To find a complete listing of the ICMP name
values, do an iptables --protocol icmp --help , or check
the ICMP types appendix. This match can also be
inverted with the ! sign in this, --icmp-type ! 8 , fashion.
Note that some ICMP types are obsolete, and others
again may be "dangerous" for an unprotected host since
they may, among other things, redirect packets to the
wrong places. The type and code may also be specified
by their typename, numeric type, and type/code as well.
For example --icmp-type network-redirect , --icmp-type
8 or --icmp-type 8/0 . For a complete listing of the names,
type iptables -p icmp --help

Ny

\ Please note that netfilter uses ICMP type 255 to
match all ICMP types. If you try to match this ICMP type,
you will wind up with matching all ICMP types.

SCTP matches

SCTP or Stream Control Transmission Protocol is a relatively new
occurence in the networking domain in comparison to the TCP and

161

Chapter 10. Iptables matches

UDP protocols. The SCTP Characteristics chapter explains the protocol
more in detail. The implicit SCTP matches are loaded through adding
the -p sctp match to the command line of iptables.

The SCTP protocol was developed by some of the larger telecom and
switch/network manufacturers out there, and the protocol is specifically
well suited for large simultaneous transactions with high reliability and
high throughput.

Table 10-5. SCTP matches

Match --source-port , --sport

Kernel 2.6

Example iptables -A INPUT -p sctp --source-port 80

Explanation [The --source-port match is used to match an SCTP
packet based on the source port in the SCTP packet
header. The port can either be a single port, as in the
example above, or a range of ports specified as
--source-port 20:100 , or it can also be inverted with the
I-sign. This looks, for example, like --source-port ! 25 .
The source port is an unsigned 16 bit integer, so the
maximum value is 65535 and the lowest value is 0.

Match --destination-port , --dport

Kernel 2.6

Example iptables -A INPUT -p sctp --destination-port 80

Explanation [This match is used for the destination port of the SCTP

packets. All SCTP packets contain a destination port, just
as it does a source port, in the headers. The port can be
either specified as in the example above, or with a port
range such as --destination-port 6660:6670 . The
command can also be inverted with the !-sign, for
example, --destination-port ! 80 . This example would
match all packets but those to port 80. The same applies
for destination ports as for source ports, the highest port is
65535 and the lowest is 0.

162

Chapter 10. Iptables matches

Match --chunk-types

Kernel 2.6

Example iptables -A INPUT -p sctp --chunk-types any
INIT,INIT_ACK

Explanation | This matches the chunk type of the SCTP packet.

Currently there are a host of different chunk types
available. For a complete list, see below. The match
begins with the --chunk-types keyword, and then
continues with a flag noting if we are to match all, any or
none . After this, you specify the SCTP Chunk Types to
match for. The Chunk Types are available in the separate
list below.

Additionally, the flags can take some Chunk Flags as
well. This is done for example in the form --chunk-types
any DATA:Be . The flags are specific for each SCTP
Chunk type and must be valid according to the separate
list after this table.

If an upper case letter is used, the flag must be set, and if
a lower case flag is set it must be unset to match. The
whole match can be inversed by using an ! sign just after
the --chunk-types keyword. For example, --chunk-types
I'any DATA:Be would match anything but this pattern.

Below is the list of chunk types that the --chunk-types match will
recognize. The list is quite extensive as you can see, but the mostly
used packets are DATA and SACK packets. The rest are mostly used
for controlling the association.

SCTP Chunk types as used in --chunk-types

+ ABORT
+ ASCONF

. ASCONF_ACK

163

Chapter 10. Iptables matches

. COOKIE_ACK
. COOKIE_ECHO

. DATA

. ECN_CWR

. ECN_ECNE

. ERROR

. HEARTBEAT

. HEARTBEAT ACK

. INIT

- INIT_ACK

. SACK

. SHUTDOWN

. SHUTDOWN_ACK

. SHUTDOWN_COMPLETE

The following flags can be used with the --chunk-types match as seen
above. According to the

RFC 2960 - Stream Control Transmission Protocol all the rest of the
flags are reserved or not in use, and must be set to 0. Iptables does
currently not contain any measures to enforce this, fortunately, since it
begs to become another problem such as the one previously
experienced when ECN was implemented in the IP protocol.

SCTP Chunk flags as used in --chunk-types

- DATA - U or u for Unordered bit, B or b for Beginning fragment bit and
E or e for Ending fragment bit.

« ABORT - T or t for TCB destroy flag.
« SHUTDOWN_COMPLETE - T or t for TCB destroyed flag.

164

Chapter 10. Iptables matches

Explicit matches

Explicit matches are those that have to be specifically loaded with the
-m or --match option. State matches, for example, demand the directive
-m state prior to entering the actual match that you want to use. Some
of these matches may be protocol specific . Some may be unconnected
with any specific protocol - for example connection states. These might
be NEW (the first packet of an as yet unestablished connection),
ESTABLISHED (a connection that is already registered in the kernel),
RELATED (a new connection that was created by an older, established
one) etc. A few may just have been evolved for testing or experimental
purposes, or just to illustrate what iptables is capable of. This in turn
means that not all of these matches may at first sight be of any use.
Nevertheless, it may well be that you personally will find a use for
specific explicit matches. And there are new ones coming along all the
time, with each new iptables release. Whether you find a use for them
or not depends on your imagination and your needs. The difference
between implicitly loaded matches and explicitly loaded ones, is that the
implicitly loaded matches will automatically be loaded when, for
example, you match on the properties of TCP packets, while explicitly
loaded matches will never be loaded automatically - it is up to you to
discover and activate explicit matches.

Addrtype match

The addrtype module matches packets based on the address type. The
address type is used inside the kernel to put different packets into
different categories. With this match you will be able to match all
packets based on their address type according to the kernel. It should
be noted that the exact meaning of the different address types varies
between the layer 3 protocols. | will give a brief general description here
however, but for more information | suggest reading

Linux Advanced Routing and Traffic Control HOW-TO and

Policy Routing using Linux. The available types are as follows:

165

Chapter 10. Iptables matches

Table 10-6. Address types

Type

Description

ANYCAST

This is a one-to-many associative connection type,
where only one of the many receiver hosts actually
receives the data. This is for example implemented in
DNS. You have single address to a root server, but it
actually has several locations and your packet will be
directed to the closest working server. Not
implemented in Linux 1Pv4.

BLACKHOLE

/A blackhole address will simply delete the packet and
send no reply. It works as a black hole in space
basically. This is configured in the routing tables of
linux.

BROADCAST

/A broadcast packet is a single packet sent to
everyone in a specific network in a one-to-many
relation. This is for example used in ARP resolution,
where a single packet is sent out requesting
information on how to reach a specific IP, and then
the host that is authoritative replies with the proper
MAC address of that host.

LOCAL

/An address that is local to the host we are working on.
127.0.0.1 for example.

MULTICAST

/A multicast packet is sent to several hosts using the
shortest distance and only one packet is sent to each
waypoint where it will be multiple copies for each
host/router subscribing to the specific multicast
address. Commonly used in one way streaming
media such as video or sound.

NAT

An address that has been NAT’ed by the kernel.

PROHIBIT

Same as blackhole except that a prohibited answer
will be generated. In the IPv4 case, this means an
ICMP communication prohibited (type 3, code 13)

answer will be generated.

166

Chapter 10. Iptables matches

Type

Description

THROW

Special route in the Linux kernel. If a packet is thrown
in a routing table it will behave as if no route was
found in the table. In normal routing, this means that
the packet will behave as if it had no route. In policy
routing, another route might be found in another
routing table.

UNICAST

A real routable address for a single address. The
most common type of route.

UNREACHABLE

This signals an unreachable address that we do not
know how to reach. The packets will be discarded and
an ICMP Host unreachable (type 3, code 1) will be
generated.

UNSPEC

/An unspecified address that has no real meaning.

XRESOLVE

This address type is used to send route lookups to
userland applications which will do the lookup for the
kernel. This might be wanted to send ugly lookups to
the outside of the kernel, or to have an application do
lookups for you. Not implemented in Linux.

The addrtype match is loaded by using the -m addrtype keyword.
When this is done, the extra match options in the following table will be
available for usage.

Table 10-7. Addrtype match options

Match --src-type

Kernel 2.6

Example iptables -A INPUT -m addrtype --src-type UNICAST

167

Chapter 10. Iptables matches

Explanation [The --src-type match option is used to match the source
address type of the packet. It can either take a single
address type or several separated by coma signs, for
example --src-type BROADCAST,MULTICAST . The
match option may also be inverted by adding an
exclamation sign before it, for example ! --src-type
BROADCAST,MULTICAST .

Match --dst-type

Kernel 2.6

Example iptables -A INPUT -m addrtype --dst-type UNICAST

Explanation [The --dst-type works exactly the same way as --src-type
and has the same syntax. The only difference is that it will
match packets based on their destination address type.

AH/ESP match

These matches are used for the IPSEC AH and ESP protocols. IPSEC
is used to create secure tunnels over an insecure Internet connection.
The AH and ESP protocols are used by IPSEC to create these secure
connections. The AH and ESP matches are really two separate
matches, but are both described here since they look very much alike,
and both are used in the same function.

I will not go into detail to describe IPSEC here, instead look at the
following pages and documents for more information:

RFC 2401 - Security Architecture for the Internet Protocol
FreeS/WAN

* IPSEC Howto

 Linux Advanced Routing and Traffic Control HOW-TO

There is also a ton more documentation on the Internet on this, but you
are free to look it up as needed.

168

Chapter 10. Iptables matches

To use the AH/ESP matches, you need to use -m ah to load the AH
matches, and -m esp to load the ESP matches.

ot
\N)In 2.2 and 2.4 kernels, Linux used something called FreeS/WAN for the
IPSEC implementation, but as of Linux kernel 2.5.47 and up, Linux
kernels have a direct implementation of IPSEC that requires no patching
of the kernel. This is a total rewrite of the IPSEC implementation on Linux.

Table 10-8. AH match options

Match --ahspi

Kernel 2.5 and 2.6

Example iptables -A INPUT -p 51 -m ah --ahspi 500

Explanation [This matches the AH Security Parameter Index (SPI)
number of the AH packets. Please note that you must
specify the protocol as well, since AH runs on a different
protocol than the standard TCP, UDP or ICMP protocols.
The SPI number is used in conjunction with the source
and destination address and the secret keys to create a
security association (SA). The SA uniquely identifies each
and every one of the IPSEC tunnels to all hosts. The SPI
is used to uniquely distinguish each IPSEC tunnel
connected between the same two peers. Using the
--ahspi match, we can match a packet based on the SPI
of the packets. This match can match a whole range of
SPI values by using a : sign, such as 500:520, which will
match the whole range of SPI’s.

Table 10-9. ESP match options

Match --espspi

Kernel 2.5 and 2.6

169

Chapter 10. Iptables matches

Example

iptables -A INPUT -p 50 -m esp --espspi 500

Explanation

The ESP counterpart Security Parameter Index (SPI) is
used exactly the same way as the AH variant. The match
looks exactly the same, with the esp/ah difference. Of
course, this match can match a whole range of SPI
numbers as well as the AH variant of the SPI match, such
as --espspi 200:250 which matches the whole range of
SPI’s.

Comment match

The comment match is used to add comments inside the iptables
ruleset and the kernel. This can make it much easier to understand your
ruleset and to ease debugging. For example, you could add comments
documenting which bash function added specific sets of rules to
netfilter, and why. It should be noted that this isn’t actually a match. The
comment match is loaded using the -m comment keywords. At this
point the following options will be available.

Table 10-10. Comment match options
Match --comment
Kernel 2.6
Example iptables -A INPUT -m comment --comment "A
comment”
Explanation [The --comment option specifies the comment to actually

add to the rule in kernel. The comment can be a maximum
of 256 characters.

170

Chapter 10. Iptables matches

Connmark match

The connmark match is used very much the same way as the mark
match is in the MARK/mark target and match combination. The
connmark match is used to match marks that has been set on a
connection with the CONNMARK target. It only takes one option.

\m\al’“B

\ To match a mark on the same packet as is the first to create the
connection marking, you must use the connmark match after the
CONNMARK target has set the mark on the first packet.

Table 10-11.

Connmark match options

Match

--mark

Kernel

2.6

Example

iptables -A INPUT -m connmark --mark 12 -j ACCEPT

Explanation

The mark option is used to match a specific mark
associated with a connection. The mark match must be
exact, and if you want to filter out unwanted flags from the
connection mark before actually matching anything, you
can specify a mask that will be anded to the connection
mark. For example, if you have a connection mark set to
33 (10001 in binary) on a connection, and want to match
the first bit only, you would be able to run something like
--mark 1/1. The mask (00001) would be masked to 10001,
so 10001 && 00001 equals 1, and then matched against
the 1.

Conntrack match

The conntrack match is an extended version of the state match, which

171

Chapter 10. Iptables matches

makes it possible to match packets in a much more granular way. It let's
you look at information directly available in the connection tracking
system, without any "frontend" systems, such as in the state match. For
more information about the connection tracking system, take a look at
the The state machine chapter.

There are a number of different matches put together in the conntrack
match, for several different fields in the connection tracking system.
These are compiled together into the list below. To load these matches,
you need to specify -m conntrack .

Table 10-12. Conntrack match options

Match --Ctstate
Kernel 2.5 and 2.6
Example iptables -A INPUT -p tcp -m conntrack --ctstate

RELATED

172

Chapter 10. Iptables matches

Explanation | This match is used to match the state of a packet,
according to the conntrack state. It is used to match pretty
much the same states as in the original state match. The
valid entries for this match are:

* INVALID

» ESTABLISHED

« NEW

* RELATED

o SNAT

* DNAT

The entries can be used together with each other
separated by a comma. For example, -m conntrack
--ctstate ESTABLISHED,RELATED . It can also be
inverted by putting a ! in front of --ctstate . For example:
-m conntrack ! --ctstate ESTABLISHED,RELATED
which matches all but the ESTABLISHED and
RELATED states.

Match --ctproto

Kernel 2.5 and 2.6

Example iptables -A INPUT -p tcp -m conntrack --ctproto TCP

Explanation [This matches the protocol, the same as the --protocol
does. It can take the same types of values, and is inverted
using the ! sign. For example, -m conntrack ! --ctproto
'TCP matches all protocols but the TCP protocol.

Match --ctorigsrc

Kernel 2.5 and 2.6

173

Chapter 10. Iptables matches

Example iptables -A INPUT -p tcp -m conntrack --ctorigsrc
192.168.0.0/24

Explanation |--ctorigsrc matches based on the original source IP
specification of the conntrack entry that the packet is
related to. The match can be inverted by using a ! between
the --ctorigsrc and IP specification, such as --ctorigsrc !
192.168.0.1. It can also take a netmask of the CIDR form,
such as --ctorigsrc 192.168.0.0/24 .

Match --ctorigdst

Kernel 2.5 and 2.6

Example iptables -A INPUT -p tcp -m conntrack --ctorigdst
192.168.0.0/24

Explanation [This match is used exactly as the --ctorigsrc , except that
it matches on the destination field of the conntrack entry. It
has the same syntax in all other respects.

Match --ctreplsrc

Kernel 2.5 and 2.6

Example iptables -A INPUT -p tcp -m conntrack --ctreplsrc
192.168.0.0/24

Explanation [The --ctreplsrc match is used to match based on the
original conntrack reply source of the packet. Basically,
this is the same as the --ctorigsrc , but instead we match
the reply source expected of the upcoming packets. This
target can, of course, be inverted and address a whole
range of addresses, just the same as the the previous
targets in this class.

Match --ctrepldst

Kernel 2.5 and 2.6

Example iptables -A INPUT -p tcp -m conntrack --ctrepldst

192.168.0.0/24

174

Chapter 10. Iptables matches

Explanation

The --ctrepldst match is the same as the --ctreplsrc
match, with the exception that it matches the reply
destination of the conntrack entry that matched the packet.
It too can be inverted, and accept ranges, just as the
--ctreplsrc match.

Match

--Ctstatus

Kernel

2.5 and 2.6

Example

iptables -A INPUT -p tcp -m conntrack --ctstatus
RELATED

Explanation

This matches the status of the connection, as described
in the The state machine chapter. It can match the
following statuses.

 NONE - The connection has no status at all.

e EXPECTED - This connection is expected and was
added by one of the expectation handlers.

e SEEN_REPLY - This connection has seen a reply
but isn’t assured yet.

» ASSURED - The connection is assured and will not
be removed until it times out or the connection is closed
by either end.

This can also be inverted by using the ! sign. For
example -m conntrack ! --ctstatus ASSURED which
will match all but the ASSURED status.

Match

--ctexpire

Kernel

2.5 and 2.6

Example

iptables -A INPUT -p tcp -m conntrack --ctexpire
100:150

175

Chapter 10. Iptables matches

Explanation [This match is used to match on packets based on how
long is left on the expiration timer of the conntrack entry,
measured in seconds. It can either take a single value and
match against, or a range such as in the example above. It
can also be inverted by using the ! sign, such as this -m
conntrack ! --ctexpire 100 . This will match every
expiration time, which does not have exactly 100 seconds
left to it.

Dscp match

This match is used to match on packets based on their DSCP
(Differentiated Services Code Point) field. This is documented in the
RFC 2638 - A Two-bit Differentiated Services Architecture for the Internet
RFC. The match is explicitly loaded by specifying -m dscp . The match
can take two mutually exclusive options, described below.

Table 10-13. Dscp match options

Match --dscp
Kernel 2.5 and 2.6
Example iptables -A INPUT -p tcp -m dscp --dscp 32

Explanation [This option takes a DSCP value in either decimal or in hex.
If the option value is in decimal, it would be written like 32
or 16, et cetera. If written in hex, it should be prefixed with
0x, like this: 0x20. It can also be inverted by using the !
character, like this: -m dscp ! --dscp 32 .

Match --dscp-class
Kernel 2.5and 2.6
Example iptables -A INPUT -p tcp -m dscp --dscp-class BE

176

Chapter 10. Iptables matches

Explanation

The --dscp-class match is used to match on the DiffServ
class of a packet. The values can be any of the BE, EF,
AFxx or CSx classes as specified in the various RFC's.
This match can be inverted just the same way as the
--dscp option.

No\e\-
\)Please note that the --dscp and --dscp-class options are mutually
exclusive and can not be used in conjunction with each other.

Ecn match

The ecn match is used to match on the different ECN fields in the TCP
and IPv4 headers. ECN is described in detail in the

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP
RFC. The match is explicitly loaded by using -m ecn in the command
line. The ecn match takes three different options as described below.

Table 10-14. Ecn match options

Match --ecn

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -p tcp -m ecn --ecn-tcp-cwr

Explanation [This match is used to match the CWR (Congestion
Window Received) bit, if it has been set. The CWR flag is
set to notify the other endpoint of the connection that they
have received an ECE, and that they have reacted to it.
Per default this matches if the CWR bit is set, but the
match may also be inversed using an exclamation point.

Match --ecn-tcp-ece

Kernel 2.4,2.5and 2.6

177

Chapter 10. Iptables matches

Example

iptables -A INPUT -p tcp -m ecn --ecn-tcp-ece

Explanation

This match can be used to match the ECE (ECN-Echo)
bit. The ECE is set once one of the endpoints has
received a packet with the CE bit set by a router. The
endpoint then sets the ECE in the returning ACK packet,
to notify the other endpoint that it needs to slow down. The
other endpoint then sends a CWR packet as described in
the --ecn-tcp-cwr explanation. This matches per default if
the ECE bit is set, but may be inversed by using an
exclamation point.

Match

--ecn-ip-ect

Kernel

2.4,2.5and 2.6

Example

iptables -A INPUT -p tcp -m ecn --ecn-ip-ect 1

Explanation

The --ecn-ip-ect match is used to match the ECT (ECN
Capable Transport) codepoints. The ECT codepoints has
several types of usage. Mainly, they are used to negotiate
if the connection is ECN capable by setting one of the two
bits to 1. The ECT s also used by routers to indicate that
they are experiencing congestion, by setting both ECT
codepoints to 1. The ECT values are all available in the in
the ECN Field in IP table below.

The match can be inversed using an exclamation point,
for example ! --ecn-ip-ect 2 which will match all ECN
values but the ECT(0) codepoint. The valid value range is
0-3 in iptables. See the above table for their values.

Table 10-15.

ECN Field in IP

value

Iptables [ECT |[CE [[Obsolete] RFC 2481 names for the ECN bits.

0 0

0 Not-ECT, ie. non-ECN capable connection.

178

Chapter 10. Iptables matches

Iptables [ECT [CE [[Obsolete] RFC 2481 names for the ECN bits.
value

1 0 1 ECT(1), New naming convention of ECT
codepoints in RFC 3168.

2 1 0 ECT(0), New naming convention of ECT
codepoints in RFC 3168.

3 1 1 CE (Congestion Experienced), Used to notify

endpoints of congestion

Hashlimit match

This is a modified version of the Limit match. Instead of just setting up a
single token bucket, it sets up a hash table pointing to token buckets for
each destination IP, source IP, destination port and source port tuple.
For example, you can set it up so that every IP address can receive a
maximum of 1000 packets per second, or you can say that every
service on a specific IP address may receive a maximum of 200
packets per second. The hashlimit match is loaded by specifying the
-m hashlimit keywords.

Each rule that uses the hashlimit match creates a separate hashtable
which in turn has a specific max size and a maximum number of
buckets. This hash table contains a hash of either a single or multiple
values. The values can be any and/or all of destination IP, source IP,
destination port and source port. Each entry then points to a token
bucket that works as the limit match.

Table 10-16. Hashlimit match options

Match --hashlimit
Kernel 2.6

Example iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000/sec --hashlimit-mode dstip,dstport
--hashlimit-name hosts

179

Chapter 10. Iptables matches

Explanation

The --hashlimit specifies the limit of each bucket. In this
example the hashlimit is set to 1000. In this example, we
have set up the hashlimit-mode to be dstip,dstport and
destination 192.168.0.3. Hence, for every port or service
on the destination host, it can receive 1000 packets per
second. This is the same setting as the limit option for the
limit match. The limit can take a /sec, /minute , /hour or
/day postfix. If no postfix is specified, the default postfix is
per second.

\m"@
\ This option is mandatory for all hashlimit matches.

Match

--hashlimit-mode

Kernel

2.6

Example

iptables -A INPUT -p tcp --dst 192.168.0.0/16 -m
hashlimit --hashlimit 1000/sec --hashlimit-mode dstip
--hashlimit-name hosts

Explanation

The --hashlimit-mode option specifies which values we
should use as the hash values. In this example, we use
only the dstip (destination IP) as the hashvalue. So, each
host in the 192.168.0.0/16 network will be limited to
receiving a maximum of 1000 packets per second in this
case. The possible values for the --hashlimit-mode is
dstip (Destination IP), srcip (Source IP), dstport
(Destination port) and srcport (Source port). All of these
can also be separated by a comma sign to include more
than one hashvalue, such as for example
--hashlimit-mode dstip,dstport

oot

\)This option is mandatory for all hashlimit matches.

Match

--hashlimit-name

Kernel

2.6

180

Chapter 10. Iptables matches

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts

Explanation

This option specifies the name that this specific hash will
be available as. It can be viewed inside the
Iproc/net/ipt_hashlimit directory. The example above would
be viewable inside the /proc/net/ipt_hashlimit/hosts file. Only
the filename should be specified.

\m\al"‘D
\ This option is mandatory for all hashlimit matches.

Match

--hashlimit-burst

Kernel

2.6

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts --hashlimit-burst 2000

Explanation

This match is the same as the --limit-burst in that it sets
the maximum size of the bucket. Each bucket will have a
burst limit, which is the maximum amount of packets that
can be matched during a single time unit. For an example
on how a token bucket works, take a look at the

Limit match.

Match

--hashlimit-htable-size

Kernel

2.6

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts --hashlimit-htable-size 500

Explanation

This sets the maximum available buckets to be used. In
this example, it means that a maximum of 500 ports can
be open and active at the same time.

Match

--hashlimit-htable-max

Kernel

2.6

181

Chapter 10. Iptables matches

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts --hashlimit-htable-max 500

Explanation

The --hashlimit-htable-max sets the maximum number of
hashtable entries. This means all of the connections,
including the inactive connections that doesn’t require any
token buckets for the moment.

Match

--hashlimit-htable-gcinterval

Kernel

2.6

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts --hashlimit-htable-gcinterval
1000

Explanation

How often should the garbage collection function be run.
Generally speaking this value should be lower than the
expire value. The value is measured in milliseconds. If it is
set too low it will be taking up unnecessary system
resources and processing power, but if it's too high it can
leave unused token buckets lying around for too long and
leaving other connections impossible. In this example the
garbage collector will run every second.

Match

--hashlimit-htable-expire

Kernel

2.6

Example

iptables -A INPUT -p tcp --dst 192.168.0.3 -m hashlimit
--hashlimit 1000 --hashlimit-mode dstip,dstport
--hashlimit-name hosts --hashlimit-htable-expire 10000

Explanation

This value sets after how long time an idle hashtable entry
should expire. If a bucket has been unused for longer than
this, it will be expired and the next garbage collection run
will remove it from the hashtable, as well as all of the
information pertaining to it.

182

Chapter 10. Iptables matches

Helper match

This is a rather unorthodox match in comparison to the other matches,
in the sense that it uses a little bit specific syntax. The match is used to
match packets, based on which conntrack helper that the packet is
related to. For example, let’s look at the FTP session. The Control
session is opened up, and the ports/connection is negotiated for the
Data session within the Control session. The ip_conntrack_ftp helper
module will find this information, and create a related entry in the
conntrack table. Now, when a packet enters, we can see which protocol
it was related to, and we can match the packet in our ruleset based on
which helper was used. The match is loaded by using the -m helper
keyword.

Table 10-17. Helper match options

Match --helper
Kernel 2.4,2.5and 2.6
Example iptables -A INPUT -p tcp -m helper --helper ftp-21

Explanation [The --helper option is used to specify a string value, telling
the match which conntrack helper to match. In the basic
form, it may look like --helper irc . This is where the syntax
starts to change from the normal syntax. We can also
choose to only match packets based on which port that
the original expectation was caught on. For example, the
FTP Control session is normally transferred over port 21,
but it may as well be port 954 or any other port. We may
then specify upon which port the expectation should be
caught on, like --helper ftp-954 .

IP range match

The IP range match is used to match IP ranges, just as the --source
and --destination matches are able to do as well. However, this match

183

Chapter 10. Iptables matches

adds a different kind of matching in the sense that it is able to match in
the manner of from IP - to IP, which the --source and --destination
matches are unable to. This may be needed in some specific network
setups, and it is rather a bit more flexible. The IP range match is loaded
by using the -m iprange keyword.

Table 10-18. IP range match options

Match --src-range

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -p tcp -m iprange --src-range
192.168.1.13-192.168.2.19

Explanation [This matches a range of source IP addresses. The range
includes every single IP address from the first to the last,
so the example above includes everything from
192.168.1.13 t0 192.168.2.19. The match may also be
inverted by adding an !. The above example would then
look like -m iprange ! --src-range
192.168.1.13-192.168.2.19, which would match every
single IP address, except the ones specified.

Match --dst-range

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -p tcp -m iprange --dst-range
192.168.1.13-192.168.2.19

Explanation [The --dst-range works exactly the same as the
--src-range match, except that it matches destination I1P’s
instead of source IP’s.

Length match

The length match is used to match packets based on their length. It is
very simple. If you want to limit packet length for some strange reason,
or want to block ping-of-death-like behaviour, use the length match.

184

Chapter 10. Iptables matches

Table 10-19. Length match options

Match --length
Kernel 2.4,2.5and 2.6
Example iptables -A INPUT -p tcp -m length --length 1400:1500

Explanation [The example --length will match all packets with a length
between 1400 and 1500 bytes. The match may also be
inversed using the ! sign, like this: -m length ! --length
1400:1500 . It may also be used to match only a specific
length, removing the : sign and onwards, like this: -m
length --length 1400 . The range matching is, of course,
inclusive, which means that it includes all packet lengths in
between the values you specify.

Limit match

The limit match extension must be loaded explicitly with the -m limit
option. This match can, for example, be used to advantage to give
limited logging of specific rules etc. For example, you could use this to
match all packets that do not exceed a given value, and after this value
has been exceeded, limit logging of the event in question. Think of a
time limit: You could limit how many times a certain rule may be
matched in a certain time frame, for example to lessen the effects of
DoS syn flood attacks. This is its main usage, but there are more
usages, of course. The limit match may also be inverted by adding a !
flag in front of the limit match. It would then be expressed as -m limit !
--limit 5/s .This means that all packets will be matched after they have
broken the limit.

To further explain the limit match, it is basically a token bucket filter.
Consider having a leaky bucket where the bucket leaks X packets per
time-unit. X is defined depending on how many matching packets we
get, so if we get 3 packets, the bucket leaks 3 packets per that time-unit.
The --limit option tells us how many packets to refill the bucket with per
time-unit, while the --limit-burst option tells us how big the bucket is in

185

Chapter 10. Iptables matches

the first place. So, setting --limit 3/minute --limit-burst 5 , and then
receiving 5 matches will empty the bucket. After 20 seconds, the bucket
is refilled with another token, and so on until the --limit-burst is reached
again or until they get used.

Consider the example below for further explanation of how this may
look.

1. We set a rule with -m limit --limit 5/second --limit-burst 10/second.
The limit-burst token bucket is set to 10 initially. Each packet that
matches the rule uses a token.

2. We get packet that matches, 1-2-3-4-5-6-7-8-9-10, all within a
1/1000 of a second.

3. The token bucket is now empty. Once the token bucket is empty, the
packets that qualify for the rule otherwise no longer match the rule
and proceed to the next rule if any, or hit the chain policy.

4. For each 1/5 s without a matching packet, the token count goes up
by 1, upto a maximum of 10. 1 second after receiving the 10
packets, we will once again have 5 tokens left.

5. And of course, the bucket will be emptied by 1 token for each
packet it receives.

Table 10-20. Limit match options

Match --limit
Kernel 2.3,2.4,25and 2.6
Example iptables -A INPUT -m limit --limit 3/hour

Explanation [This sets the maximum average match rate for the limit
match. You specify it with a number and an optional time
unit. The following time units are currently recognized:
second /minute /hour /day . The default value here is 3
per hour, or 3/hour . This tells the limit match how many
times to allow the match to occur per time unit (e.g. per
minute).

186

Chapter 10. Iptables matches

Match

--limit-burst

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A INPUT -m limit --limit-burst 5

Explanation

This is the setting for the burst limit of the limit match. It
tells iptables the maximum number of tokens available in
the bucket when we start, or when the bucket is full. This
number gets decremented by one for every packet that
arrives, down to the lowest possible value, 1. The bucket
will be refilled by the limit value every time unit, as
specified by the --limit option. The default --limit-burst
\value is 5. For a simple way of checking out how this
works, you can use the example Limit-match.txt
one-rule-script. Using this script, you can see for yourself
how the limit rule works, by simply sending ping packets at|
different intervals and in different burst numbers. All echo
replies will be blocked when the burst value has been
exceeded, and then be refilled by the limit value every

second.

Mac match

The MAC (Ethernet Media Access Control) match can be used to
match packets based on their MAC source address. As of writing this
documentation, this match is a little bit limited, however, in the future this
may be more evolved and may be more useful. This match can be used
to match packets on the source MAC address only as previously said.

Ny

\ Do note that to use this module we explicitly load it with the -m mac
option. The reason that | am saying this is that a lot of people wonder if it
should not be -m mac-source , which it should not.

187

Chapter 10. Iptables matches

Table 10-21. Mac match options

Match --mac-source
Kernel 2.3,2.4,25and 2.6
Example iptables -A INPUT -m mac --mac-source

00:00:00:00:00:01

Explanation [This match is used to match packets based on their MAC
source address. The MAC address specified must be in
the form XX: XX: XX:XX:XX: XX, else it will not be legal.
The match may be reversed with an ! sign and would look
like --mac-source ! 00:00:00:00:00:01 . This would in
other words reverse the meaning of the match, so that all
packets except packets from this MAC address would be
matched. Note that since MAC addresses are only used
on Ethernet type networks, this match will only be possible
to use for Ethernet interfaces. The MAC match is only
valid in the PREROUTING, FORWARD and INPUT chains
and nowhere else.

Mark match

The mark match extension is used to match packets based on the
marks they have set. A mark is a special field, only maintained within
the kernel, that is associated with the packets as they travel through the
computer. Marks may be used by different kernel routines for such
tasks as traffic shaping and filtering. As of today, there is only one way
of setting a mark in Linux, namely the MARK target in iptables . This
was previously done with the FWMARK target in ipchains , and this is
why people still refer to FWMARK in advanced routing areas. The mark
field is currently set to an unsigned integer, or 4294967296 possible
values on a 32 bit system. In other words, you are probably not going to
run into this limit for quite some time.

188

Chapter 10. Iptables matches

Table 10-22. Mark match options

Match --mark

Kernel 2.3,2.4,25and 2.6

Example iptables -t mangle -A INPUT -m mark --mark 1
Explanation [This match is used to match packets that have previously

been marked. Marks can be set with the MARK target
which we will discuss in the next section. All packets
traveling through Netfilter get a special mark field
associated with them. Note that this mark field is not in
any way propagated, within or outside the packet. It stays
inside the computer that made it. If the mark field matches
the mark, it is a match. The mark field is an unsigned
integer, hence there can be a maximum of 4294967296
different marks. You may also use a mask with the mark.
The mark specification would then look like, for example,
--mark 1/1. If a mask is specified, it is logically AND ed
with the mark specified before the actual comparison.

Multiport match

The multiport match extension can be used to specify multiple
destination ports and port ranges. Without the possibility this match
gives, you would have to use multiple rules of the same type, just to
match different ports.

o€t
\S)You can not use both standard port matching and multiport matching at
the same time, for example you can’t write: --sport 1024:63353 -m
multiport --dport 21,23,80 . This will simply not work. What in fact
happens, if you do, is that iptables honors the first element in the rule, and
ignores the multiport instruction.

189

Chapter 10. Iptables matches

Table 10-23. Multiport match options

Match --source-port

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p tcp -m multiport --source-port
22,53,80,110

Explanation [This match matches multiple source ports. A maximum of
15 separate ports may be specified. The ports must be
comma delimited, as in the above example. The match
may only be used in conjunction with the -p tcp or -p udp
matches. It is mainly an enhanced version of the normal
--source-port match.

Match --destination-port

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p tcp -m multiport
--destination-port 22,53,80,110

Explanation [This match is used to match multiple destination ports. It
works exactly the same way as the above mentioned
source port match, except that it matches destination
ports. It too has a limit of 15 ports and may only be used in
conjunction with -p tcp and -p udp .

Match --port

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p tcp -m multiport --port

22,53,80,110

190

Chapter 10. Iptables matches

Explanation [This match extension can be used to match packets based
both on their destination port and their source port. It
works the same way as the --source-port and
--destination-port matches above. It can take a maximum
of 15 ports and can only be used in conjunction with -p tcp
and -p udp . Note that the --port match will only match
packets coming in from and going to the same port, for
example, port 80 to port 80, port 110 to port 110 and so
on.

Owner match

The owner match extension is used to match packets based on the
identity of the process that created them. The owner can be specified
as the process ID either of the user who issued the command in
guestion, that of the group, the process, the session, or that of the
command itself. This extension was originally written as an example of
what iptables could be used for. The owner match only works within
the OUTPUT chain, for obvious reasons: It is pretty much impossible to
find out any information about the identity of the instance that sent a
packet from the other end, or where there is an intermediate hop to the
real destination. Even within the OUTPUT chain it is not very reliable,
since certain packets may not have an owner. Notorious packets of that
sort are (among other things) the different ICMP responses. ICMP
responses will never match.

Table 10-24. Owner match options

Match --cmd-owner
Kernel 2.3,2.4,25and 2.6
Example iptables -A OUTPUT -m owner --cmd-owner httpd

191

Chapter 10. Iptables matches

Explanation

This is the command owner match, and is used to match
based on the command name of the process that is
sending the packet. In the example, httpd is matched. This
match may also be inverted by using an exclamation sign,
for example -m owner ! --cmd-owner ssh

Match

--uid-owner

Kernel

2.3,2.4,25and 2.6

Example

iptables -A OUTPUT -m owner --uid-owner 500

Explanation

This packet match will match if the packet was created by
the given User ID (UID). This could be used to match
outgoing packets based on who created them. One
possible use would be to block any other user than root
from opening new connections outside your firewall.
IAnother possible use could be to block everyone but the
http user from sending packets from the HTTP port.

Match

--gid-owner

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A OUTPUT -m owner --gid-owner 0

Explanation

This match is used to match all packets based on their
Group ID (GID). This means that we match all packets
based on what group the user creating the packets is in.
This could be used to block all but the users in the
network group from getting out onto the Internet or, as
described above, only to allow members of the http group
to create packets going out from the HTTP port.

Match

--pid-owner

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A OUTPUT -m owner --pid-owner 78

192

Chapter 10. Iptables matches

Explanation

This match is used to match packets based on the
Process ID (PID) that was responsible for them. This
match is a bit harder to use, but one example would be
only to allow PID 94 to send packets from the HTTP port
(if the HTTP process is not threaded, of course).
Alternatively we could write a small script that grabs the
PID from a ps output for a specific daemon and then adds
a rule for it. For an example, you could have a rule as
shown in the Pid-owner.txt example.

Match

--sid-owner

Kernel

2.3,2.4,2.5and 2.6

Example

iptables -A OUTPUT -m owner --sid-owner 100

Explanation

This match is used to match packets based on the Session
ID used by the program in question. The value of the SID,
or Session ID of a process, is that of the process itself and
all processes resulting from the originating process. These
latter could be threads, or a child of the original process.
So, for example, all of our HTTPD processes should have
the same SID as their parent process (the originating
HTTPD process), if our HTTPD is threaded (most
HTTPDs are, Apache and Roxen for instance). To show
this in example, we have created a small script called
Sid-owner.txt. This script could possibly be run every hour
or so together with some extra code to check if the HTTPD
is actually running and start it again if necessary, then

flush and re-enter our OUTPUT chain if needed.

No\e\-
T e pid,

sid and command matching is broken in SMP kernels since they

use different process lists for each processor. It might be fixed in the future

however

193

Chapter 10. Iptables matches

Packet type match

The packet type match is used to match packets based on their type.
l.e., are they destined to a specific person, to everyone or to a specific
group of machines or users. These three groups are generally called
unicast, broadcast and multicast, as discussed in the TCP/IP repetition
chapter. The match is loaded by using -m pkttype .

Table 10-25. Packet type match options

Match --pkt-type
Kernel 2.3,2.4,2.5and 2.6
Example iptables -A OUTPUT -m pkttype --pkt-type unicast

Explanation [The --pkt-type match is used to tell the packet type match
which packet type to match. It can either take unicast ,
broadcast or multicast as an argument, as in the example.
It can also be inverted by using a ! like this: -m pkttype
--pkt-type ! broadcast , which will match all other packet
types.

Realm match

The realm match is used to match packets based on the routing realm
that they are part of. Routing realms are used in Linux for complex
routing scenarios and setups such as when using BGP et cetera. The
realm match is loaded by adding the -m realm keyword to the
commandline.

A routing realm is used in Linux to classify routes into logical groups of
routes. In most dedicated routers today, the Routing Information Base

(RIB) and the forwarding engine are very close to eachother. Inside the
kernel for example. Since Linux isn’t really a dedicated routing system,

it has been forced to separate its RIB and Forwarding Information Base
(FIB). The RIB lives in userspace and the FIB lives inside kernelspace.
Because of this separation, it becomes quite resourceheavy to do quick

194

Chapter 10. Iptables matches

searches in the RIB. The routing realm is the Linux solution to this, and
actually makes the system more flexible and richer.

The Linux realms can be used together with BGP and other routing
protocols that delivers huge amounts of routes. The routing daemon
can then sort the routes by their prefix, aspath, or source for example,
and put them in different realms. The realm is numeric, but can also be
named through the /etc/iproute2/rt_realms file.

Table 10-26. Realm match options

Match --realm
Kernel 2.6
Example iptables -A OUTPUT -m realm --realm 4

Explanation [This option matches the realm number and optionally a
mask. If this is not a number, it will also try and resolve the
realm from the /etc/iproute2/rt_realms file also. If a named
realm is used, no mask may be used. The match may also
be inverted by setting an exclamation sign, for example
--realm ! cosmos .

Recent match

The recent match is a rather large and complex matching system,
which allows us to match packets based on recent events that we have
previously matched. For example, if we would see an outgoing IRC
connection, we could set the IP addresses into a list of hosts, and have
another rule that allows identd requests back from the IRC server
within 15 seconds of seeing the original packet.

Before we can take a closer look at the match options, let’s try and
explain a little bit how it works. First of all, we use several different rules
to accomplish the use of the recent match. The recent match uses
several different lists of recent events. The default list being used is the
DEFAULT list. We create a new entry in a list with the set option, so

195

Chapter 10. Iptables matches

once a rule is entirely matched (the set option is always a match), we
also add an entry in the recent list specified. The list entry contains a
timestamp, and the source IP address used in the packet that triggered
the set option. Once this has happened, we can use a series of different
recent options to match on this information, as well as update the
entries timestamp, et cetera.

Finally, if we would for some reason want to remove a list entry, we
would do this using the --remove match option from the recent match.
All rules using the recent match, must load the recent module (-m
recent) as usual. Before we go on with an example of the recent match,
let's take a look at all the options.

Table 10-27. Recent match options

Match --name
Kernel 2.4, 2.5and 2.6

Example iptables -A OUTPUT -m recent --name examplelist

Explanation [The name option gives the name of the list to use. Per
default the DEFAULT list is used, which is probably not
what we want if we are using more than one list.

Match --set
Kernel 2.4,2.5and 2.6
Example iptables -A OUTPUT -m recent --set

Explanation [This creates a new list entry in the named recent list,
which contains a timestamp and the source IP address of
the host that triggered the rule. This match will always
return success, unless it is preceded by a ! sign, in which
case it will return failure.

Match --rcheck

Kernel 2.4,2.5and 2.6

Example iptables -A OUTPUT -m recent --name examplelist
--rcheck

196

Chapter 10. Iptables matches

Explanation [The --rcheck option will check if the source IP address of
the packet is in the named list. If it is, the match will return
true, otherwise it returns false. The option may be inverted
by using the ! sign. In the later case, it will return true if the
source IP address is not in the list, and false if it is in the
list.

Match --update

Kernel 2.4,2.5and 2.6

Example iptables -A OUTPUT -m recent --name examplelist
--update

Explanation [This match is true if the source combination is available in
the specified list and it also updates the last-seen time in
the list. This match may also be reversed by setting the !
mark in front of the match. For example, ! --update .

Match --remove

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -m recent --name example --remove

Explanation [This match will try to find the source address of the packet
in the list, and returns true if the packet is there. It will also
remove the corresponding list entry from the list. The
command is also possible to inverse with the ! sign.

Match --seconds

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -m recent --name example --check

--seconds 60

197

Chapter 10. Iptables matches

Explanation

This match is only valid together with the --check and
--update matches. The --seconds match is used to
specify how long since the "last seen" column was
updated in the recent list. If the last seen column was older
than this amount in seconds, the match returns false.
Other than this the recent match works as normal, so the
source address must still be in the list for a true return of
the match.

Match

--hitcount

Kernel

2.4,2.5and 2.6

Example

iptables -A INPUT -m recent --name example --check
--hitcount 20

Explanation

The --hitcount match must be used together with the
--check or --update matches and it will limit the match to
only include packets that have seen at least the hitcount
amount of packets. If this match is used together with the
--seconds match, it will require the specified hitcount
packets to be seen in the specific timeframe. This match
may also be reversed by adding a ! sign in front of the
match. Together with the --seconds match, this means
that a maximum of this amount of packets may have been
seen during the specified timeframe. If both of the
matches are inversed, then a maximum of this amount of
packets may have been seen during the last minumum of
seconds.

Match

--rttl

Kernel

2.4,2.5 and 2.6

Example

iptables -A INPUT -m recent --name example --check
--rttl

198

Chapter 10. Iptables matches

Explanation

The --rttl match is used to verify that the TTL value of the
current packet is the same as the original packet that was
used to set the original entry in the recent list. This can be
used to verify that people are not spoofing their source
address to deny others access to your servers by making
use of the recent match.

Match --rsource

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -m recent --name example --rsource

Explanation [The --rsource match is used to tell the recent match to
save the source address and port in the recent list. This is
the default behavior of the recent match.

Match --rdest

Kernel 2.4,2.5and 2.6

Example iptables -A INPUT -m recent --name example --rdest

Explanation [The --rdest match is the opposite of the --rsource match

in that it tells the recent match to save the destination

address and port to the recent list.

| have created a small sample script of how the recent match can be
used, which you can find in the Recent-match.txt section.

Briefly, this is a poor replacement for the state engine available in
netfilter. This version was created with a http server in mind, but will
work with any TCP connection. First we have created two chains
named http-recent and http-recent-final. The http-recent chain is used
in the starting stages of the connection, and for the actual data
transmission, while the http-recent-final chain is used for the last and
final FIN/JACK, FIN handshake.

m\'\“‘!\

\\N

)This is a very bad replacement for the built in state engine and can not

handle all of the possibilities that the state engine can handle. However, it

199

Chapter 10. Iptables matches

is a good example of what can be done with the recent match without
being too specific. Do not use this example in a real world environment. It
is slow, handles special cases badly, and should generally never be used
more than as an example.

For example, it does not handle closed ports on connection,
asyncronuous FIN handshake (where one of the connected parties closes
down, while the other continues to send data), etc.

Let’s follow a packet through the example ruleset. First a packet enters
the INPUT chain, and we send it to the http-recent chain.

1. The first packet should be a SYN packet, and should not have the
ACK,FIN or RST bits set. Hence it is matched using the --tcp-flags
SYN,ACK,FIN,RST SYN line. At this point we add the connection to
the httplist using -m recent --name httplist --set line. Finally we
accept the packet.

2. After the first packet we should receive a SYN/ACK packet to
acknowledge that the SYN packet was received. This can be
matched using the --tcp-flags SYN,ACK,FIN,RST SYN,ACK line.
FIN and RST should be illegal at this point as well. At this point we
update the entry in the httplist using -m recent --name httplist
--update and finally we ACCEPT the packet.

3. By now we should get a final ACK packet, from the original creater
of the connection, to acknowledge the SYN/ACK sent by the server.
SYN, FIN and RST are illegal at this point of the connection, so the
line should look like --tcp-flags SYN,ACK,FIN,RST ACK . We
update the list in exactly the same way as in the previous step, and
ACCEPT it.

4. At this point the data transmission can start. The connection should
never contain any SYN packet now, but it will contain ACK packets
to acknowledge the data packets that are sent. Each time we see
any packet like this, we update the list and ACCEPT the packets.

5. The transmission can be ended in two ways, the simplest is the
RST packet. RST will simply reset the connection and it will die.

200

Chapter 10. Iptables matches

With FIN/ACK, the other endpoint answers with a FIN, and this
closes down the connection so that the original source of the
FIN/JACK can no longer send any data. The receiver of the FIN, will
still be able to send data, hence we send the connection to a "final"
stage chain to handle the rest.

6. In the http-recent-final chain we check if the packet is still in the
httplist , and if so, we send it to the http-recent-finall chain. In that
chain we remove the connection from the httplist and add it to the
http-recent-final list instead. If the connection has already been
removed and moved over to the http-recent-final list, we send te
packet to the http-recent-final2 chain.

7. In the final http-recent-final2 chain, we wait for the non-closed side
to finish sending its data, and to close the connection from their side
as well. Once this is done, the connection is completely removed.

As you can see the recent list can become quite complex, but it will give
you a huge set of possibilities if need be. Still, try and remember not to
reinvent the wheel. If the ability you need is already implemented, try
and use it instead of trying to create your own solution.

State match

The state match extension is used in conjunction with the connection
tracking code in the kernel. The state match accesses the connection
tracking state of the packets from the conntracking machine. This allows
us to know in what state the connection is, and works for pretty much all
protocols, including stateless protocols such as ICMP and UDP. In all
cases, there will be a default timeout for the connection and it will then
be dropped from the connection tracking database. This match needs
to be loaded explicitly by adding a -m state statement to the rule. You
will then have access to one new match called state. The concept of
state matching is covered more fully in the The state machine chapter,
since it is such a large topic.

201

Chapter 10. Iptables matches

Table 10-28. State match options

Match --State

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -m state --state
RELATED,ESTABLISHED

Explanation [This match option tells the state match what states the

packets must be in to be matched. There are currently 4
states that can be used. INVALID, ESTABLISHED, NEW
and RELATED. INVALID means that the packet is
associated with no known stream or connection and that it
may contain faulty data or headers. ESTABLISHED
means that the packet is part of an already established
connection that has seen packets in both directions and is
fully valid. NEW means that the packet has or will start a
new connection, or that it is associated with a connection
that has not seen packets in both directions. Finally,
RELATED means that the packet is starting a new
connection and is associated with an already established
connection. This could for example mean an FTP data
transfer, or an ICMP error associated with a TCP or UDP
connection. Note that the NEW state does not look for
SYN bits in TCP packets trying to start a new connection
and should, hence, not be used unmodified in cases
where we have only one firewall and no load balancing
between different firewalls. However, there may be times
where this could be useful. For more information on how
this could be used, read the The state machine chapter.

Tcpmss match

The tcpmss

match is used to match a packet based on the Maximum

Segment Size in TCP. This match is only valid for SYN and SYN/ACK
packets. For a more complete explanation of the MSS value, see the

202

Chapter 10. Iptables matches

TCP options appendix, the RFC 793 - Transmission Control Protocol
and the

RFC 1122 - Requirements for Internet Hosts - Communication Layers
documents. This match is loaded using -m tcpmss and takes only one
option.

Table 10-29. Tcpmss match options

Match --mSss
Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p tcp --tcp-flags SYN,ACK,RST SYN
-m tcpmss --mss 2000:2500

Explanation |The --mss option tells the tcpmss match which Maximum
Segment Sizes to match. This can either be a single
specific MSS value, or a range of MSS values separated
by a :. The value may also be inverted as usual using the
I sign, as in the following example:

-m tcpmss ! --mss 2000:2500

This example will match all MSS values, except for values
in the range 2000 through 2500.

Tos match

The TOS match can be used to match packets based on their TOS
field. TOS stands for Type Of Service, consists of 8 bits, and is located
in the IP header. This match is loaded explicitly by adding -m tos to the
rule. TOS is normally used to inform intermediate hosts of the
precedence of the stream and its content (it doesn't really, but it informs
of any specific requirements for the stream, such as it having to be sent
as fast as possible, or it needing to be able to send as much payload as
possible). How different routers and administrators deal with these
values depends. Most do not care at all, while others try their best to do

203

Chapter 10. Iptables matches

something good with the packets in question and the data they provide.

Table 10-30. Tos match options

Match --tos

Kernel 2.3,2.4,25and 2.6

Example iptables -A INPUT -p tcp -m tos --tos 0x16
Explanation [This match is used as described above. It can match

packets based on their TOS field and their value. This
could be used, among other things together with the
iproute2 and advanced routing functions in Linux, to mark
packets for later usage. The match takes a hex or numeric
\value as an option, or possibly one of the names resulting
from ’iptables -m tos -h . At the time of writing it contained
the following named values: Minimize-Delay 16 (0x10),
Maximize-Throughput 8 (0x08), Maximize-Reliability 4
(0x04), Minimize-Cost 2 (0x02), and Normal-Service 0
(0x00). Minimize-Delay means to minimize the delay in
putting the packets through - example of standard services
that would require this include telnet, SSH and
FTP-control. Maximize-Throughput means to find a path
that allows as big a throughput as possible - a standard
protocol would be FTP-data. Maximize-Reliability means
to maximize the reliability of the connection and to use
lines that are as reliable as possible - a couple of typical
examples are BOOTP and TFTP. Minimize-Cost means
minimizing the cost of packets getting through each link to
the client or server; for example finding the route that costs
the least to travel along. Examples of normal protocols that
would use this would be RTSP (Real Time Stream Control
Protocol) and other streaming video/radio protocols.
Finally, Normal-Service would mean any normal protocol

that has no special needs.

204

Chapter 10. Iptables matches

Ttl match

The TTL match is used to match packets based on their TTL (Time To
Live) field residing in the IP headers. The TTL field contains 8 bits of
data and is decremented once every time it is processed by an
intermediate host between the client and recipient host. If the TTL
reaches 0, an ICMP type 11 code O (TTL equals 0 during transit) or
code 1 (TTL equals 0 during reassembly) is transmitted to the party
sending the packet and informing it of the problem. This match is only
used to match packets based on their TTL, and not to change anything.
The latter, incidentally, applies to all kinds of matches. To load this
match, you need to add an -m ttl to the rule.

Table 10-31. Ttl match options

Match --ttl-eq

Kernel 2.3, 2.4,2.5and 2.6

Example iptables -A OUTPUT -m ttl --ttl-eq 60

Explanation [This match option is used to specify the TTL value to
match exactly. It takes a numeric value and matches this
\value within the packet. There is no inversion and there
are no other specifics to match. It could, for example, be
used for debugging your local network - e.g. LAN hosts
that seem to have problems connecting to hosts on the
Internet - or to find possible ingress by Trojans etc. The
usage is relatively limited, however; its usefulness really
depends on your imagination. One example would be to
find hosts with bad default TTL values (could be due to a
badly implemented TCP/IP stack, or simply to
misconfiguration).

Match --ttl-gt

Kernel 2.3,2.4,25and 2.6

Example iptables -A OUTPUT -m ttl --ttl-gt 64

205

Chapter 10. Iptables matches

Explanation [This match option is used to match any TTL greater than
the specified value. The value can be between 0 and 255
and the match can not be inverted. It could, for example,
be used for matching any TTL greater than a specific value
and then force them to a standardized value. This could be
used to overcome some simple forms of spying by ISP’s tg
find out if you are running multiple machines behind a
firewall, against their policies.

Match --ttl-It

Kernel 2.3,2.4,25and 2.6

Example iptables -A OUTPUT -m ttl --ttl-It 64

Explanation [The --ttl-Ilt match is used to match any TTL smaller than

the specified value. It is pretty much the same as the
--ttl-gt match, but as already stated; it matches smaller
TTL'’s. It could also be used in the same way as the --ttl-gt
match, or to simply homogenize the packets leaving your

network in general.

Unclean match

The unclean match takes no options and requires no more than
explicitly loading it when you want to use it. Note that this option is
regarded as experimental and may not work at all times, nor will it take
care of all unclean packages or problems. The unclean match tries to
match packets that seem malformed or unusual, such as packets with
bad headers or checksums and so on. This could be used to DROP
connections and to check for bad streams, for example; however you
should be aware that it could possibly break legal connections.

206

Chapter 10. Iptables matches

What's next?

The last chapter has been about the matches that can be used in
iptables and what they are capable of doing. The matching capability of
iptables and netfilter is extremely well developed and very flexible as
you have seen. The next chapter will discuss the targets in detail and
what they are able to do. You will notice in that chapter as well the
capabilities of Linux firewalling.

207

Chapter 11. Iptables targets and
jumps

The target/jumps tells the rule what to do with a packet that is a perfect
match with the match section of the rule. There are a couple of basic
targets, the ACCEPT and DROP targets, which we will deal with first.
However, before we do that, let us have a brief look at how a jump is
done.

The jump specification is done in exactly the same way as in the target
definition, except that it requires a chain within the same table to jump
to. To jump to a specific chain, it is of course a prerequisite that that
chain exists. As we have already explained, a user-defined chain is
created with the -N command. For example, let's say we create a chain
in the filter table called tcp_packets , like this:

iptables -N tcp_packets

We could then add a jump target to it like this:

iptables -A INPUT -p tcp -j tcp_packets

We would then jump from the INPUT chain to the tcp_packets chain
and start traversing that chain. When/If we reach the end of that chain,
we get dropped back to the INPUT chain and the packet starts
traversing from the rule one step below where it jumped to the other
chain (tcp_packets in this case). If a packet is ACCEPTed within one of
the sub chains, it will be ACCEPT ed in the superset chain also and it
will not traverse any of the superset chains any further. However, do
note that the packet will traverse all other chains in the other tables in a
normal fashion. For more information on table and chain traversing, see
the Traversing of tables and chains chapter.

Targets on the other hand specify an action to take on the packet in
guestion. We could for example, DROP or ACCEPT the packet

208

Chapter 11. Iptables targets and jumps

depending on what we want to do. There are also a number of other
actions we may want to take, which we will describe further on in this
section. Jumping to targets may incur different results, as it were. Some
targets will cause the packet to stop traversing that specific chain and
superior chains as described above. Good examples of such rules are
DROP and ACCEPT. Rules that are stopped, will not pass through any
of the rules further on in the chain or in superior chains. Other targets,
may take an action on the packet, after which the packet will continue
passing through the rest of the rules. A good example of this would be
the LOG, ULOG and TOS targets. These targets can log the packets,
mangle them and then pass them on to the other rules in the same set
of chains. We might, for example, want this so that we in addition can
mangle both the TTL and the TOS values of a specific packet/stream.
Some targets will accept extra options (What TOS value to use etc),
while others don’t necessarily need any options - but we can include
them if we want to (log prefixes, masquerade-to ports and so on). We
will try to cover all of these points as we go through the target
descriptions. Let us have a look at what kinds of targets there are.

ACCEPT target

This target needs no further options. As soon as the match specification
for a packet has been fully satisfied, and we specify ACCEPT as the
target, the rule is accepted and will not continue traversing the current
chain or any other ones in the same table. Note however, that a packet
that was accepted in one chain might still travel through chains within
other tables, and could still be dropped there. There is nothing special
about this target whatsoever, and it does not require, nor have the
possibility of, adding options to the target. To use this target, we simply
specify -j ACCEPT.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

209

Chapter 11. Iptables targets and jumps

CLASSIFY target

The CLASSIFY target can be used to classify packets in such a way
that can be used by a couple of different qdiscs (Queue Disciplines).
For example, atm, cbq, dsmark, pfifo_fast, htb and the prio gdiscs. For
more information about qdiscs and traffic controlling, visit the

Linux Advanced Routing and Traffic Control HOW-TO webpage.

The CLASSIFY target is only valid in the POSTROUTING chain of the
mangle table.

Table 11-1. CLASSIFY target options

Option --set-class

Example iptables -t mangle -A POSTROUTING -p tcp --dport 80
-] CLASSIFY --set-class 20:10

Explanation [The CLASSIFY target only takes one argument, the
--set-class . This tells the target how to class the packet.
The class takes 2 values separated by a coma sign, like
this MAJOR:MINOR. Once again, if you want more
information on this, check the

Linux Advanced Routing and Traffic Control HOW-TO
webpage.

No\e)
\ Works under Linux kernel 2.5 and 2.6.

CLUSTERIP target

The CLUSTERIP target is used to create simple clusters of nodes

answering to the same IP and MAC address in a round robin fashion.
This is a simple form of clustering where you set up a Virtual IP (VIP)
on all hosts participating in the cluster, and then use the CLUSTERIP

210

Chapter 11. Iptables targets and jumps

on each host that is supposed to answer the requests. The
CLUSTERIP match requires no special load balancing hardware or
machines, it simply does its work on each host part of the cluster of
machines. It is a very simple clustering solution and not suited for large
and complex clusters, neither does it have built in heartbeat handling,
but it should be easily implemented as a simple script.

All servers in the cluster uses a common Multicast MAC for a VIP, and
then a special hash algorithm is used within the CLUSTERIP target to
figure out who of the cluster participants should respond to each
connection. A Multicast MAC is a MAC address starting with 01:00:5e
as the first 24 bits. an example of a Multicast MAC would be
01:00:5€e:00:00:20. The VIP can be any IP address, but must be the
same on all hosts as well.

wopoter

\)Remember that the CLUSTERIP might break protocols such as SSH et
cetera. The connection will go through properly, but if you try the same
time again to the same host, you might be connected to another machine
in the cluster, with a different keyset, and hence your ssh client might
refuse to connect or give you errors. For this reason, this will not work very
well with some protocols, and it might be a good idea to add separate
addresses that can be used for maintenance and administration. Another
solution is to use the same SSH keys on all hosts participating in the
cluster.

The cluster can be loadbalanced with three kinds of hashmodes. The
first one is only source IP (sourceip), the second is source IP and
source port (sourceip-sourceport) and the third one is source IP,
source port and destination port (sourceip-sourceport-destport). The
first one might be a good idea where you need to remember states
between connections, for example a webserver with a shopping cart
that keeps state between connections, this load-balancing might
become a little bit uneven -- different machines might get a higher loads
than others, et cetera -- since connections from the same source IP will
go to the same server. The sourceip-sourceport hash might be a good
idea where you want to get the load-balancing a little bit more even, and
where state does not have to be kept between connections on each

211

Chapter 11. Iptables targets and jumps

server. For example, a large informational webpage with perhaps a
simple search engine might be a good idea here. The third and last
hashmode, sourceip-sourceport-destport, might be a good idea where
you have a host with several services running that does not require any
state to be preserved between connections. This might for example be
a simple ntp, dns and www server on the same host. Each connection
to each new destination would hence be "renegotiated" -- actually no
negotiation goes on, it is basically just a round robin system and each
host receives one connection each.

Each CLUSTERIP cluster gets a separate file in the

/proc/net/ipt_ CLUSTERIP directory, based on the VIP of the cluster. If the
VIP is 192.168.0.5 for example, you could cat

/proc/net/ipt. CLUSTERIP/192.168.0.5 to see which nodes this
machine is answering for. To make the machine answer for another
machine, lets say node 2, add it using echo "+2" >>

/proc/net/ipt. CLUSTERIP/192.168.0.5 . To remove it, run echo "-2"
>> [proc/net/ipt_CLUSTERIP/192.168.0.5 .

Table 11-2. CLUSTERIP target options

Option --new

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j
CLUSTERIP --new ...

Explanation [This creates a new CLUSTERIP entry. It must be set on
the first rule for a VIP, and is used to create a new cluster.
If you have several rules connecting to the same
CLUSTERIP you can omit the --new keyword in any
secondary references to the same VIP.

Option --hashmode

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 443 -j
CLUSTERIP --new --hashmode sourceip ...

212

Chapter 11. Iptables targets and jumps

Explanation

The --hashmode keyword specifies the kind of hash that
should be created. The hashmode can be any of the
following three.

« sourceip

- sourceip-sourceport
« sourceip-sourceport-destport

The hashmodes has been extensively explained above.
Basically, sourceip will give better performance and
simpler states between connections, but not as good
load-balancing between the machines.
sourceip-sourceport will give a slightly slower hashing
and not as good to maintain states between
connections, but will give better load-balancing
properties. The last one may create very slow hashing
that consumes a lot of memory, but will on the other
hand also create very good load-balancing properties.

Option

--clustermac

Example

iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j
CLUSTERIP --new --hashmode sourceip --clustermac
01:00:5e:00:00:20 ...

Explanation

The MAC address that the cluster is listening to for new
connections. This is a shared Multicast MAC address that
all the hosts are listening to. See above for a deeper
explanation of this.

Option

--total-nodes

Example

iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j
CLUSTERIP --new --hashmode sourceip --clustermac
01:00:5e:00:00:20 --total-nodes 2 ...

213

Chapter 11. Iptables targets and jumps

Explanation [The --total-nodes keyword specifies how many hosts are
participating in the cluster and that will answer to requests.
See above for a deeper explanation.

Option --local-node

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j
CLUSTERIP --new --hashmode sourceip --clustermac
01:00:5e:00:00:20 --total-nodes 2 --local-node 1

Explanation [This is the number that this machine has in the cluster.
The cluster answers in a round-robin fashion, so once a
new connection is made to the cluster, the next machine
answers, and then the next after that, and so on.

Option --hash-init

Example iptables -A INPUT -p tcp -d 192.168.0.5 --dport 80 -j
CLUSTERIP --new --hashmode sourceip --clustermac
01:00:5e:00:00:20 --hash-init 1234

Explanation [Specifies a random seed for hash initialization.

rind
)This target is in violation of the
RFC 1812 - Requirements for IP Version 4 Routers RFC, so be wary of
any problems that may arise. Specifically, section 3.3.2 which specifies
that a router must never trust another host or router that says that it is
using a multicast mac.

\\N

No\e)
\ Works under late Linux 2.6 kernels, marked experimental.

214

Chapter 11. Iptables targets and jumps

CONNMARK target

The CONNMARK target is used to set a mark on a whole connection,
much the same way as the MARK target does. It can then be used
together with the connmark match to match the connection in the
future. For example, say we see a specific pattern in a header, and we
don’t want to mark just that packet, but the whole connection. The
CONNMARK target is a perfect solution in that case.

The CONNMARK target is available in all chains and all tables, but
remember that the nat table is only traversed by the first packet in a
connection, so the CONNMARK target will have no effect if you try to
use it for subsequent packets after the first one in here. It can take one
of four different options as seen below.

Table 11-3. CONNMARK target options

Option --set-mark

Example iptables -t nat -A PREROUTING -p tcp --dport 80 -j
CONNMARK --set-mark 4

Explanation [This option sets a mark on the connection. The mark can
be an unsigned long int, which means values between 0
and 4294967295I is valid. Each bit can also be masked by
doing --set-mark 12/8 . This will only allow the bits in the
mask to be set out of all the bits in the mark. In this
example, only the 4th bit will be set, not the 3rd. 12
translates to 1100 in binary, and 8 to 1000, and only the
bits set in the mask are allowed to be set. Hence, only the
4th bit, or 8, is set in the actual mark.

Option --save-mark

Example iptables -t mangle -A PREROUTING --dport 80 -j
CONNMARK --save-mark

215

Chapter 11. Iptables targets and jumps

Explanation

The --save-mark target option is used to save the packet
mark into the connection mark. For example, if you have
set a packet mark with the MARK target, you can then
move this mark to mark the whole connection with the
--save-mark match. The mark can also be masked by
using the --mask option described further down.

Option

--restore-mark

Example

iptables -t mangle -A PREROUTING --dport 80 -j
CONNMARK --restore-mark

Explanation

This target option restores the packet mark from the
connection mark as defined by the CONNMARK. A mask
can also be defined using the --mask option as seen
below. If a mask is set, only the masked options will be
set. Note that this target option is only valid for use in the
mangle table.

Option

--mask

Example

iptables -t mangle -A PREROUTING --dport 80 -j
CONNMARK --restore-mark --mask 12

Explanation

The --mask option must be used in unison with the
--save-mark and --restore-mark options. The --mask
option specifies an and-mask that should be applied to the
mark values that the other two options will give. For
example, if the restored mark from the above example
would be 15, it would mean that the mark was 1111 in
binary, while the mask is 1100. 1111 and 1100 equals
1100.

No\e\-
\)Works under Linux kernel 2.6.

216

Chapter 11. Iptables targets and jumps

CONNSECMARK target

The CONNSECMARK target sets a SELinux security context mark to
or from a packet mark. For further information on SELinux, read more
at the Security-Enhanced Linux homepage. The target is only valid in
the mangle table and is used together with the SECMARK target,
where the SECMARK target is used to set the original mark, and then
the CONNSECMARK is used to set the mark on the whole connection.

SELinux is beyond the scope of this document, but basically it is an
addition of Mandatory Access Control to Linux. This is more finegrained
than the original security systems of most Linux and Unix security
controls. Each object can have security attributes, or security context,
connected to it, and these attributes are then matched to eachother
before allowing or denying a specific task to be performed. This target
will allow a security context to be set on a connection.

Table 11-4. CONNSECMARK target options

Option --save

Example iptables -t mangle -A PREROUTING -p tcp --dport 80 -j
CONNSECMARK --save

Explanation |Save the security context mark from the packet to the
connection if the connection is not marked since before.

Option --restore

Example iptables -t mangle -A PREROUTING -p tcp --dport 80 -j
CONNSECMARK --restore

Explanation |If the packet has no security context mark set on it, the
--restore option will set the security context mark
associated with the connection on the packet.

217

Chapter 11. Iptables targets and jumps

DNAT target

The DNAT target is used to do Destination Network Address
Translation, which means that it is used to rewrite the Destination IP
address of a packet. If a packet is matched, and this is the target of the
rule, the packet, and all subsequent packets in the same stream will be
translated, and then routed on to the correct device, host or network.
This target can be extremely useful, for example,when you have a host
running your web server inside a LAN, but no real IP to give it that will
work on the Internet. You could then tell the firewall to forward all
packets going to its own HTTP port, on to the real web server within the
LAN. We may also specify a whole range of destination IP addresses,
and the DNAT mechanism will choose the destination IP address at
random for each stream. Hence, we will be able to deal with a kind of
load balancing by doing this.

Note that the DNAT target is only available within the PREROUTING
and OUTPUT chains in the nat table, and any of the chains called upon
from any of those listed chains. Note that chains containing DNAT
targets may not be used from any other chains, such as the
POSTROUTING chain.

Table 11-5. DNAT target options

Option --to-destination

Example iptables -t nat -A PREROUTING -p tcp -d 15.45.23.67
--dport 80 -j DNAT --to-destination
192.168.1.1-192.168.1.10

218

Chapter 11. Iptables targets and jumps

Explanation [The --to-destination option tells the DNAT mechanism
which Destination IP to set in the IP header, and where to
send packets that are matched. The above example would
send on all packets destined for IP address 15.45.23.67 to
a range of LAN IP’s, namely 192.168.1.1 through 10.
Note, as described previously, that a single stream will
always use the same host, and that each stream will
randomly be given an IP address that it will always be
Destined for, within that stream. We could also have
specified only one IP address, in which case we would
always be connected to the same host. Also note that we
may add a port or port range to which the traffic would be
redirected to. This is done by adding, for example, an :80
statement to the IP addresses to which we want to DNAT
the packets. A rule could then look like --to-destination
192.168.1.1:80 for example, or like --to-destination
192.168.1.1:80-100 if we wanted to specify a port range.
/As you can see, the syntax is pretty much the same for the
DNAT target, as for the SNAT target even though they do
two totally different things. Do note that port specifications
are only valid for rules that specify the TCP or UDP
protocols with the --protocol option.

Since DNAT requires quite a lot of work to work properly, | have decided
to add a larger explanation on how to work with it. Let’s take a brief
example on how things would be done normally. We want to publish our
website via our Internet connection. We only have one IP address, and
the HTTP server is located on our internal network. Our firewall has the
external IP address $INET_IP, and our HTTP server has the internal IP
address $HTTP_IP and finally the firewall has the internal IP address
$LAN_IP. The first thing to do is to add the following simple rule to the
PREROUTING chain in the nat table:

iptables -t nat -A PREROUTING --dst $INET_IP -p tcp --dport 8 0 -j DNAT \
--to-destination SHTTP_IP

219

Chapter 11. Iptables targets and jumps

Now, all packets from the Internet going to port 80 on our firewall are
redirected (or DNAT'ed) to our internal HTTP server. If you test this
from the Internet, everything should work just perfect. So, what happens
if you try connecting from a host on the same local network as the
HTTP server? It will simply not work. This is a problem with routing
really. We start out by dissecting what happens in a normal case. The
external box has IP address $EXT_BOX, to maintain readability.

1. Packet leaves the connecting host going to $INET_IP and source
$EXT_BOX.

2. Packet reaches the firewall.

3. Firewall DNAT's the packet and runs the packet through all different
chains etcetera.

4. Packet leaves the firewall and travels to the SHTTP_IP.

5. Packet reaches the HTTP server, and the HTTP box replies back
through the firewall, if that is the box that the routing database has
entered as the gateway for $EXT_BOX. Normally, this would be the
default gateway of the HTTP server.

6. Firewall Un-DNAT's the packet again, so the packet looks as if it
was replied to from the firewall itself.

7. Reply packet travels as usual back to the client $SEXT_BOX.

Now, we will consider what happens if the packet was instead
generated by a client on the same network as the HTTP server itself.
The client has the IP address $LAN_BOX, while the rest of the
machines maintain the same settings.

1. Packet leaves $LAN_BOX to $INET_IP.
2. The packet reaches the firewall.

3. The packet gets DNAT 'ed, and all other required actions are taken,
however, the packet is not SNAT 'ed, so the same source IP
address is used on the packet.

4. The packet leaves the firewall and reaches the HTTP server.

220

Chapter 11. Iptables targets and jumps

5. The HTTP server tries to respond to the packet, and sees in the
routing databases that the packet came from a local box on the
same network, and hence tries to send the packet directly to the
original source IP address (which now becomes the destination IP
address).

6. The packet reaches the client, and the client gets confused since
the return packet does not come from the host that it sent the
original request to. Hence, the client drops the reply packet, and
waits for the "real" reply.

The simple solution to this problem is to SNAT all packets entering the
firewall and leaving for a host or IP that we know we do DNAT to. For
example, consider the above rule. We SNAT the packets entering our
firewall that are destined for 3HTTP_IP port 80 so that they look as if
they came from $LAN_IP. This will force the HTTP server to send the
packets back to our firewall, which Un-DNAT’s the packets and sends
them on to the client. The rule would look something like this:

iptables -t nat -A POSTROUTING -p tcp --dst $HTTP_IP --dport 80 -j SNAT \
--to-source $LAN_IP

Remember that the POSTROUTING chain is processed last of the
chains, and hence the packet will already be DNATed once it reaches
that specific chain. This is the reason that we match the packets based
on the internal address.

ot

\)This last rule will seriously harm your logging, so it is really advisable not
to use this method, but the whole example is still a valid one. What will
happen is this, packet comes from the Internet, gets SNAT ed and
DNATed, and finally hits the HTTP server (for example). The HTTP server
now only sees the request as if it was coming from the firewall, and hence
logs all requests from the internet as if they came from the firewall.

This can also have even more severe implications. Take an SMTP server
on the LAN, that allows requests from the internal network, and you have
your firewall set up to forward SMTP traffic to it. You have now effectively
created an open relay SMTP server, with horrenduously bad logging!

221

Chapter 11. Iptables targets and jumps

One solution to this problem is to simply make the SNAT rule even more
specific in the match part, and to only work on packets that come in from
our LAN interface. In other words, add a --src $LAN_IP_RANGE to the
whole command as well. This will make the rule only work on streams that
come in from the LAN, and hence will not affect the Source IP, so the logs
will look correct, except for streams coming from our LAN.

You will, in other words, be better off solving these problems by either
setting up a separate DNS server for your LAN, or to actually set up a
separate DMZ, the latter being preferred if you have the money.

You think this should be enough by now, and it really is, unless
considering one final aspect to this whole scenario. What if the firewall
itself tries to access the HTTP server, where will it go? As it looks now,
it will unfortunately try to get to its own HTTP server, and not the server
residing on $HTTP_IP. To get around this, we need to add a DNAT rule
in the OUTPUT chain as well. Following the above example, this should
look something like the following:

iptables -t nat -A OUTPUT --dst SINET_IP -p tcp --dport 80 -j D NAT \
--to-destination $HTTP_IP

Adding this final rule should get everything up and running. All separate
networks that do not sit on the same net as the HTTP server will run
smoothly, all hosts on the same network as the HTTP server will be able
to connect and finally, the firewall will be able to do proper connections
as well. Now everything works and no problems should arise.

ot
\,N)Everyone should realize that these rules only affect how the packet is
DNAT’ed and SNAT'ed properly. In addition to these rules, you may also
need extra rules in the filter table (FORWARD chain) to allow the packets
to traverse through those chains as well. Don't forget that all packets have
already gone through the PREROUTING chain, and should hence have
their destination addresses rewritten already by DNAT .

222

Chapter 11. Iptables targets and jumps

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

DROP target

The DROP target does just what it says, it drops packets dead and will
not carry out any further processing. A packet that matches a rule
perfectly and is then Dropped will be blocked. Note that this action
might in certain cases have an unwanted effect, since it could leave
dead sockets around on either host. A better solution in cases where
this is likely would be to use the REJECT target, especially when you
want to block port scanners from getting too much information, such as
on filtered ports and so on. Also note that if a packet has the DROP
action taken on it in a subchain, the packet will not be processed in any
of the main chains either in the present or in any other table. The packet
is in other words totally dead. As we've seen previously, the target will
not send any kind of information in either direction, nor to intermediaries
such as routers.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

DSCP target

This is a target that changes the DSCP (Differentiated Services Field)

marks inside a packet. The DSCP target is able to set any DSCP value

inside a TCP packet, which is a way of telling routers the priority of the

packet in question. For more information about DSCP, look at the

RFC 2474 - Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
RFC document.

Basically, DSCP is a way of differentiating different services into
separate categories, and based on this, give them different priority

223

Chapter 11. Iptables targets and jumps

through the routers. This way, you can give interactive TCP sessions
(such as telnet, SSH, POP3) a very high fast connection, that may not
be very suitable for large bulk transfers. If on the other hand the
connection is one of low importance (SMTP, or whatever you classify
as low priority), you could send it over a large bulky network with worse
latency than the other network, that is cheaper to utilize than the faster
and lower latency connections.

Table 11-6. DSCP target options

Option --set-dscp

Example iptables -t mangle -A FORWARD -p tcp --dport 80 -
DSCP --set-dscp 1

Explanation [This sets the DSCP value to the specified value. The
\values can be set either via class, see below, or with the
--set-dscp , which takes either an integer value, or a hex
value.

Option --set-dscp-class

Example iptables -t mangle -A FORWARD -p tcp --dport 80 -
DSCP --set-dscp-class EF

Explanation [This sets the DSCP field according to a predefined
DiffServ class. Some of the possible values are EF, BE
and the CSxx and AFxx values available. You can find
more information at

Implementing Quality of Service Policies with DSCP site.
Do note that the --set-dscp-class and --set-dscp
commands are mutually exclusive, which means you can
not use both of them in the same command!

No\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

224

Chapter 11. Iptables targets and jumps

ECN target

This target can be great, used in the correct way. Simply put, the ECN
target can be used to reset the ECN bits from the IPv4 header, or to put
it correctly, reset them to O at least. Since ECN is a relatively new thing
on the net, there are problems with it. For example, it uses 2 bits that
are defined in the original RFC for the TCP protocol to be 0. Some
routers and other internet appliances will not forward packets that have
these bits set to 1. If you want to make use of at least parts of the ECN
functionality from your hosts, you could for example reset the ECN bits
to 0 for specific networks that you know you are having troubles
reaching because of ECN.

No\e\-

\)Please do note that it isn’t possible to turn ECN on in the middle of a
stream. It isn’t allowed according to the RFC'’s, and it isn’t possible
anyways. Both endpoints of the stream must negotiate ECN. If we turn it
on, then one of the hosts is not aware of it, and can’t respond properly to
the ECN notifications.

Table 11-7. ECN target options

Option --ecn-tcp-remove

Example iptables -t mangle -A FORWARD -p tcp --dport 80 -
ECN --ecn-tcp-remove

Explanation [The ECN target only takes one argument, the
--ecn-tcp-remove argument. This tells the target to
remove the ECN bits inside the TCP headers. Read above
for more information.

Nc\e)
\ Works under Linux kernel 2.5 and 2.6.

225

Chapter 11. Iptables targets and jumps

LOG target options

The LOG target is specially designed for logging detailed information
about packets. These could, for example, be considered as illegal. Or,
logging can be used purely for bug hunting and error finding. The LOG
target will return specific information on packets, such as most of the IP
headers and other information considered interesting. It does this via
the kernel logging facility, normally syslogd . This information may then
be read directly with dmesg, or from the syslogd logs, or with other
programs or applications. This is an excellent target to use to debug
your rule-sets, so that you can see what packets go where and what
rules are applied on what packets. Note as well that it could be a really
great idea to use the LOG target instead of the DROP target while you
are testing a rule you are not 100% sure about on a production firewall,
since a syntax error in the rule-sets could otherwise cause severe
connectivity problems for your users. Also note that the ULOG target
may be interesting if you are using really extensive logging, since the
ULOG target has support for direct logging to MySQL databases and
suchlike.

No\e\-

\)Note that if you get undesired logging direct to consoles, this is not an
iptables or Netffilter problem, but rather a problem caused by your syslogd
configuration - most probably /etc/syslog.conf. Read more in man
syslog.conf for information about this kind of problem.

You may also need to tweak your dmesg settings. dmesg is the command
that changes which errors from the kernel that should be shown on the
console. dmesg -n 1 should prevent all messages from showing up on the
console, except panic messages. The dmesg message levels matches
exactly the syslogd levels, and it only works on log messages from the
kernel facility. For more information, see man dmesg .

The LOG target currently takes five options that could be of interest if
you have specific information needs, or want to set different options to
specific values. They are all listed below.

226

Chapter 11. Iptables targets and jumps

Table 11-8. LOG target options

Option

--log-level

Example

iptables -A FORWARD -p tcp -j LOG --log-level debug

Explanation

This is the option to tell iptables and syslog which log
level to use. For a complete list of log levels read the
syslog.conf manual. Normally there are the following log
levels, or priorities as they are normally referred to: debug,
info, notice, warning, warn, err, error, crit, alert, emerg
and panic. The keyword error is the same as err, warn is
the same as warning and panic is the same as emerg.
Note that all three of these are deprecated, in other words
do not use error, warn and panic. The priority defines the
severity of the message being logged. All messages are
logged through the kernel facility. In other words, setting
kern.=info /var/log/iptables in your syslog.conf file and
then letting all your LOG messages in iptables use log
level info, would make all messages appear in the
var/log/iptables file. Note that there may be other messages
here as well from other parts of the kernel that uses the
info priority. For more information on logging | recommend
you to read the syslog and syslog.conf man-pages as well
as other HOWTOs etc.

Option

--log-prefix

Example

iptables -A INPUT -p tcp -j LOG --log-prefix "INPUT
packets"

Explanation

This option tells iptables to prefix all log messages with a
specific prefix, which can then easily be combined with
grep or other tools to track specific problems and output
from different rules. The prefix may be up to 29 letters
long, including white-spaces and other special symbols.

Option

--log-tcp-sequence

Example

iptables -A INPUT -p tcp -j LOG --log-tcp-sequence

227

Chapter 11. Iptables targets and jumps

Explanation

This option will log the TCP Sequence numbers, together
with the log message. The TCP Sequence numbers are
special numbers that identify each packet and where it fits
into a TCP sequence, as well as how the stream should
be reassembled. Note that this option constitutes a
security risk if the logs are readable by unauthorized
users, or by the world for that matter. As does any log that
contains output from iptables .

Option

--log-tcp-options

Example

iptables -A FORWARD -p tcp -j LOG --log-tcp-options

Explanation

The --log-tcp-options option logs the different options
from the TCP packet headers and can be valuable when
trying to debug what could go wrong, or what has actually
gone wrong. This option does not take any variable fields
or anything like that, just as most of the LOG options don't.

Option

--log-ip-options

Example

iptables -A FORWARD -p tcp -j LOG --log-ip-options

Explanation

The --log-ip-options option will log most of the IP packet
header options. This works exactly the same as the
--log-tcp-options option, but instead works on the IP
options. These logging messages may be valuable when
trying to debug or track specific culprits, as well as for
debugging - in just the same way as the previous option.

No\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

228

Chapter 11. Iptables targets and jumps

MARK target

The MARK target is used to set Netfilter mark values that are
associated with specific packets. This target is only valid in the mangle
table, and will not work outside there. The MARK values may be used
in conjunction with the advanced routing capabilities in Linux to send
different packets through different routes and to tell them to use
different queue disciplines (qdisc), etc. For more information on
advanced routing, check out the

Linux Advanced Routing and Traffic Control HOW-TO. Note that the
mark value is not set within the actual packet, but is a value that is
associated within the kernel with the packet. In other words, you can not
set a MARK for a packet and then expect the MARK still to be there on
another host. If this is what you want, you will be better off with the TOS
target which will mangle the TOS value in the IP header.

Table 11-9. MARK target options

Option --set-mark

Example iptables -t mangle -A PREROUTING -p tcp --dport 22 -
MARK --set-mark 2

Explanation [The --set-mark option is required to set a mark. The
--set-mark match takes an integer value. For example, we
may set mark 2 on a specific stream of packets, or on all
packets from a specific host and then do advanced routing
on that host, to decrease or increase the network
bandwidth, etc.

No\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

229

Chapter 11. Iptables targets and jumps

MASQUERADE target

The MASQUERADE target is used basically the same as the SNAT
target, but it does not require any --to-source option. The reason for
this is that the MASQUERADE target was made to work with, for
example, dial-up connections, or DHCP connections, which gets
dynamic IP addresses when connecting to the network in question. This
means that you should only use the MASQUERADE target with
dynamically assigned IP connections, which we don’t know the actual
address of at all times. If you have a static IP connection, you should
instead use the SNAT target.

When you masquerade a connection, it means that we set the IP
address used on a specific network interface instead of the --to-source
option, and the IP address is automatically grabbed from the
information about the specific interface. The MASQUERADE target
also has the effect that connections are forgotten when an interface
goes down, which is extremely good if we, for example, kill a specific
interface. If we would have used the SNAT target, we may have been
left with a lot of old connection tracking data, which would be lying
around for days, swallowing up useful connection tracking memory. This
is, in general, the correct behavior when dealing with dial-up lines that
are probably assigned a different IP every time they are brought up. In
case we are assigned a different IP, the connection is lost anyways, and
it is more or less idiotic to keep the entry around.

It is still possible to use the MASQUERADE target instead of SNAT
even though you do have a static IP, however, it is not favorable since it
will add extra overhead, and there may be inconsistencies in the future
which will thwart your existing scripts and render them "unusable”.

Note that the MASQUERADE target is only valid within the
POSTROUTING chain in the nat table, just as the SNAT target. The
MASQUERADE target takes one option specified below, which is
optional.

Table 11-10. MASQUERADE target options

230

Chapter 11. Iptables targets and jumps

Option --to-ports

Example iptables -t nat -A POSTROUTING -p TCP -j
MASQUERADE --to-ports 1024-31000

Explanation [The --to-ports option is used to set the source port or

ports to use on outgoing packets. Either you can specify a
single port like --to-ports 1025 or you may specify a port
range as --to-ports 1024-3000 . In other words, the lower
port range delimiter and the upper port range delimiter
separated with a hyphen. This alters the default SNAT
port-selection as described in the SNAT target section.
The --to-ports option is only valid if the rule match section
specifies the TCP or UDP protocols with the --protocol

match.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

MIRROR target

an\'\“‘l\

\\N

)Be warned, the MIRROR is dangerous and was only developed as an

example code of the new conntrack and NAT code. It can cause
dangerous things to happen, and very serious DDoS/DoS will be possible
if used improperly. Avoif using it at all costs! It was removed from 2.5 and
2.6 kernels due to it's bad security implications!

The MIRROR target is an experimental and demonstration target only,
and you are warned against using it, since it may result in really bad
loops hence, among other things, resulting in serious Denial of Service.
The MIRROR target is used to invert the source and destination fields
in the IP header, and then to retransmit the packet. This can cause

231

Chapter 11. Iptables targets and jumps

some really funny effects, and I'll bet that, thanks to this target, not just
one red faced cracker has cracked his own box by now. The effect of
using this target is stark, to say the least. Let's say we set up a
MIRROR target for port 80 at computer A. If host B were to come from
yahoo.com, and try to access the HTTP server at host A, the MIRROR
target would return the yahoo host’s own web page (since this is where
the request came from).

Note that the MIRROR target is only valid within the INPUT,
FORWARD and PREROUTING chains, and any user-defined chains
which are called from those chains. Also note that outgoing packets
resulting from the MIRROR target are not seen by any of the normal
chains in the filter, nat or mangle tables, which could give rise to loops
and other problems. This could make the target the cause of
unforeseen headaches. For example, a host might send a spoofed
packet to another host that uses the MIRROR command with a TTL of
255, at the same time spoofing its own packet, so as to seem as if it
comes from a third host that uses the MIRROR command. The packet
will then bounce back and forth incessantly, for the number of hops
there are to be completed. If there is only 1 hop, the packet will jump
back and forth 240-255 times. Not bad for a cracker, in other words, to
send 1500 bytes of data and eat up 380 kbyte of your connection. Note
that this is a best case scenario for the cracker or script kiddie,
whatever we want to call them.

No\e\-
\)Works under Linux kernel 2.3 and 2.4. It was removed from 2.5 and 2.6
kernels due to it's inherent insecurity. Do not use this target!

NETMAP target

NETMAP is a new implementation of the SNAT and DNAT targets

where the host part of the IP address isn't changed. It provides a 1:1
NAT function for whole networks which isn’t available in the standard
SNAT and DNAT functions. For example, lets say we have a network

232

Chapter 11. Iptables targets and jumps

containing 254 hosts using private IP addresses (a /24 network), and
we just got a new /24 network of public IP’s. Instead of walking around
and changing the IP of each and every one of the hosts, we would be
able to simply use the NETMAP target like -j NETMAP -to 10.5.6.0/24
and voila, all the hosts are seen as 10.5.6.x when they leave the
firewall. For example, 192.168.0.26 would become 10.5.6.26.

Table 11-11. NETMAP target options

Option --to

Example iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j
NETMAP --to 10.5.6.0/24

Explanation [This is the only option of the NETMAP target. In the above
example, the 192.168.1.x hosts will be directly translated
into 10.5.6.x.

Ny
\ Works under Linux kernel 2.5 and 2.6.

NFQUEUE target

The NFQUEUE target is used much the same way as the QUEUE
target, and is basically an extension of it. The NFQUEUE target allows
for sending packets for separate and specific queues. The queue is
identified by a 16-bit id.

This target requires the nfnetlink_queue kernel support to run. For more
information on what you can do with the NFQUEUE target, see the
QUEUE target.

Table 11-12. NFQUEUE target options

Option --queue-num

233

Chapter 11. Iptables targets and jumps

Example iptables -t nat -A PREROUTING -p tcp --dport 80 -j
NFQUEUE --queue-num 30

Explanation [The --queue-num option specifies which queue to use
and to send the queue’d data to. If this option is skipped,
the default queue 0 is used. The queue number is a 16 bit
unsigned integer, which means it can take any value
between 0 and 65535. The default 0 queue is also used by
the QUEUE target.

No\e)
\ Works under Linux kernel 2.6.14 and later.

NOTRACK target

This target is used to turn off connection tracking for all packets
matching this rule. The target has been discussed at some length in the
Untracked connections and the raw table section of the

The state machine chapter.

The target takes no options and is very easy to use. Match the packets
you wish to not track, and then set the NOTRACK target on the rules
matching the packets you don’t wish to track.

No\e)
\ The target is only valid inside the raw table.

No\e)
\ Works under late Linux 2.6 kernels.

234

Chapter 11. Iptables targets and jumps

QUEUE target

The QUEUE target is used to queue packets to User-land programs
and applications. It is used in conjunction with programs or utilities that
are extraneous to iptables and may be used, for example, with network
accounting, or for specific and advanced applications which proxy or
filter packets. We will not discuss this target in depth, since the coding of
such applications is out of the scope of this tutorial. First of all it would
simply take too much time, and secondly such documentation does not
have anything to do with the programming side of Netfilter and iptables.
All of this should be fairly well covered in the Netfilter Hacking HOW-TO.

\mpore™

\)As of kernel 2.6.14 the behavior of netfilter has changed. A new system
for talking to the QUEUE has been deviced, called the nfnetlink_queue.
The QUEUE target is basically a pointer to the NFQUEUE 0 nowadays.
For programming questions, still see the above link. This requires the
nfnetlink_queue.ko module.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

REDIRECT target

The REDIRECT target is used to redirect packets and streams to the
machine itself. This means that we could for example REDIRECT all
packets destined for the HTTP ports to an HTTP proxy like squid, on
our own host. Locally generated packets are mapped to the 127.0.0.1
address. In other words, this rewrites the destination address to our own
host for packets that are forwarded, or something alike. The REDIRECT
target is extremely good to use when we want, for example, transparent
proxying, where the LAN hosts do not know about the proxy at all.

235

Chapter 11. Iptables targets and jumps

Note that the REDIRECT target is only valid within the PREROUTING
and OUTPUT chains of the nat table. It is also valid within user-defined
chains that are only called from those chains, and nowhere else. The
REDIRECT target takes only one option, as described below.

Table 11-13. REDIRECT target options

Option --to-ports

Example iptables -t nat -A PREROUTING -p tcp --dport 80 -j
REDIRECT --to-ports 8080

Explanation [The --to-ports option specifies the destination port, or port
range, to use. Without the --to-ports option, the
destination port is never altered. This is specified, as
above, --to-ports 8080 in case we only want to specify
one port. If we would want to specify a port range, we
would do it like --to-ports 8080-8090 , which tells the
REDIRECT target to redirect the packets to the ports 8080
through 8090. Note that this option is only available in
rules specifying the TCP or UDP protocol with the
--protocol matcher, since it wouldn’'t make any sense
anywhere else.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

REJECT target

The REJECT target works basically the same as the DROP target, but
it also sends back an error message to the host sending the packet that
was blocked. The REJECT target is as of today only valid in the INPUT ,
FORWARD and OUTPUT chains or their sub chains. After all, these
would be the only chains in which it would make any sense to put this
target. Note that all chains that use the REJECT target may only be

236

Chapter 11. Iptables targets and jumps

called by the INPUT, FORWARD, and OUTPUT chains, else they won't
work. There is currently only one option which controls the nature of
how this target works, though this may in turn take a huge set of
variables. Most of them are fairly easy to understand, if you have a
basic knowledge of TCP/IP.

Table 11-14. REJECT target options

Option --reject-with

Example iptables -A FORWARD -p TCP --dport 22 -j REJECT
--reject-with tcp-reset

Explanation [This option tells the REJECT target what response to

send to the host that sent the packet that we are rejecting.
Once we get a packet that matches a rule in which we
have specified this target, our host will first of all send the
associated reply, and the packet will then be dropped
dead, just as the DROP target would drop it. The following
reject types are currently valid: icmp-net-unreachable,
icmp-host-unreachable, icmp-port-unreachable,
icmp-proto-unreachable, icmp-net-prohibited and
icmp-host-prohibited. The default error message is to
send a port-unreachable to the host. All of the above are
ICMP error messages and may be set as you wish. You
can find further information on their various purposes in
the appendix ICMP types. Finally, there is one more option
called tcp-reset , which may only be used together with the
TCP protocol. The tcp-reset option will tell REJECT to
send a TCP RST packet in reply to the sending host. TCP
RST packets are used to close open TCP connections
gracefully. For more information about the TCP RST read
RFC 793 - Transmission Control Protocol. As stated in the
iptables man page, this is mainly useful for blocking ident
probes which frequently occur when sending mail to

broken mail hosts, that won't otherwise accept your mail.

237

Chapter 11. Iptables targets and jumps

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

RETURN target

The RETURN target will cause the current packet to stop traveling
through the chain where it hit the rule. If it is the subchain of another
chain, the packet will continue to travel through the superior chains as if
nothing had happened. If the chain is the main chain, for example the
INPUT chain, the packet will have the default policy taken on it. The
default policy is normally set to ACCEPT, DROP or similar.

For example, let's say a packet enters the INPUT chain and then hits a
rule that it matches and that tells it to --jump EXAMPLE_CHAIN . The
packet will then start traversing the EXAMPLE_CHAIN, and all of a
sudden it matches a specific rule which has the --jump RETURN target
set. It will then jump back to the INPUT chain. Another example would
be if the packet hit a --jump RETURN rule in the INPUT chain. It would
then be dropped to the default policy as previously described, and no
more actions would be taken in this chain.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

SAME target

The SAME target works almost in the same fashion as the SNAT target,
but it still differs. Basically, the SAME target will try to always use the
same outgoing IP address for all connections initiated by a single host
on your network. For example, say you have one /24 network
(192.168.1.0) and 3 IP addresses (10.5.6.7-9). Now, if 192.168.1.20
went out through the .7 address the first time, the firewall will try to keep
that machine always going out through that IP address.

238

Chapter 11. Iptables targets and jumps

Table 11-15. SAME target options

Option --to

Example iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j
SAME --to 10.5.6.7-10.5.6.9

Explanation |As you can see, the --to argument takes 2 IP addresses
bound together by a - sign. These IP addresses, and all in
between, are the IP addresses that we NAT to using the
SAME algorithm.

Option --nodst

Example iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j
SAME --to 10.5.6.7-10.5.6.9 --nodst

Explanation |Under normal action, the SAME target is calculating the

followup connections based on both destination and
source IP addresses. Using the --nodst option, it uses only
the source IP address to find out which outgoing IP the
NAT function should use for the specific connection.
\Without this argument, it uses a combination of the

destination and source IP address.

No\e)
\ Works under Linux kernel 2.5 and 2.6.

SECMARK target

The SECMARK target is used to set a security context mark on a single
packet, as defined by SELinux and security systems. This is still
somewhat in it's infancy in Linux, but should pick up more and more in
the future. Since SELinux is out of the scope of this document, | suggest
going to the Security-Enhanced Linux webpage for more information.

In brief, SELinux is a new and improved security system to add

239

Chapter 11. Iptables targets and jumps

Mandatory Access Control (MAC) to Linux, implemented by NSA as a
proof of concept. SELinux basically sets security attributes for different
objects and then matches them into security contexts. The SECMARK
target is used to set a security context on a packet which can then be
used within the security subsystems to match on.

Nc\e)
\ The SECMARK target is only valid in the mangle table.

Table 11-16. SECMARK target options

Option --selctx

Example iptables -t mangle -A PREROUTING -p tcp --dport 80 -j
SECMARK --selctx httpcontext

Explanation [The --selctx option is used to specify which security
context to set on a packet. The context can then be used
for matching inside the security systems of linux.

SNAT target

The SNAT target is used to do Source Network Address Translation,
which means that this target will rewrite the Source IP address in the IP
header of the packet. This is what we want, for example, when several
hosts have to share an Internet connection. We can then turn on ip
forwarding in the kernel, and write an SNAT rule which will translate all
packets going out from our local network to the source IP of our own
Internet connection. Without doing this, the outside world would not
know where to send reply packets, since our local networks mostly use
the IANA specified IP addresses which are allocated for LAN networks.
If we forwarded these packets as is, no one on the Internet would know
that they were actually from us. The SNAT target does all the translation
needed to do this kind of work, letting all packets leaving our LAN look
as if they came from a single host, which would be our firewall.

240

Chapter 11. Iptables targets and jumps

The SNAT target is only valid within the nat table, within the
POSTROUTING chain. This is in other words the only chain in which
you may use SNAT. Only the first packet in a connection is mangled by
SNAT, and after that all future packets using the same connection will
also be SNATted. Furthermore, the initial rules in the POSTROUTING
chain will be applied to all the packets in the same stream.

Table 11-17. SNAT target options

Option

--to-source

Example

iptables -t nat -A POSTROUTING -p tcp -0 ethO -j SNAT

--to-source 194.236.50.155-194.236.50.160:1024-32000

241

Chapter 11. Iptables targets and jumps

Explanation

The --to-source option is used to specify which source the
packet should use. This option, at its simplest, takes one
IP address which we want to use for the source IP
address in the IP header. If we want to balance between
several IP addresses, we can use a range of IP
addresses, separated by a hyphen. The --to--source IP
numbers could then, for instance, be something like in the
above example: 194.236.50.155-194.236.50.160. The
source IP for each stream that we open would then be
allocated randomly from these, and a single stream would
always use the same IP address for all packets within that
stream. We can also specify a range of ports to be used
by SNAT. All the source ports would then be confined to
the ports specified. The port bit of the rule would then look
like in the example above, :1024-32000. This is only valid
if -p tcp or -p udp was specified somewhere in the match
of the rule in question. iptables will always try to avoid
making any port alterations if possible, but if two hosts try
to use the same ports, iptables will map one of them to
another port. If no port range is specified, then if they're
needed, all source ports below 512 will be mapped to
other ports below 512. Those between source ports 512
and 1023 will be mapped to ports below 1024. All other
ports will be mapped to 1024 or above. As previously
stated, iptables will always try to maintain the source ports
used by the actual workstation making the connection.
Note that this has nothing to do with destination ports, so if
a client tries to make contact with an HTTP server outside

the firewall, it will not be mapped to the FTP control port.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

242

Chapter 11. Iptables targets and jumps

TCPMSS target

The TCPMSS target can be used to alter the MSS (Maximum Segment
Size) value of TCP SYN packets that the firewall sees. The MSS value
is used to control the maximum size of packets for specific connections.
Under normal circumstances, this means the size of the MTU
(Maximum Transfer Unit) value, minus 40 bytes. This is used to
overcome some ISP’s and servers that block ICMP fragmentation
needed packets, which can result in really weird problems which can
mainly be described such that everything works perfectly from your
firewall/router, but your local hosts behind the firewall can’t exchange
large packets. This could mean such things as mail servers being able
to send small mails, but not large ones, web browsers that connect but
then hang with no data received, and ssh connecting properly, but scp
hangs after the initial handshake. In other words, everything that uses
any large packets will be unable to work.

The TCPMSS target is able to solve these problems, by changing the
size of the packets going out through a connection. Please note that we
only need to set the MSS on the SYN packet since the hosts take care
of the MSS after that. The target takes two arguments.

Table 11-18. TCPMSS target options

Option --set-mss

Example iptables -t mangle -A POSTROUTING -p tcp --tcp-flags
SYN,RST SYN -0 ethO -j TCPMSS --set-mss 1460

Explanation [The --set-mss argument explicitly sets a specific MSS
value of all outgoing packets. In the example above, we
set the MSS of all SYN packets going out over the ethO
interface to 1460 bytes -- normal MTU for ethernet is 1500
bytes, minus 40 bytes is 1460 bytes. MSS only has to be
set properly in the SYN packet, and then the peer hosts
take care of the MSS automatically.

Option --clamp-mss-to-pmtu

243

Chapter 11. Iptables targets and jumps

Example iptables -t mangle -A POSTROUTING -p tcp --tcp-flags
SYN,RST SYN -0 ethO -j TCPMSS --clamp-mss-to-pmtu

Explanation [The --clamp-mss-to-pmtu automatically sets the MSS to
the proper value, hence you don't need to explicitly set it. If
is automatically set to PMTU (Path Maximum Transfer
Unit) minus 40 bytes, which should be a reasonable value
for most applications.

Nc\e)
\ Works under Linux kernel 2.5 and 2.6.

TOS target

The TOS target is used to set the Type of Service field within the 1P
header. The TOS field consists of 8 bits which are used to help in
routing packets. This is one of the fields that can be used directly within
iproute2 and its subsystem for routing policies. Worth noting, is that if
you handle several separate firewalls and routers, this is the only way to
propagate routing information within the actual packet between these
routers and firewalls. As previously noted, the MARK target - which sets
a MARK associated with a specific packet - is only available within the
kernel, and can’t be propagated with the packet. If you feel a need to
propagate routing information for a specific packet or stream, you
should therefore set the TOS field, which was developed for this.

There are currently a lot of routers on the Internet which do a pretty bad
job at this, so as of now it may prove to be a bit useless to attempt TOS
mangling before sending the packets on to the Internet. At best the
routers will not pay any attention to the TOS field. At worst, they will
look at the TOS field and do the wrong thing. However, as stated above,
the TOS field can most definitely be put to good use if you have a large
WAN or LAN with multiple routers. You then in fact have the possibility

244

Chapter 11. Iptables targets and jumps

of giving packets different routes and preferences, based on their TOS
value - even though this might be confined to your own network.

fiont

oo
\)The TOS target is only capable of setting specific values, or named values
on packets. These predefined TOS values can be found in the kernel

include files, or more precisely, the Linux/ip.h file. The reasons are many,
and you should actually never need to set any other values; however,
there are ways around this limitation. To get around the limitation of only
being able to set the named values on packets, you can use the FTOS
patch available at the Paksecured Linux Kernel patches site maintained by
Matthew G. Marsh. However, be cautious with this patch! You should not
need to use any other than the default values, except in extreme cases.

o\e\
\N

» Note that this target is only valid within the mangle table and can’t be
used outside it.

ot
\,N)Also note that some old versions (1.2.2 or below) of iptables provided a
broken implementation of this target which did not fix the packet checksum
upon mangling, hence rendering the packets bad and in need of
retransmission. That in turn would most probably lead to further mangling
and the connection never working.

The TOS target only takes one option as described below.

Table 11-19. TOS target options

Option

--set-tos

Example

iptables -t mangle -A PREROUTING -p TCP --dport 22
-j TOS --set-tos 0x10

245

Chapter 11. Iptables targets and jumps

Explanation

The --set-tos option tells the TOS mangler what TOS
\value to set onpackets that are matched. The option takes
a numeric value, either in hex or in decimal value. As the
TOS value consists of 8 bits, the value may be 0-255, or in
hex 0x00-0xFF. Note that in the standard TOS target you
are limited to using the named values available (which
should be more or less standardized), as mentioned in the
previous warning. These values are Minimize-Delay
(decimal value 16, hex value 0x10),
Maximize-Throughput (decimal value 8, hex value 0x08),
Maximize-Reliability (decimal value 4, hex value 0x04),
Minimize-Cost (decimal value 2, hex 0x02) or
Normal-Service (decimal value 0, hex value 0x00). The
default value on most packets is Normal-Service, or O.
Note that you can, of course, use the actual names
instead of the actual hex values to set the TOS value; in
fact this is generally to be recommended, since the values
associated with the names may be changed in future. For
a complete listing of the "descriptive values", do an

iptables -j TOS -h .

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

TTL target

The TTL target is used to modify the Time To Live field in the IP header.
One useful application of this is to change all Time To Live values to the
same value on all outgoing packets. One reason for doing this is if you
have a bully ISP which don'’t allow you to have more than one machine
connected to the same Internet connection, and who actively pursues
this. Setting all TTL values to the same value, will effectively make it a

246

Chapter 11. Iptables targets and jumps

little bit harder for them to notice that you are doing this. We may then
reset the TTL value for all outgoing packets to a standardized value,
such as 64 as specified in the Linux kernel.

For more information on how to set the default value used in Linux, read
the ip-sysctl.txt, which you may find within the
Other resources and links appendix.

The TTL target is only valid within the mangle table, and nowhere else.
It takes 3 options as of writing this, all of them described below in the

table.

Table 11-20. TTL target options

Option

--ttl-set

Example

iptables -t mangle -A PREROUTING -i ethO -j TTL
--ttl-set 64

Explanation

The --ttl-set option tells the TTL target which TTL value to
set on the packet in question. A good value would be
around 64 somewhere. It's not too long, and it is not too
short. Do not set this value too high, since it may affect
your network and it is a bit immoral to set this value to
high, since the packet may start bouncing back and forth
between two mis-configured routers, and the higher the
TTL, the more bandwidth will be eaten unnecessarily in
such a case. This target could be used to limit how far
away our clients are. A good case of this could be DNS
servers, where we don’t want the clients to be too far away.

Option

--ttl-dec

Example

iptables -t mangle -A PREROUTING -i ethO -j TTL

--ttl-dec 1

247

Chapter 11. Iptables targets and jumps

Explanation

The --ttl-dec option tells the TTL target to decrement the
Time To Live value by the amount specified after the
--ttl-dec option. In other words, if the TTL for an incoming
packet was 53 and we had set --ttl-dec 3 , the packet
would leave our host with a TTL value of 49. The reason
for this is that the networking code will automatically
decrement the TTL value by 1, hence the packet will be
decremented by 4 steps, from 53 to 49. This could for
example be used when we want to limit how far away the
people using our services are. For example, users should
always use a close-by DNS, and hence we could match all
packets leaving our DNS server and then decrease it by
several steps. Of course, the --set-ttl may be a better idea
for this usage.

Option

--ttl-inc

Example

iptables -t mangle -A PREROUTING -i ethO -j TTL

--ttl-inc 1

248

Chapter 11. Iptables targets and jumps

Explanation

The --ttl-inc option tells the TTL target to increment the
Time To Live value with the value specified to the --ttl-inc
option. This means that we should raise the TTL value
with the value specified in the --ttl-inc option, and if we
specified --ttl-inc 4 , a packet entering with a TTL of 53
would leave the host with TTL 56. Note that the same
thing goes here, as for the previous example of the
--ttl-dec option, where the network code will automatically
decrement the TTL value by 1, which it always does. This
may be used to make our firewall a bit more stealthy to
trace-routes among other things. By setting the TTL one
\value higher for all incoming packets, we effectively make
the firewall hidden from trace-routes. Trace-routes are a
loved and hated thing, since they provide excellent
information on problems with connections and where it
happens, but at the same time, it gives the hacker/cracker
some good information about your upstreams if they have
targeted you. For a good example on how this could be

used, see the Ttl-inc.txt script.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

ULOG target

The ULOG target is used to provide user-space logging of matching
packets. If a packet is matched and the ULOG target is set, the packet
information is multicasted together with the whole packet through a
netlink socket. One or more user-space processes may then subscribe
to various multicast groups and receive the packet. This is in other
words a more complete and more sophisticated logging facility that is
only used by iptables and Netfilter so far, and it contains much better

249

Chapter 11. Iptables targets and jumps

facilities for logging packets. This target enables us to log information to
MySQL databases, and other databases, making it much simpler to
search for specific packets, and to group log entries. You can find the
ULOGD user-land applications at the ULOGD project page.

Table 11-21. ULOG target options

Option --ulog-nigroup

Example iptables -A INPUT -p TCP --dport 22 -j ULOG
--ulog-nigroup 2

Explanation [The --ulog-nlgroup option tells the ULOG target which
netlink group to send the packet to. There are 32 netlink
groups, which are simply specified as 1-32. If we would
like to reach netlink group 5, we would simply write
--ulog-nigroup 5 . The default netlink group used is 1.

Option --ulog-prefix

Example iptables -A INPUT -p TCP --dport 22 -j ULOG
--ulog-prefix "SSH connection attempt: "

Explanation [The --ulog-prefix option works just the same as the prefix
\value for the standard LOG target. This option prefixes all
log entries with a user-specified log prefix. It can be 32
characters long, and is definitely most useful to distinguish
different log-messages and where they came from.

Option --ulog-cprange

Example iptables -A INPUT -p TCP --dport 22 -j ULOG
--ulog-cprange 100

250

Chapter 11. Iptables targets and jumps

Explanation

The --ulog-cprange option tells the ULOG target how
many bytes of the packet to send to the user-space
daemon of ULOG. If we specify 100 as above, we would
copy 100 bytes of the whole packet to user-space, which
would include the whole header hopefully, plus some
leading data within the actual packet. If we specify 0, the
whole packet will be copied to user-space, regardless of
the packets size. The default value is 0, so the whole
packet will be copied to user-space.

Option

--ulog-gthreshold

Example

iptables -A INPUT -p TCP --dport 22 -j ULOG
--ulog-gthreshold 10

Explanation

The --ulog-qgthreshold option tells the ULOG target how
many packets to queue inside the kernel before actually
sending the data to user-space. For example, if we set the
threshold to 10 as above, the kernel would first
accumulate 10 packets inside the kernel, and then
transmit it outside to the user-space as one single netlink
multi part message. The default value here is 1 because of
backward compatibility, the user-space daemon did not
know how to handle multi-part messages previously.

Nc\e)
\ Works under Linux kernel 2.3, 2.4, 2.5 and 2.6.

What's

next?

This chapter has discussed in detail each and every target that is
available in Linux. This list is still growing as people write more and
more target extensions for iptables and netfilter, and it is already quite
extensive as you have seen. The chapter has also discussed the

251

Chapter 11. Iptables targets and jumps

different target options available for each target.

The next chapter will delve into debugging your firewall scripts and what
techniques are available for doing this. It will both show you moderate
debugging techniques such as using bash and echo, to some more
advanced tools such as nmap and nessus .

252

Chapter 12. Debugging your
scripts

One large and rather overlooked sides of writing your own rulesets is
how to debug the rulesets on your own, and how to find where you have
done your mistakes in the rulesets. This chapter will show you a few
basic steps you can take to debug your scripts and find out what is
wrong with them, as well as some more elaborate things to look for and
what can be done to avoid being unable to connect to your firewall in
case you accidentally run a bad ruleset on it.

Most of what is taught here is based upon the assumption that the
ruleset was written in bash shell scripts, but they should be easy to
apply in other environments as well. Rulesets that have been saved
with iptables-save are another piece of code alltogether unfortunately,
and pretty much none of these debugging methods will give you much
luck. On the other hand, iptables-save files are much simpler and since
they can’t contain any scripting code that will create specific rules
either, they are much simpler to debug as well.

Debugging, a necessity

Debugging is more or less a necessity when it comes to iptables and
netfilter and most firewalls in general. The problem with 99% of all
firewalls is that in the end there is a human being that decides upon the
policies and how the rulesets are created, and | can promise you, it is
easy to make a mistake while writing your rulesets. Sometimes, these
errors are very hard to see with the naked eye, or to see the holes that
they are creating through the firewall. Holes that you don’t know of or
didn’t intend to happen in your scripts can create havoc on your
networks, and create an easy entry for your attackers. Most of these
holes can be found rather easily with a few good tools.

Other than this, you may write bugs into your scripts in other ways as
well, which can create the problem of being unable to login to the

253

Chapter 12. Debugging your scripts

firewall. This can also be solved by using a little bit of cleverness before
running the scripts at all. Using the full power of both the scripting
language as well as the system environment can prove incredibly
powerful, which almost all experienced Unix administrators should
already have noticed from before, and this is basically all we do when
debugging our scripts as well.

Bash debugging tips

There are quite a few things that can be done with bash to help
debugging your scripts containing the rulesets. One of the first
problems with finding a bug is to know on which line the problem
appears. This can be solved in two different ways, either using the bash
-x flag, or by simply entering some echo statements to find the place
where the problem happens. Ideally, you would, with the echo
statement, add something like the following echo statement at regular
intervals in the code:

echo "Debugging message 1."

echo "Debugging message 2."

In my case, | generally use pretty much worthless messages, as long as
they have something in them that is unique so | can find the error
message by a simple grep or search in the script file. Now, if the error
message shows up after the "Debugging message 1." message, but
before "Debugging message 2.", then we know that the erroneous line
of code is somewhere in between the two debugging messages. As you
can understand, bash has the not really bad, but at least peculiar, idea
of continuing to execute commands even if there is an error in one of
the commands before. In netfilter, this can cause some very interesting
problems for you. The above idea of simply using echo statements to
find the errors is extremely simple, but it is at the same time very nice

254

Chapter 12. Debugging your scripts

since you can narrow the whole problem down to a single line of code
and see what the problem is directly.

The second possibility to find the above problem is to use the -x
variable to bash, as we spoke of before. This can of course be a minor
problem, especially if your script is large, and if your console buffer isn’t
large enough. What the -x variable means is quite simple, it tells the
script to just echo every single line of code in the script to the standard
output of the shell (generally your console). What you do is to change
your normal start line of the script from this:

#1/bin/bash

Into the line below:

#!/bin/bash -x

As you will see, this changes your output from perhaps a couple of
lines, to copious amounts of data on the output. The code shows you
every single command line that is executed, and with the values of all
the variables et cetera, so that you don’t have to try and figure out
exactly what the code is doing. Simply put, each line that gets executed
is output to your screen as well. One thing that may be nice to see, is
that all of the lines that bash outputs are prefixed by a + sign. This
makes it a little bit easier to discern error or warning messages from the
actual script, rather than just one big mesh of output.

The -x option is also very interesting for debugging a couple of other
rather common problems that you may run into with a little bit more
complex rulesets. The first of them is to find out exactly what happens
with what you thought was a simple loop, such as an for, if or while
statement? For example, let’s look at an example.

#!/bin/bash

iptables="/sbin/iptables"

$iptables -N output_int_iface

cat /etc/configs/machines | while read host; do
$iptables -N output-$host

255

Chapter 12. Debugging your scripts
Siptables -A output_int_iface -p tcp -d $host -j output-Shost

cat /etc/configs/${host}/ports | while read row2; do
Siptables -A output-$host -p tcp --dport $row?2 -d $host -j ACCEPT
done
done

This set of rules may look simple enough, but we continue to run into a
problem with it. We get the following error messages that we know
come from the above code by using the simple echo debugging method.

work3:~# ./test.sh

Bad argument ‘output-’

Try ‘iptables -h’ or 'iptables --help’ for more information.
cat: /etc/configs//ports: No such file or directory

So we turn on the -x option to bash and look at the output. The output is
shown below, and as you can see there is something very weird going
on in it. There are a couple of commands where the $host and $row2
variables are replaced by nothing. Looking closer, we see that it is only
the last iteration of code that causes the trouble. Either we have done a
programmatical error, or there is something strange with the data. In
this case, it is a simple error with the data, which contains a single extra
linebreak at the end of the file. This causes the loop to iterate one last
time, which it shouldn’t. Simply remove the trailing linebreak of the file,
and the problem is solved. This may not be a very elegant solution, but
for private work it should be enough. Otherwise, you could add code
that looks to see that there is actually some data in the $host and
$row2 variables.

work3:~# ./test.sh

+ iptables=/sbin/iptables

+ /shin/iptables -N output_int_iface

+ cat /etc/configs/machines

+ read host

+ /shin/iptables -N output-sto-as-101

+ /shin/iptables -A output_int_iface -p tcp -d sto-as-101 -j output-sto-as-101

256

Chapter 12. Debugging your scripts

+ cat /etc/configs/sto-as-101/ports

+ read row2

+ /shin/iptables -A output-sto-as-101 -p tcp --dport 21 -d sto-as-101 -j ACCEPT
+ read row2

+ /shin/iptables -A output-sto-as-101 -p tcp --dport 22 -d sto-as-101 -j ACCEPT
+ read row2

+ /shin/iptables -A output-sto-as-101 -p tcp --dport 23 -d sto-as-101 -j ACCEPT
+ read row2

+ read host

+ /shin/iptables -N output-sto-as-102

+ /shin/iptables -A output_int_iface -p tcp -d sto-as-102 -j output-sto-as-102

+ cat /etc/configs/sto-as-102/ports

+ read row2

+ /shin/iptables -A output-sto-as-102 -p tcp --dport 21 -d sto-as-102 -j ACCEPT
+ read row2

+ /shin/iptables -A output-sto-as-102 -p tcp --dport 22 -d sto-as-102 -j ACCEPT
+ read row2

+ /shin/iptables -A output-sto-as-102 -p tcp --dport 23 -d sto-as-102 -j ACCEPT
+ read row2

+ read host

+ /shin/iptables -N output-sto-as-103

+ /shin/iptables -A output_int_iface -p tcp -d sto-as-103 -j output-sto-as-103

+ cat /etc/configs/sto-as-103/ports

+ read row2

+ /sbin/iptables -A output-sto-as-103 -p tcp --dport 21 -d sto-as-103 -j ACCEPT
+ read row2

+ /sbin/iptables -A output-sto-as-103 -p tcp --dport 22 -d sto-as-103 -j ACCEPT
+ read row2

+ /sbin/iptables -A output-sto-as-103 -p tcp --dport 23 -d sto-as-103 -j ACCEPT
+ read row2

+ read host

+ /shin/iptables -N output-

+ /shin/iptables -A output_int_iface -p tcp -d -j output-

Bad argument ‘output-’

Try ‘iptables -h’ or 'iptables --help’ for more information.

+ cat /etc/configs//ports

cat: /etc/configs//ports: No such file or directory

+ read row2

+ read host

257

Chapter 12. Debugging your scripts

The third and final problem you run into that can be partially solved with
the help of the -x option is if you are executing the firewall script via
SSH, and the console hangs in the middle of executing the script, and
the console simply won’t come back, nor are you able to connect via
SSH again. In 99.9% of the cases, this means there is some kind of
problem inside the script with a couple of the rules. By turning on the -x
option, you will see exactly at which line the script locks dead, hopefully
at least. There are a couple of circumstances where this is not true,
unfortunately. For example, what if the script sets up a rule that blocks
incoming traffic, but since the ssh/telnet server sends the echo first as
outgoing traffic, netfilter will remember the connection, and hence allow
the incoming traffic anyways if you have a rule above that handles
connection states.

As you can see, it can become quite complex to debug your ruleset to
its full extent in the end. However, it is not impossible at all. You may
also have noticed, if you have worked remotely on your firewalls via
SSH, for example, that the firewall may hang when you load bad
rulesets. There is one more thing that can be done to save the day in
these circumstances. Cron is an excellent way of saving your day. For
example, say you are working on a firewall 50 kilometers away, you add
some rules, delete some others, and then delete and insert the new
updated ruleset. The firewall locks dead, and you can’t reach it. The
only way of fixing this is to go to the firewall's physical location and fix
the problem from there, unless you have taken precautions that is!

System tools used for debugging

One of the best precautions you may take against a locked down
firewall is to simply use cron to add a script that is run every 5 minutes
or so that resets the firewall, and then remove that cron line once you
are sure the installation works fine. The cron line may look something
like the one below and be entered with the command crontab -e .

*/5 * * * * [etc/init.d/rc.flush-iptables.sh stop

258

Chapter 12. Debugging your scripts

Make absolutely sure, that the line will actually work and do what you
expect it to do before you start doing something you expect will or may
freeze the server you are working on.

Another tool that is constantly used to debug your scripts is the syslog
facility. This is the facility that logs all log-messages created by a ton of
different programs. In fact, almost all large programs support syslog
logging, including the kernel. All messages sent to syslog have two
basic variables set to them that are very important to remember, the
facility and the log level/priority.

The facility tells the syslog server from which facility the log entry came
from, and where to log it. There are several specified facilities, but the
one in question right now is the Kern facility, or kernel facility as it may
also be called. All netfilter generated messages are sent using this
facility.

The log level tells syslog how high priority the log messages have.
There are several priorities that can be used, listed below.

. debug

. info

. hotice

. warning
err

. crit

N o oA W N P

. alert
8. emerg

Depending on these priorities, we can send them to different log files
using the syslog.conf. For example, to send all messages from the kern
facility with warning priority to a file called /var/log/kernwarnings, we could
do as shown below. The line should go into the /etc/syslog.conf.

kern.warning /var/log/kernwarnings

259

Chapter 12. Debugging your scripts

As you can see, it's quite simple. Now you will hopefully find your
netfilter logs in the file /var/log/kernwarnings (after restarting, or HUP’ing
the syslog server). Of course, this also depends on what log levels you
set in your netfilter logging rules. The log level can be set there with the
--log-level option.

The logs entered into this file will give you information about all the
packets that you wish to log via specific log rules in the ruleset. With
these, you can see if there is anything specific that goes wrong. For
example, you can set logrules in the end of all the chains to see if there
are any packets that are carried over the boundary of the chains. A log
entry may look something like the example below, and include quite a
lot of information as you can see.

Oct 23 17:09:34 localhost kernel: IPT INPUT packet died: IN=ethl OUT=
MAC=08:00:09:cd:f2:27:00:20:1a:11:3d:73:08:00 SRC=200.81.8.14 DST=217.215.68.146
LEN=78 TOS=0x00 PREC=0x00 TTL=1101D=12818 PROTO=UDP SPT=1027 DPT=137 LEN=58

As you can understand, syslog can really help you out when debugging
your rulesets. Looking at these logs may help you understand why
some port that you wanted to open doesn’t work.

Iptables debugging

Iptables can be rough to debug sometimes, since the error messages
from iptables itself aren’t very user friendly at all times. For this reason,
it may be a good idea to take a look at the most common error
messages you can get from iptables, and why you may have gotten
them.

One of the first error messages to look at is the "Unknown arg" error.
This may show up for several reasons. For example, look below.

work3:~# iptables -A INPUT --dport 67 -j ACCEPT
iptables v1.2.9: Unknown arg ‘--dport’
Try ‘iptables -h’ or "iptables --help’ for more information.

260

Chapter 12. Debugging your scripts

This error is simpler than normal to solve, since we have only used a
single argument. Normally, you may have used a long, long command
and get this error message. The problem in the above scenario is that
we have forgotten to use the --protocol match, and because of that, the
--dport match isn’t available to us. Adding the --protocol match would
also solve the problem in this match. Make absolutely certain that you
are not missing any special preconditions that are required to use a
specific match.

Another very common error is if you miss a dash (-) somewhere in the
command line, like below. The proper solution is to simply add the dash,
and the command will work.

work3:~# iptables -A INPUT --protocol tcp -dport 67 -j ACCEPT
Bad argument ‘67’
Try ‘iptables -h’ or 'iptables --help’ for more information.

And finally, there is the simple misspelling, which is rather common as
well. This is shown below. The error message, as you will notice, is
exactly the same as when you forget to add another prerequisite match
to the rule, so it needs to be carefully looked into.

work3:~# iptables -A INPUT --protocol tcp --destination-ports 67 -j ACCEPT
iptables v1.2.9: Unknown arg ‘--destination-ports’
Try ‘iptables -h’ or 'iptables --help’ for more information.

There is also one more possible cause for the "Unknown arg" error
shown above. If you can see that the argument is perfectly written, and
no possible errors in the prerequisites, there is a possibility that the
target/match/table was simply not compiled into the kernel. For
example, let's say we forgot to compile the filter table support into the
kernel, this would then look something like this:

work3:~# iptables -A INPUT -j ACCEPT

iptables v1.2.9: can't initialize iptables table ‘filter’: Table does not exist
(do you need to insmod?)

Perhaps iptables or your kernel needs to be upgraded.

261

Chapter 12. Debugging your scripts

Normally, iptables should be able to automatically modprobe a specific
module that isn’t already inside the kernel, so this is generally a sign of
either not having done a proper depmod after restarting with the new
kernel, or you may simply have forgotten about the module(s). If the
problematic module would be a match instead, the error message
would be a little bit more cryptic and hard to understand. For example,
look at this error message.

work3:~# iptables -A INPUT -m state
--state ESTABLISHED -j ACCEPT
iptables: No chain/target/match by that name

In this case, we forgot to compile the state module, and as you can see
the error message isn'’t very nice and easy to understand. But it does
give you a hint at what is wrong. Finally, we have the same error again,
but this time, the target is missing. As you understand from looking at
the error message, it get's rather complicated since it is the exact same
error message for both errors (missing match and/or target).

work3:~# iptables -A INPUT -m state
--state ESTABLISHED -j REJECT
iptables: No chain/target/match by that name

The easiest way to see if we have simply forgotten to depmod, or if the
module is actually missing is to look in the directory where the modules
should be. This is the /lib/modules/2.6.4/kernel/net/ipv4/netfilter directory.
All ipt_* files that are written in uppercase letters are targets, while all
the ones with lowercase letters are matches. For example,

ipt REJECT.ko is a target, while the ipt_state.ko is a match.

No\e)
\ In 2.4 kernels and older, the file extension for all kernel modules was .0,
which changed to .ko for files in the 2.6 kernels.

Another way of getting help from iptables itself is to simply comment out
a whole chain from your script to see if that fixes the problem. This is

262

Chapter 12. Debugging your scripts

kind of a last resort problem solver, that may be very effective if you
don’t even know which chain is causing the problem. By removing the
whole chain and simply setting a default policy of ACCEPT, and then
testing, if it works better, then this is the chain that is causing the
problems. If it doesn’t work better, then it is another chain, and you can
go on to find the problem elsewhere.

Other debugging tools

There are of course other tools that may be extremely useful when
debugging your firewall scripts. This section will briefly touch the most
common tools used to find out fast how your firewall looks from all sides
of it (inside, outside, etc). The tools | have chosen here are the nmap
and nessus tools.

Nmap

Nmap is an excellent tool for looking at the pure firewall perspective,
and to find out which ports are open and more low level information. It
has support for OS fingerprinting, several different port scanning
methods, IPv6 and IPv4 support and network scanning.

The basic form of scanning is done with a very simple commandline
syntax. Don't forget to specify which ports to scan through with the -p
option, for example -p 1-1024. As an example, take a look below.

blueflux@work3:~$ nmap -p 1-1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-03-18 17:19 CET
Interesting ports on firewall (192.168.0.1):

(The 1021 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

587/tcp open submission

263

Chapter 12. Debugging your scripts

Nmap run completed -- 1 IP address (1 host up) scanned in 3.877 seconds

It is also able to automatically guess the operating system of the
scanned host by doing OS fingerprinting. Fingerprinting requires root
privileges though, but it may also be very interesting to use to find out
what most people will think of the host. Using OS fingerprinting may
look something like the example listing below.

work3:/home/blueflux# nmap -O -p 1-1024 192.168.0.1

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-03-18 17:38 CET
Interesting ports on firewall (192.168.0.1):

(The 1021 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

587/tcp open submission

Device type: general purpose

Running: Linux 2.4.X|2.5.X

OS details: Linux Kernel 2.4.0 - 2.5.20

Uptime 6.201 days (since Fri Mar 12 12:49:18 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 14.303 seconds

OS fingerprinting isn't perfect, as you can see, but it will help narrow it
down, both for you, and for the attacker. Hence, it is interesting for you
to know as well. The best thing to do, is to give as little material as
possible for the attacker to get a proper fingerprint on, and with this
information you will know fairly well what the attacker knows about your
OS as well.

Nmap also comes with a graphical user interface that can be used,
called the nmapfe (Nmap Front End). It is an excellent frontend of the
nmap program, and if you know that you will need a little bit more
complicated searches, you may wish to use it. For an example
screenshot, take a look below.

264

Chapter 12. Debugging your scripts

*: Nmap Front End v3.50 yEX

rizlay rlost

Starting nmap 3,50 { http://uwwu.insecure.org/nnap/) at 2004-03-18 18:14 CET
Interesting ports on localhost (127,0,0,1):
scanned but not shown below are in state: closed)
STATE SERVICE OHNER YERSION
open ssh OpenSSH 3,6,1p2 {protocol 2,0}
open satp Exim sntpd 3,36
open rpchind (rpchind V2) 2 {(rpc #100000)
open netbios-ssn Samba smbd 3,X {(workgroup: FROZENTUX)
open netbios-ssn Samba smbd 3.X (workgroup: FROZENTUX)
open ipp cuPs 1,1
open status (status V1) 1 {rpc #100024)
open mountd (mountd V1-3) 1-3 {rpc #100005)
32778/tcp open sometimes-rpcl9

map run completed -- 1 IP address (1 host up) scanned in 80,909 seconds

nmap -sT -sR -s¥ -1 -PT 127.0.0.1

Of course, the nmap tool has more usages than this, which you can find
out more about on the nmap homepage. For more information, take a
look at the Nmap resources.

As you may understand, this is an excellent tool to test your host with,
and to find out which ports are actually open and which are not. For
example, after finishing your setup, use nmap to see if you have actually
succeeded in doing what you wanted to do. Do you get the correct
responses from the correct ports, and so on.

265

Chapter 12. Debugging your scripts

Nessus

While nmap is more of a low level scanner, showing open ports
etcetera, the nessus program is an actual security scanner. Nmap tries
to connect to different ports, and to find out at most, what kind of
version the different servers are running. Nessus takes this a step
further, by finding all open ports, finding out what is running on that
specific port, what program and which version is running, and then
testing for different security threats to that program, and finally creating
a complete report of all the security threats that are available.

As you can understand, this is an extremely useful tool to find out more
about your host. The program is built up in a server client way, so it
should be fairly easy to find out more about your firewall from the
outside by using an external nessus daemon, or internal for that matter.
The client is a graphical user interface where you login to the nessus
daemon, set your settings, and specify which host you would like to
scan for vulnerabilities. The generated report may look something like in
the example below.

266

Chapter 12. Debugging your scripts

submission (587/cp) Security Warning 192.168.0.1

ssh (22/cp) @ Security Hole
smtp (25/cp)
general/udp

general/tcp
I/i

The remote host answers to an ICMP timestamp request. This allows an attacker
to know the date which is set on your machine.

This may help him to defeat all your time based authentication protocols.

Solution : filter out the ICMP timestamp requests (13), and the outgoing ICMP
timestamp replies (14).

Risk factor : Low
CVE : CAN-1999-0524

|

'w‘

\—)Nessus should be used with some caution however, since it can crash a
machine or a service that it is specified to attack. Those attacks that risk
crashing a machine are per default turned off luckily.

What's next?

In this chapter we have looked in detail at different techniques you can
use to debug your firewall scripts. Debugging of firewall scripts can
become rather tedious and longwinded, however it is a necessity. If you

267

Chapter 12. Debugging your scripts

use some small simple steps while doing this, it can become very easy
in the end as well. We have looked at the following techniques in
particular:

Bash help in debugging
» System tools fit for debugging

Iptables debugging

Other tools for debugging

268

Chapter 13. rc.firewall file

This chapter will deal with an example firewall setup and how the script
file could look. We have used one of the basic setups and dug deeper
into how it works and what we do in it. This should be used to get a
basic idea on how to solve different problems and what you may need
to think about before actually putting your scripts to work. It could be
used as is with some changes to the variables, but is not suggested
since it may not work perfectly together with your network setup. As
long as you have a very basic setup however, it will very likely run quite
smooth with just a few fixes to it.

ote!
\N

,U

note that there might be more efficient ways of making the rule-set,
however, the script has been written for readability so that everyone can
understand it without having to know too much BASH scripting before
reading this

example rc.firewall

OK, so you have everything set up and are ready to check out an
example configuration script. You should at least be if you have come
this far. This example rc.firewall.txt (also included in the

Example scripts code-base appendix) is fairly large but not a lot of
comments in it. Instead of looking for comments, | suggest you read
through the script file to get a basic hum about how it looks, and then
you return here to get the nitty gritty about the whole script.

269

Chapter 13. rc.firewall file

explanation of rc.firewall

Configuration options

The first section you should note within the example rc.firewall.txt is the
configuration section. This should always be changed since it contains
the information that is vital to your actual configuration. For example,
your IP address will always change, hence it is available here. The
$INET_IP should always be a fully valid IP address, if you got one (if
not, then you should probably look closer at the rc.DHCP-firewall.txt,
however, read on since this script will introduce a lot of interesting stuff
anyways). Also, the $INET_IFACE variable should point to the actual
device used for your Internet connection. This could be eth0, ethl,
pppoO, tr0, etc just to name a few possible device names.

This script does not contain any special configuration options for DHCP
or PPPoE, hence these sections are empty. The same goes for all
sections that are empty, they are, however, left there so you can spot
the differences between the scripts in a more efficient way. If you need
these parts, then you could always create a mix of the different scripts,
or (brace yourself) create your own from scratch.

The Local Area Network section contains most of the configuration
options for your LAN, which are necessary. For example, you need to
specify the IP address of the physical interface connected to the LAN
as well as the IP range which the LAN uses and the interface that the
box is connected to the LAN through.

Also, as you may see there is a Localhost configuration section. We do
provide it, however you will with 99% certainty not change any of the
values within this section since you will almost always use the 127.0.0.1
IP address and the interface will almost certainly be named lo. Also,
just below the Localhost configuration, you will find a brief section that
pertains to the iptables. Mainly, this section only consists of the
$IPTABLES variable, which will point the script to the exact location of
the iptables application. This may vary a bit, and the default location
when compiling the iptables package by hand is /usr/local/sbin/iptables.
However, many distributions put the actual application in another

270

Chapter 13. rc.firewall file

location such as /usr/sbin/iptables and so on.

Initial loading of extra modules

First, we see to it that the module dependencies files are up to date by
issuing a /shin/depmod -a command. After this we load the modules
that we will require for this script. Always avoid loading modules that
you do not need, and if possible try to avoid having modules lying
around at all unless you will be using them. This is for security reasons,
since it will take some extra effort to make additional rules this way.
Now, for example, if you want to have support for the LOG, REJECT
and MASQUERADE targets and don’t have this compiled statically into
your kernel, we load these modules as follows:

/shin/insmod ipt_LOG
/sbin/finsmod ipt_ REJECT
/shin/insmod ipt_ MASQUERADE

caviont

\ 2 In these scripts we forcedly load the modules, which could lead to
failures of loading the modules. If a module fails to load, it could depend
upon a lot of factors, and it will generate an error message. If some of the
more basic modules fail to load, its biggest probable error is that the
module, or functionality, is statically compiled into the kernel. For further
information on this subject, read the Problems loading modules section in
the Common problems and questions appendix.

Next is the option to load ipt_owner module, which could for example
be used to only allow certain users to make certain connections, etc. |
will not use that module in this example but basically, you could allow
only root to do FTP and HTTP connections to redhat.com and DROP
all the others. You could also disallow all users but your own user and
root to connect from your box to the Internet. Might be boring for others,
but you will be a bit more secure to bouncing hacker attacks and attacks

271

Chapter 13. rc.firewall file

where the hacker will only use your host as an intermediate host. For
more information about the ipt_owner match, look at the Owner match
section within the How a rule is built chapter.

We may also load extra modules for the state matching code here. All
modules that extend the state matching code and connection tracking
code are called ip_conntrack_* and ip_nat_*. Connection tracking
helpers are special modules that tell the kernel how to properly track
the specific connections. Without these so called helpers, the kernel
would not know what to look for when it tries to track specific
connections. The NAT helpers on the other hand, are extensions of the
connection tracking helpers that tell the kernel what to look for in
specific packets and how to translate these so the connections will
actually work. For example, FTP is a complex protocol by definition, and
it sends connection information within the actual payload of the packet.
So, if one of your NAT ed boxes connect to a FTP server on the
Internet, it will send its own local network IP address within the payload
of the packet, and tell the FTP server to connect to that IP address.
Since this local network address is not valid outside your own network,
the FTP server will not know what to do with it and hence the
connection will break down. The FTP NAT helpers do all of the
translations within these connections so the FTP server will actually
know where to connect. The same thing applies for DCC file transfers
(sends) and chats. Creating these kind of connections requires the IP
address and ports to be sent within the IRC protocol, which in turn
requires some translation to be done. Without these helpers, some FTP
and IRC stuff will work no doubt, however, some other things will not
work. For example, you may be able to receive files over DCC, but not
be able to send files. This is due to how the DCC starts a connection.
First off, you tell the receiver that you want to send a file and where he
should connect to. Without the helpers, the DCC connection will look as
if it wants the receiver to connect to some host on the receiver’s own
local network. In other words, the whole connection will be broken.
However, the other way around, it will work flawlessly since the sender
will (most probably) give you the correct address to connect to.

272

Chapter 13. rc.firewall file

o€t
\S)If you are experiencing problems with mIRC DCCs over your firewall and
everything works properly with other IRC clients, read the
mIRC DCC problems section in the Common problems and questions
appendix.

As of this writing, there is only the option to load modules which add
support for the FTP and IRC protocols. For a long explanation of these
conntrack and nat modules, read the Common problems and questions
appendix. There are also H.323 conntrack helpers within the
patch-o-matic, as well as some other conntrack as well as NAT helpers.
To be able to use these helpers, you need to use the patch-o-matic and
compile your own kernel. For a better explanation on how this is done,
read the Preparations chapter.

No\e\-

\)Note that you need to load the ip_nat_irc and ip_nat_ftp if you want
Network Address Translation to work properly on any of the FTP and IRC
protocols. You will also need to load the ip_conntrack_irc and
ip_conntrack_ftp modules before actually loading the NAT modules. They
are used the same way as the conntrack modules, but it will make it
possible for the computer to do NAT on these two protocols.

proc set up

At this point we start the IP forwarding by echoing a 1 to
Iproc/sys/net/ipv4/ip_forward in this fashion:

echo "1" > /proc/sys/net/ipv4/ip_forward

rind

2 It may be worth a thought where and when we turn on the IP forwarding.
In this script and all others within the tutorial, we turn it on before actually
creating any kind of IP filters (i.e., iptables rule-sets). This will lead to a
brief period of time where the firewall will accept forwarding of any kind of
traffic for everything between a millisecond to a minute depending on what

\\N

273

Chapter 13. rc.firewall file

script we are running and on what box. This may give malicious people a
small time-frame to actually get through our firewall. In other words, this
option should really be turned on after creating all firewall rules, however, |
have chosen to turn it on before loading any rules to maintain consistency
with the script breakdown currently used in all scripts.

In case you need dynamic IP support, for example if you use SLIP,
PPP or DHCP you may enable the next option, ip_dynaddr by doing the
following :

echo "1" > /proc/sys/net/ipv4/ip_dynaddr

If there is any other options you might need to turn on you should follow
that style. There’s other documentation on how to do these things and
this is out of the scope of this documentation. There is a good but rather
brief document about the proc system available within the kernel, which
is also available within the Other resources and links appendix. The
Other resources and links appendix is generally a good place to start
looking when you have specific areas that you are looking for
information on, that you do not find here.

o€t
\,N) The rc.firewall.txt script, and all other scripts contained within this tutorial,
do contain a small section of non-required proc settings. These may be a
good primer to look at when something is not working exactly as you want
it to, however, do not change these values before actually knowing what

they mean.

Displacement of rules to different chains

This section will briefly describe my choices within the tutorial regarding
user specified chains and some choices specific to the rc.firewall.txt
script. Some of the paths | have chosen to go here may be wrong from
one or another aspect. | hope to point these aspects and possible
problems out to you when and where they occur. Also, this section
contains a brief look back to the Traversing of tables and chains

274

Chapter 13. rc.firewall file

chapter. Hopefully, this will remind you a little bit of how the specific
tables and chains are traversed in a real live example.

| have displaced all the different user-chains in the fashion | have to
save as much CPU as possible but at the same time put the main
weight on security and readability. Instead of letting a TCP packet
traverse ICMP, UDP and TCP rules, | simply match all TCP packets
and then let the TCP packets traverse a user specified chain. This way
we do not get too much overhead out of it all. The following picture will
try to explain the basics of how an incoming packet traverses Netfilter.
With these pictures and explanations, | wish to explain and clarify the
goals of this script. We will not discuss any specific details yet, but
instead further on in the chapter. This is a really trivial picture in
comparison to the one in the Traversing of tables and chains chapter
where we discussed the whole traversal of chains and tables in depth.

Incoming Outgoing

_) Routing Decision FORWARD)

Local Process OUTPUT

Based upon this picture, let us make clear what our goals are. This
whole example script is based upon the assumption that we are looking
at a scenario containing one local network, one firewall and an Internet
connection connected to the firewall. This example is also based upon
the assumption that we have a static IP to the Internet (as opposed to
DHCP, PPP and SLIP and others). In this case, we also want to allow
the firewall to act as a server for certain services on the Internet, and
we trust our local network fully and hence we will not block any of the
traffic from the local network. Also, this script has as a main priority to
only allow traffic that we explicitly want to allow. To do this, we want to
set default policies within the chains to DROP. This will effectively kill all

275

Chapter 13. rc.firewall file

connections and all packets that we do not explicitly allow inside our
network or our firewall.

In the case of this scenario, we would also like to let our local network
do connections to the Internet. Since the local network is fully trusted,
we want to allow all kinds of traffic from the local network to the Internet.
However, the Internet is most definitely not a trusted network and hence
we want to block them from getting to our local network. Based upon
these general assumptions, let’s look at what we need to do and what
we do not need and want to do.

FORWARD
Policy: DROP

ACCEPT everything
_) ESTABLISHED or
RELATED

ACCEPT everything
from LAN to Internet

First of all, we want the local network to be able to connect to the
Internet, of course. To do this, we will need to SNAT all packets since
none of the local computers have real IP addresses. All of this is done
within the POSTROUTING chain, which is created last in this script.
This means that we will also have to do some filtering within the
FORWARD chain since we will otherwise allow outsiders full access to
our local network. We trust our local network to the fullest, and because
of that we specifically allow all traffic from our local network to the
Internet. Since no one on the Internet should be allowed to contact our
local network computers, we will want to block all traffic from the
Internet to our local network except already established and related
connections, which in turn will allow all return traffic from the Internet to
our local network.

276

Chapter 13. rc.firewall file

INPUT
Policy: DROP

udpincoming_ Localhost ESTABLISHED,

icmp_packets | | tcp_packets | packets > Localnet [»| RELATED

As for our firewall, we may be a bit low on funds perhaps, or we just
want to offer a few services to people on the Internet. Therefore, we
have decided to allow HTTP, FTP, SSH and IDENTD access to the
actual firewall. All of these protocols are available on the actual firewall,
and hence it should be allowed through the INPUT chain, and we need
to allow the return traffic through the OUTPUT chain. However, we also
trust the local network fully, and the loopback device and IP address are
also trusted. Because of this, we want to add special rules to allow all
traffic from the local network as well as the loopback network interface.
Also, we do not want to allow specific packets or packet headers in
specific conjunctions, nor do we want to allow some IP ranges to reach
the firewall from the Internet. For instance, the 10.0.0.0/8 address range
is reserved for local networks and hence we would normally not want to
allow packets from such a address range since they would with 90%
certainty be spoofed. However, before we implement this, we must note
that certain Internet Service Providers actually use these address
ranges within their own networks. For a closer discussion of this, read
the Common problems and questions chapter.

Since we have an FTP server running on the server, as well as the fact
we want to traverse as few rules as possible, we add a rule which lets
all established and related traffic through at the top of the INPUT chain.
For the same reason, we want to split the rules down into sub-chains.
By doing this, our packets will hopefully only need to traverse as few
rules as possible. By traversing less rules, we make the rule-set less
time-consuming for each packet, and reduce latency within the network.

In this script, we choose to split the different packets down by their
protocol family, for example TCP, UDP or ICMP. All TCP packets
traverse a specific chain named tcp_packets, which will contain rules for
all TCP ports and protocols that we want to allow. Also, we want to do

277

Chapter 13. rc.firewall file

some extra checking on the TCP packets, so we would like to create
one more subchain for all packets that are accepted for using valid port
numbers to the firewall. This chain we choose to call the allowed chain,
and should contain a few extra checks before finally accepting the
packet. As for ICMP packets, these will traverse the icmp_packets
chain. When we decided on how to create this chain, we could not see
any specific needs for extra checks before allowing the ICMP packets
through if we agree with the type and code of the ICMP packet, and
hence we accept them directly. Finally, we have the UDP packets which
need to be dealt with. These packets, we send to the udp_packets
chain which handles all incoming UDP packets. All incoming UDP
packets should be sent to this chain, and if they are of an allowed type
we should accept them immediately without any further checking.

Since we are running on a relatively small network, this box is also used
as a secondary workstation and to give some extra leeway for this, we
want to allow certain specific protocols to make contact with the firewall
itself, such as speak freely and ICQ.

OUTPUT
Policy: DROP

ACCEPT everything ACCEPT everything ACCEPT everything
from 127.0.0.1) from 192.168.1.2) from 194.236.50.155

Finally, we have the firewalls OUTPUT chain. Since we actually trust
the firewall quite a lot, we allow pretty much all traffic leaving the
firewall. We do not do any specific user blocking, nor do we do any
blocking of specific protocols. However, we do not want people to use
this box to spoof packets leaving the firewall itself, and hence we only
want to allow traffic from the IP addresses assigned to the firewall itself.

278

Chapter 13. rc.firewall file

We would most likely implement this by adding rules that ACCEPT all
packets leaving the firewall in case they come from one of the IP
addresses assigned to the firewall, and if not they will be dropped by
the default policy in the OUTPUT chain.

Setting up default policies

Quite early on in the process of creating our rule-set, we set up the
default policies. We set up the default policies on the different chains
with a fairly simple command, as described below.

iptables [-P {chain} {policy}]

The default policy is used every time the packets do not match a rule in
the chain. For example, let’s say we get a packet that matches no single
rule in our whole rule-set. If this happens, we must decide what should
happen to the packet in question, and this is where the default policy
comes into the picture. The default policy is used on all packets that
does not match with any other rule in our rule-set.

caviont
s

» Do be cautious with what default policy you set on chains in other tables
since they are simply not made for filtering, and it may lead to very strange
behaviors.

Setting up user specified chains in the filter
table

Now you have a good picture of what we want to accomplish with this
firewall, so let us get on to the actual implementation of the rule-set. It is
now high time that we take care of setting up all the rules and chains

279

Chapter 13. rc.firewall file

that we wish to create and to use, as well as all of the rule-sets within
the chains.

After this, we create the different special chains that we want to use with
the -N command. The new chains are created and set up with no rules
inside of them. The chains we will use are, as previously described,
icmp_packets, tcp_packets, udp_packets and the allowed chain, which
is used by the tcp_packets chain. Incoming packets on $INET_IFACE,
of ICMP type, will be redirected to the chain icmp_packets. Packets of
TCP type, will be redirected to the tcp_packets chain and incoming
packets of UDP type from $SINET_IFACE go to udp_packets chain. All
of this will be explained more in detail in the INPUT chain section below.
To create a chain is quite simple and only consists of a short declaration
of the chain as this:

iptables [-N chain]

In the upcoming sections we will have a closer look at each of the user
defined chains that we have by now created. Let us have a closer look
at how they look and what rules they contain and what we will
accomplish within them.

The bad_tcp_packets chain

The bad_tcp_packets chain is devoted to contain rules that inspect
incoming packets for malformed headers or other problems. As it is, we
have only chosen to include a packet filter which blocks all incoming
TCP packets that are considered as NEW but do not have the SYN bit
set, as well as a rule that blocks SYN/ACK packets that are considered
NEW . This chain could be used to check for all possible
inconsistencies, such as above or XMAS port-scans etc. We could also
add rules that looks for state INVALID.

If you want to fully understand the NEW not SYN, you need to look at
the State NEW packets but no SYN bit set section in the
Common problems and questions appendix regarding state NEW and

280

Chapter 13. rc.firewall file

non-SYN packets getting through other rules. These packets could be
allowed under certain circumstances but in 99% of the cases we
wouldn’t want these packets to get through. Hence, we log them to our
logs and then we DROP them.

The reason that we REJECT SYN/ACK packets that are considered
NEW is also very simple. It is described in more depth in the

SYN/ACK and NEW packets section in the

Common problems and questions appendix. Basically, we do this out of
courtesy to other hosts, since we will prevent them from being attacked
in a sequence number prediction attack.

The allowed chain

If a packet comes in on $INET_IFACE and is of TCP type, it travels
through the tcp_packets chain and if the connection is against a port
that we want to allow traffic on, we want to do some final checks on it to
see if we actually do want to allow it or not. All of these final checks are
done within the allowed chain.

First of all, we check if the packet is a SYN packet. If it is a SYN packet,
it is most likely to be the first packet in a new connection so, of course,
we allow this. Then we check if the packet comes from an
ESTABLISHED or RELATED connection, if it does, then we, again of
course, allow it. An ESTABLISHED connection is a connection that has
seen traffic in both directions, and since we have seen a SYN packet,
the connection then must be in state ESTABLISHED, according to the
state machine. The last rule in this chain will DROP everything else. In
this case this pretty much means everything that has not seen traffic in
both directions, i.e., we didn't reply to the SYN packet, or they are trying
to start the connection with a non SYN packet. There is no practical use
of not starting a connection with a SYN packet, except to port scan
people pretty much. There is no currently available TCP/IP
implementation that supports opening a TCP connection with
something else than a SYN packet to my knowledge, hence, DROP it
since it is 99% sure to be a port scan.

281

Chapter 13. rc.firewall file

o€t
\S)The rule regarding ESTABLISHED,RELATED packets is actually
redundant in this script and will not be used, but has been included for the
sake of being complete. The rule that will be used is placed at the top of
the INPUT chain, and contains ESTABLISHED,RELATED as well.

The TCP chain

The tcp_packets chain specifies what ports are allowed to use on the
firewall from the Internet. There is, however, even more checks to do,
hence we send each and every one of the packets on to the allowed
chain, which we described previously.

-A tcp_packets tells iptables in which chain to add the new rule, the
rule will be added to the end of the chain. -p TCP tells it to match TCP
packets and -s 0/0 matches all source addresses from 0.0.0.0 with
netmask 0.0.0.0, in other words all source addresses. This is actually
the default behavior but | am using it just to make everything as clear as
possible. --dport 21 means destination port 21, in other words if the
packet is destined for port 21 they also match. If all the criteria are
matched, then the packet will be targeted for the allowed chain. If it
doesn’t match any of the rules, they will be passed back to the original
chain that sent the packet to the tcp_packets chain.

As it is now, | allow TCP port 21, or FTP control port, which is used to
control FTP connections and later on | also allow all RELATED
connections, and that way we allow PASSIVE and ACTIVE connections
since the ip_conntrack_ftp module is, hopefully, loaded. If we do not
want to allow FTP at all, we can unload the ip_conntrack ftp module
and delete the $IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -
allowed line from the rc.firewall.txt file.

Port 22 is SSH, which is much better than allowing telnet on port 23 if
you want to allow anyone from the outside to use a shell on your box at
all. Note that you are dealing with a firewall. It is always a bad idea to
give others than yourself any kind of access to a firewall box. Firewalls
should always be kept to a bare minimum and no more.

282

Chapter 13. rc.firewall file

Port 80 is HTTP, in other words your web server, delete it if you do not
want to run a web server directly on your firewall.

And finally we allow port 113, which is IDENTD and might be necessary
for some protocols like IRC, etc to work properly. Do note that it may be
worth it to use the oidentd package if you NAT several hosts on your
local network. oidentd has support for relaying IDENTD requests on to
the correct boxes within your local network.

If you feel like adding more open ports with this script, well, it should be
quite obvious how to do that by now. Just cut and paste one of the other
lines in the tcp_packets chain and change it to the port you want to
open.

The UDP chain

If we do get a UDP packet on the INPUT chain, we send them on to
udp_packets where we once again do a match for the UDP protocol
with -p UDP and then match everything with a source address of
0.0.0.0 and netmask 0.0.0.0, in other words everything again. Except
this time, we only accept specific UDP ports that we want to be open for
hosts on the Internet. Do note that we do not need to open up holes
depending on the sending hosts source port, since this should be taken
care of by the state machine. We only need to open up ports on our
host if we are to run a server on any UDP port, such as DNS etc.
Packets that are entering the firewall and that are part of an already
established connection (by our local network) will automatically be
accepted back in by the --state ESTABLISHED,RELATED rules at the
top of the INPUT chain.

As it is, we do not ACCEPT incoming UDP packets from port 53, which
is what we use to do DNS lookups. The rule is there, but it is per default
commented out. If you want your firewall to act as a DNS server,
uncomment this line.

| personally also allow port 123, which is NTP or network time protocol.
This protocol is used to set your computer clock to the same time as
certain other time servers which have very accurate clocks. Most of you
probably do not use this protocol and hence | am not allowing it per

283

Chapter 13. rc.firewall file

default. The same thing applies here, however, the rule is there and it is
simple to uncomment to get it working.

We do not currently allow port 2074, which is used for certain real-time
multimedia applications like speak freely which you can use to talk to
other people in real-time by using speakers and a microphone, or even
better, a headset. If you would like to use this, you could turn it on quite
simply by removing the comment.

Port 4000 is the ICQ protocol. This should be an extremely well known
protocol that is used by the Mirabilis application named ICQ. There are
at least 2-3 different ICQ clones for Linux and it is one of the most
widely used chat programs in the world. | doubt there is any further
need to explain what it is.

At this point, two extra rules are available if you are experiencing a lot of
log entries due to different circumstances. The first rule will block
broadcast packets to destination ports 135 through 139. These are
used by NetBIOS, or SMB for most Microsoft users. This will block all
log entries we may get from iptables logging Microsoft network activity
on the outside of our firewall. The second rule was also created to take
care of excessive logging problems, but instead takes care of DHCP
gueries from the outside. This is specifically true if your outside network
consists of a non-switched Ethernet type of network, where the clients
receive their IP addresses by DHCP. During these circumstances, you
could wind up with a lot of logs from just that.

No\e\-

\)Do note that the last two rules are specifically opted out since some
people may be interested in these kind of logs. If you are experiencing
problems with excessive legit logging, try to drop these types of packages
at this point. There are also more rules of this type just before the log rules
in the INPUT chain.

The ICMP chain
This is where we decide what ICMP types to allow. If a packet of ICMP

284

Chapter 13. rc.firewall file

type comes in on ethO on the INPUT chain, we then redirect it to the
icmp_packets chain as explained before. Here we check what kind of
ICMP types to allow. For now, | only allow incoming ICMP Echo
requests, TTL equals O during transit and TTL equals 0 during
reassembly. The reason that we do not allow any other ICMP types per
default here, is that almost all other ICMP types should be covered by
the RELATED state rules.

No\e\-

\)If an ICMP packet is sent as a reply to an already existing packet or
packet stream it is considered RELATED to the original stream. For more
information on the states, read the The state machine chapter.

The reason that | allow these ICMP packets is as follows, Echo
Requests are used to request an echo reply, which in turn is used to
mainly ping other hosts to see if they are available on any of the
networks. Without this rule, other hosts will not be able to ping us to see
if we are available on any network connection. Do note that some
people would tend to erase this rule, since they simply do not want to
be seen on the Internet. Deleting this rule will effectively render any
pings to our firewall totally useless from the Internet since the firewall
will simply not respond to them.

Time Exceeded (i.e., TTL equals 0 during transit and TTL equals 0
during reassembly), is allowed in the case we want to trace-route some
host or if a packet gets its Time To Live set to 0, we will get a reply
about this. For example, when you trace-route someone, you start out
with TTL =1, and it gets down to 0 at the first hop on the way out, and a
Time Exceeded is sent back from the first gateway en route to the host
we are trying to trace-route, then TTL = 2 and the second gateway
sends Time Exceeded, and so on until we get an actual reply from the
host we finally want to get to. This way, we will get a reply from each
host on our way to the actual host we want to reach, and we can see
every host in between and find out what host is broken.

For a complete listing of all ICMP types, see the ICMP types appendix .
For more information on ICMP types and their usage, i suggest reading
the following documents and reports:

285

Chapter 13. rc.firewall file

« RFC 792 - Internet Control Message Protocol by J. Postel.

No\e\-

\)As a side-note, | might be wrong in blocking some of these ICMP types
for you, but in my case, everything works perfectly while blocking all the
ICMP types that | do not allow.

INPUT chain

The INPUT chain, as | have written it, uses mostly other chains to do
the hard work. This way we do not get too much load from iptables, and
it will work much better on slow machines which might otherwise drop
packets at high loads. This is done by checking for specific details that
should be the same for a lot of different packets, and then sending
those packets into specific user specified chains. By doing this, we can
split down our rule-set to contain much less rules that need to be
traversed by each packet and hence the firewall will be put through a lot
less overhead by packet filtering.

First of all we do certain checks for bad packets. This is done by
sending all TCP packets to the bad_tcp_packets chain. This chain
contains a few rules that will check for badly formed packets or other
anomalies that we do not want to accept. For a full explanation of the
bad_tcp_packets chain, take a look in the The bad_tcp_packets chain
section in this chapter.

At this point we start looking for traffic from generally trusted networks.
These include the local network adapter and all traffic coming from
there, all traffic to and from our loopback interface, including all our
currently assigned IP addresses (this means all of them, including our
Internet IP address). As it is, we have chosen to put the rule that allows
LAN activity to the firewall at the top, since our local network generates
more traffic than the Internet connection. This allows for less overhead
used to try and match each packet with each rule and it is always a

286

Chapter 13. rc.firewall file

good idea to look through what kind of traffic mostly traverses the
firewall. By doing this, we can shuffle around the rules to be more
efficient, leading to less overhead on the firewall and less congestion on
your network.

Before we start touching the "real” rules which decide what we allow
from the Internet interface and not, we have a related rule set up to
reduce our overhead. This is a state rule which allows all packets part
of an already ESTABLISHED or RELATED stream to the Internet IP
address. This rule has an equivalent rule in the allowed chain, which
are made rather redundant by this rule, which will be evaluated before
the allowed ones are. However, the --state ESTABLISHED,RELATED
rule in the allowed chain has been retained for several reasons, such as
people wanting to cut and paste the function.

After this, we match all TCP packets in the INPUT chain that comes in
on the $INET_IFACE interface, and send those to the tcp_packets,
which was previously described. Now we do the same match for UDP
packets on the $INET_IFACE and send those to the udp_packets chain,
and after this all ICMP packets are sent to the icmp_packets chain.
Normally, a firewall would be hardest hit by TCP packets, than UDP and
last of them all ICMP packets. This is in normal case, mind you, and it
may be wrong for you. The absolute same thing should be looked upon
here, as with the network specific rules. Which causes the most traffic?
Should the rules be thrown around to generate less overhead? On
networks sending huge amounts of data, this is an absolute necessity
since a Pentium Il equivalent machine may be brought to its knees by a
simple rule-set containing 100 rules and a single 100mbit Ethernet card
running at full capacity if the rule-set is badly written. This is an
important piece to look at when writing a rule-set for your own local
network.

At this point we have one extra rule, that is per default opted out, that
can be used to get rid of some excessive logging in case we have some
Microsoft network on the outside of our Linux firewall. Microsoft clients
have a bad habit of sending out tons of multicast packets to the
224.0.0.0/8 range, and hence we have the opportunity to block those
packets here so we don't fill our logs with them. There are also two
more rules doing something similar to tasks in the udp_packets chain

287

Chapter 13. rc.firewall file

described in the The UDP chain.

Before we hit the default policy of the INPUT chain, we log it so we may
be able to find out about possible problems and/or bugs. Either it might
be a packet that we just do not want to allow or it might be someone
who is doing something bad to us, or finally it might be a problem in our
firewall not allowing traffic that should be allowed. In either case we
want to know about it so it can be dealt with. Though, we do not log
more than 3 packets per minute as we do not want to flood our logs with
crap which in turn may fill up our whole logging partition, also we set a
prefix to all log entries so we know where it came from.

Everything that has not yet been caught will be DROPed by the default
policy on the INPUT chain. The default policy was set quite some time
back, in the Setting up default policies section, in this chapter.

FORWARD chain

The FORWARD chain contains quite a few rules in this scenario. We
have a single rule which sends all packets to the bad_tcp_packets
chain, which was also used in the INPUT chain as described previously.
The bad_tcp_packets chain is constructed in such a fashion that it can
be used recycled in several calling chains, regardless of what packet
traverses it.

After this first check for bad TCP packets, we have the main rules in the
FORWARD chain. The first rule will allow all traffic from our
$LAN_IFACE to any other interface to flow freely, without restrictions.
This rule will in other words allow all traffic from our LAN to the Internet.
The second rule will allow ESTABLISHED and RELATED traffic back
through the firewall. This will in other words allow packets belonging to
connections that were initiated from our internal network to flow freely
back to our local network. These rules are required for our local network
to be able to access the Internet, since the default policy of the
FORWARD chain was previously set to DROP. This is quite clever,
since it will allow hosts on our local network to connect to hosts on the
Internet, but at the same time block hosts on the Internet from
connecting to the hosts on our internal network.

288

Chapter 13. rc.firewall file

Finally we also have a logging rule which will log packets that are not
allowed in one or another way to pass through the FORWARD chain.
This will most likely show one or another occurrence of a badly formed
packet or other problem. One cause may be hacker attacks, and others
may be malformed packets. This is exactly the same rule as the one
used in the INPUT chain except for the logging prefix, "IPT FORWARD
packet died: " . The logging prefix is mainly used to separate log
entries, and may be used to distinguish log entries to find out where the
packet was logged from and some header options.

OUTPUT chain

Since | know that there is pretty much no one but me using this box
which is partially used as a Firewall and a workstation currently, | allow
almost everything that goes out from it that has a source address
$LOCALHOST_IP, $LAN_IP or $STATIC_IP. Everything else might be
spoofed in some fashion, even though | doubt anyone that | know would
do it on my box. Last of all we log everything that gets dropped. If it does
get dropped, we will most definitely want to know about it so we may
take action against the problem. Either it is a nasty error, or it is a weird
packet that is spoofed. Finally we DROP the packet in the default policy.

PREROUTING chain of the nat table

The PREROUTING chain is pretty much what it says, it does network
address translation on packets before they actually hit the routing
decision that sends them onward to the INPUT or FORWARD chains in
the filter table. The only reason that we talk about this chain in this
script is that we once again feel obliged to point out that you should not
do any filtering in it. The PREROUTING chain is only traversed by the
first packet in a stream, which means that all subsequent packets will
go totally unchecked in this chain. As it is with this script, we do not use
the PREROUTING chain at all, however, this is the place we would be
working in right now if we wanted to do DNAT on any specific packets,
for example if you want to host your web server within your local

289

Chapter 13. rc.firewall file

network. For more information about the PREROUTING chain, read the
Traversing of tables and chains chapter.

fiont

cat

\ 2 The PREROUTING chain should not be used for any filtering since,
among other things, this chain is only traversed by the first packet in a
stream. The PREROUTING chain should be used for network address
translation only, unless you really know what you are doing.

Starting SNAT and the POSTROUTING chain

So, our final mission would be to get the Network Address Translation
up, correct? At least to me. First of all we add a rule to the nat table, in
the POSTROUTING chain that will NAT all packets going out on our
interface connected to the Internet. For me this would be ethO.
However, there are specific variables added to all of the example scripts
that may be used to automatically configure these settings. The -t
option tells iptables which table to insert the rule in, in this case the nat
table. The -A command tells us that we want to Append a new rule to an
existing chain named POSTROUTING and -0 $INET_IFACE tells us to
match all outgoing packets on the INET_IFACE interface (or ethO, per
default settings in this script) and finally we set the target to SNAT the
packets. So all packets that match this rule will be SNAT’ed to look as if
they came from your Internet interface. Do note that you must set which
IP address to give outgoing packets with the --to-source option sent to
the SNAT target.

In this script we have chosen to use the SNAT target instead of
MASQUERADE for a couple of reasons. The first one is that this script
was supposed to run on a firewall that has a static IP address. A follow
up reason to the first one, would hence be that it is faster and more
efficient to use the SNAT target if possible. Of course, it was also used
to show how it would work and how it would be used in a real live
example. If you do not have a static IP address, you should definitely
give thought to use the MASQUERADE target instead which provides a
simple and easy facility that will also do NAT for you, but that will

290

Chapter 13. rc.firewall file

automatically grab the IP address that it should use. This takes a little
bit extra computing power, but it may most definitely be worth it if you
use DHCP for instance. If you would like to have a closer look at how
the MASQUERADE target may look, you should look at the

rc.DHCP firewall.txt script.

What's next?

This chapter has explained some of the layout of the different scripts,
but specifically the rc.firewall.txt script. The layout and inner workings of
scripts described here and those found in other places can differ
tremenduously. Everyone has their own coding style and how we write
rulesets or code or scripts differ from person to person, and the style
you've seen here is my style.

The next chapter will give some brief introductions to the different
scripts available within this document. They will give you some basic
idea what scenarios the scripts where written for, and then you should
hopefully have taught yourself enough to grasp the rest of the scripts on
your own. All of these scripts are also available for download on the
main site of this document.

291

Chapter 14. Example scripts

The objective of this chapter is to give a fairly brief and short
explanation of each script available with this tutorial, and to provide an
overview of the scripts and what services they provide. These scripts
are not in any way perfect, and they may not fit your exact intentions
perfectly. It is, in other words, up to you to make these scripts suitable
for your needs. The rest of this tutorial should most probably be helpful
in making this feat. The first section of this tutorial deals with the actual
structure that | have established in each script so we may find our way
within the script a bit easier.

rc.firewall.txt script structure

All scripts written for this tutorial have been written after a specific
structure. The reason for this is that they should be fairly similar to each
other and to make it easier to find the differences between the scripts.
This structure should be fairly well documented in this brief chapter.
This chapter should hopefully give a short understanding to why all the
scripts have been written as they have, and why | have chosen to
maintain this structure.

o€t
\,N)Even though this is the structure | have chosen, do note that this may not
be the best structure for your scripts. It is only a structure that | have
chosen to use since it fits the need of being easy to read and follow the
best according to my logic.

The structure

This is the structure that all scripts in this tutorial should follow. If they
differ in some way it is probably an error on my part, unless it is
specifically explained why | have broken this structure.

292

Chapter 14. Example scripts

1. Configuration - First of all we have the configuration options which
the rest of the script should use. Configuration options should pretty
much always be the first thing in any shell-script.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

Internet - This is the configuration section which pertains to the
Internet connection. This could be skipped if we do not have
any Internet connection. Note that there may be more
subsections than those listed here, but only such that pertain to
our Internet connection.

1.1.1. DHCP - If there are possibly any special DHCP
requirements with this specific script, we will add the DHCP
specific configuration options here.

1.1.2. PPPoE - If there is a possibility that the user that wants
to use this specific script, and if there are any special
circumstances that raises the chances that he is using a
PPPoE connection, we will add specific options for those
here.

LAN - If there is any LAN available behind the firewall, we will
add options pertaining to that in this section. This is most likely,
hence this section will almost always be available.

DMZ - If there is any reason to it, we will add a DMZ zone
configuration at this point. Most scripts lacks this section,
mainly because any normal home network, or small corporate
network, will not have one.

Localhost - These options pertain to our localhost. These
variables are highly unlikely to change, but we have put most of
it into variables anyway. Hopefully, there should be no reason to
change these variables.

iptables - This section contains iptables specific configuration.
In most scripts and situations this should only require one
variable which tells us where the iptables binary is located.

Other - If there are any other specific options and variables,
they should first of all be fitted into the correct subsection (If it

293

Chapter 14. Example scripts

pertains to the Internet connection, it should be sub-sectioned
there, etc). If it does not fit in anywhere, it should be
sub-sectioned directly to the configuration options somewhere.

2. Module loading - This section of the scripts should maintain a list of
modules. The first part should contain the required modules, while
the second part should contain the non-required modules.

No\e\-

\)Note that some modules that may raise security, or add certain
services or possibilities, may have been added even though they are
not required. This should normally be noted in such cases within the

example scripts.

ot
\,N)As of the later iptables versions, modules are automatically loaded
and most module loading should not be required, but from a control
perspective, it is better to load the modules on your own. For
example, the conntrack helpers are never automatically loaded.

2.1. Required modules - This section should contain the required
modules, and possibly special modules that add to the security
or add special services to the administrator or clients.

2.2. Non-required modules - This section contains modules that are
not required for normal operations. All of these modules should
be commented out per default, and if you want to add the
service it provides, it is up to you.

3. proc configuration - This section should take care of any special
configuration needed in the proc file system. If some of these
options are required, they will be listed as such, if not, they should
be commented out per default, and listed under the non-required

294

Chapter 14. Example scripts

proc configurations. Most of the useful proc configurations will be
listed here, but far from all of them.

3.1. Required proc configuration - This section should contain all of
the required proc configurations for the script in question to
work. It could possibly also contain configurations that raise
security, and possibly which add special services or possibilities
for the administrator or clients.

3.2. Non-required proc configuration - This section should contain
non-required proc configurations that may prove useful. All of
them should be commented out, since they are not actually
necessary to get the script to work. This list will contain far from
all of the proc configurations or nodes.

. Rules set up - By now the scripts should most probably be ready to
insert the rule-set. | have chosen to split all the rules down after
table and then chain names in the rule-sets, to make them easier to
follow and read. All user specified chains are created before we do
anything to the system built in chains. | have also chosen to set the
chains and their rule specifications in the same order as they are
output by the iptables -L. command.

4.1. Filter table - First of all we go through the filter table and its
content. First of all we should set up all the policies in the table.

4.1.1. Set policies - Set up all the default policies for the system
chains. Normally | will set DROP policies on the chainsa in
the filter table, and specifically ACCEPT services and
streams that | want to allow inside. This way we will get rid
of all ports that we do not want to let people use.

4.1.2. Create user specified chains - At this point we create all
the user specified chains that we want to use later on within
this table. We will not be able to use these chains in the
system chains anyway if they are not already created so we
might as well get to it as soon as possible.

4.1.3. Create content in user specified chains - After creating
the user specified chains we may as well enter all the rules

295

Chapter 14. Example scripts

within these chains. The only reason | have to enter this
data at this point already is that you may as well put it close
to the creation of the user specified chains. You may as well
put this later on in your script, it is totally up to you.

4.1.4. INPUT chain - When we have come this far, we do not
have a lot of things left to do within the filter table so we get
onto the INPUT chain. At this point we should add all rules
within the INPUT chain.

No\e\-

\)At this point we start following the output from the iptables
-L command as you may see. There is no reason for you to
stay with this structure, however, do try to avoid mixing up
data from different tables and chains since it will become
much harder to read such rule-sets and to fix possible
problems.

4.1.5. FORWARD chain - At this point we go on to add the rules
within the FORWARD chain. Nothing special about this
decision.

4.1.6. OUTPUT chain - Last of all in the filter table, we add the
rules dealing with the OUTPUT chain. There should,
hopefully, not be too much to do at this point.

4.2. nat table - After the filter table we take care of the nat table.
This is done after the filter table because of a number of
reasons within these scripts. First of all we do not want to turn
the whole forwarding mechanism and NAT function on at too
early a stage, which could possibly lead to packets getting
through the firewall at just the wrong time point (i.e., when the
NAT has been turned on, but none of the filter rules has been
run). Also, | look upon the nat table as a sort of layer that lies
just outside the filter table and kind of surrounds it. The filter
table would hence be the core, while the nat table acts as a
layer lying around the filter table, and finally the mangle table

296

Chapter 14. Example scripts

lies around the nat table as a second layer. This may be wrong
in some perspectives, but not too far from reality.

4.2.1. Set policies - First of all we set up all the default policies
within the nat table. Normally, | will be satisfied with the
default policy set from the beginning, namely the ACCEPT
policy. This table should not be used for filtering anyways,
and we should not let packets be dropped here since there
are some really nasty things that may happen in such
cases due to our own presumptions. | let these chains be
set to ACCEPT since there is no reason not to do so.

4.2.2. Create user specified chains - At this point we create any
user specified chains that we want within the nat table.
Normally | do not have any of these, but | have added this
section anyways, just in case. Note that the user specified
chains must be created before they can actually be used
within the system chains.

4.2.3. Create content in user specified chains - By now it
should be time to add all the rules to the user specified
chains in the nat table. The same thing goes here as for the
user specified chains in the filter table. We add this material
here since | do not see any reason not to.

4.2.4. PREROUTING chain - The PREROUTING chain is used
to do DNAT on packets in case we have a need for it. In
most scripts this feature is not used, or at the very least
commented out. The reason being that we do not want to
open up big holes to our local network without knowing
about it. Within some scripts we have this turned on by
default since the sole purpose of those scripts is to provide
such services.

4.2.5. POSTROUTING chain - The POSTROUTING chain
should be fairly well used by the scripts | have written since
most of them depend upon the fact that you have one or
more local networks that we want to firewall against the
Internet. Mainly we will try to use the SNAT target, but in
certain cases we are forced to use the MASQUERADE

297

4.3.

Chapter 14. Example scripts

target instead.

4.2.6. OUTPUT chain - The OUTPUT chain is barely used at
all in any of the scripts. As it looks now, it is not broken, but
I have been unable to find any good reasons to use this
chain so far. If anyone has a reason to use this chain, send
me a line and | will add it to the tutorial.

mangle table - The last table to do anything about is the
mangle table. Normally | will not use this table at all, since it
should normally not be used for anyone, unless they have
specific needs, such as masking all boxes to use the exact
same TTL or to change TOS fields etc. | have in other words
chosen to leave these parts of the scripts more or less blank,
with a few exceptions where | have added a few examples of
what it may be used for.

4.3.1. Set policies - Set the default policies within the chain.
The same thing goes here as for the nat table, pretty much.
The table was not made for filtering, and hence you should
avoid it alltogether. | have not set any policies in any of the
scripts in the mangle table one way or the other, and you
are encouraged not to do so either.

4.3.2. Create user specified chains - Create all the user
specified chains. Since | have barely used the mangle table
at all in the scripts, | have neither created any chains here
since it is fairly unusable without any data to use within it.
However, this section was added just in case someone, or
I, would have the need for it in the future.

4.3.3. Create content in user specified chains - If you have any
user specified chains within this table, you may at this point
add the rules that you want within them here.

4.3.4. PREROUTING - At this point there is barely any
information in any of the scripts in this tutorial that contains
any rules here. Basically, the PREROUTING chain can be

298

Chapter 14. Example scripts

used to set netfilter, routing and SEC marks, both on a per
packet basis and on a per connection basis.

4.3.5. INPUT chain - The INPUT chain is barely used in the
current scripts of the tutorial, but it could be used for mark
handling for example.

4.3.6. FORWARD chain - The FORWARD chain of the mangle
table can be used for mark handling and for mangling
packet headers of packets that are traveling across the
firewall in question. Changing TTL and TOS for example.

4.3.7. OUTPUT chain - The OUTPUT chain could be used to
mangle the packets leaving the firewall or host itself, for
example setting different marks or setting TTL or TOS
values. This is not done in most of the scripts here, but the
section has been added however.

4.3.8. POSTROUTING chain - This chain is basically not in use
by any of the scripts in the tutorial as of writing this, but it
could be used to setting values for all packets leaving both
the host or firewall itself, and traffic traversing the machine.
For example, it could be used to reset the MTU of packets,
set TTL or TOS et cetera.

Hopefully this should explain more in detail how each script is
structured and why they are structured in such a way.

caviont

\)Do note that these descriptions are extremely brief, and should mainly
just be seen as a brief explanation to what and why the scripts have been
split down as they have. There is nothing that says that this is the only and
best way to go.

299

Chapter 14. Example scripts

rc.firewall.txt

Trusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

IFACE: ethO
IP: 194.236.50.155

Internet

The rc.firewall.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.firewall.txt) script is the
main core on which the rest of the scripts are based upon. The

300

Chapter 14. Example scripts

rc.firewall file chapter should explain every detail in the script most

thoroughly. Mainly it was written for a dual homed network. For example,
where you have one LAN and one Internet Connection. This script also
makes the assumption that you have a static IP to the Internet, and

hence don’'t use DHCP, PPP, SLIP or some other protocol that assigns
you an IP automatically. If you are looking for a script that will work with
those setups, please take a closer look at the rc.DHCP firewall.txt script.

The rc.firewall.txt script requires the following options to be compiled
statically to the kernel, or as modules. Without one or more of these, the
script will become more or less flawed since parts of the script’s
required functionalities will be unusable. As you change the script you
use, you could possibly need more options to be compiled into your
kernel depending on what you want to use.

« CONFIG_NETFILTER

« CONFIG_IP_NF_CONNTRACK
« CONFIG_IP_NF_IPTABLES

« CONFIG_IP_NF_MATCH_LIMIT
« CONFIG_IP_NF_MATCH_STATE
- CONFIG_IP_NF_FILTER

« CONFIG_IP_NF_NAT

« CONFIG_IP_NF_TARGET_LOG

301

Chapter 14. Example scripts

rc.DMZ firewall.txt

DMZ
EI HTTP
—71IP: 192.168.1.2
Trusted Internal Network 5 DNS
IP: 192.168.0.0/24 y "1P: 192.168.1.3

IFACE: eth2
IFACE: ethl IP: 192.168.1.1

IP: 192.168.0:1 (:’il"{ FIREWALL

IFACE: ethO

IP: 194.236.50.152, 194.236.50.153,
194.236.50.154,
194.236.50.155

Internet

The rc.DMZ firewall.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.DMZ .firewall.txt) script
was written for those people out there that have one Trusted Internal
Network, one De-Militarized Zone and one Internet Connection. The
De-Militarized Zone is in this case 1-to-1 NAT ed and requires you to do
some IP aliasing on your firewall, i.e., you must make the box recognize
packets for more than one IP. There are several ways to get this to work,
one is to set 1-to-1 NAT, another one if you have a whole subnet is to
create a subnetwork, giving the firewall one IP both internally and
externally. You could then set the IP’s to the DMZ ed boxes as you wish.
Do note that this will "steal" two IP’s for you, one for the broadcast

302

Chapter 14. Example scripts

address and one for the network address. This is pretty much up to you
to decide and to implement. This tutorial will give you the tools to
actually accomplish the firewalling and NAT ing part, but it will not tell
you exactly what you need to do since it is out of the scope of the
tutorial.

The rc.DMZ firewall.txt script requires these options to be compiled into
your kernel, either statically or as modules. Without these options, at
the very least, available in your kernel, you will not be able to use this
scripts functionality. You may in other words get a lot of errors
complaining about modules and targets/jumps or matches missing. If
you are planning to do traffic control or any other things like that, you
should see to it that you have all the required options compiled into your
kernel there as well.

« CONFIG_NETFILTER

« CONFIG_IP_NF_CONNTRACK
« CONFIG_IP_NF_IPTABLES

« CONFIG_IP_NF_MATCH_LIMIT
« CONFIG_IP_NF_MATCH_STATE
« CONFIG_IP_NF_FILTER

« CONFIG_IP_NF_NAT

« CONFIG_IP_NF_TARGET_LOG

You need to have two internal networks with this script as you can see
from the picture. One uses IP range 192.168.0.0/24 and consists of a
Trusted Internal Network. The other one uses IP range 192.168.1.0/24
and consists of the De-Militarized Zone which we will do 1-to-1 NAT to.
For example, if someone from the Internet sends a packet to our
DNS_IP, then we use DNAT to send the packet on to our DNS on the
DMZ network. When the DNS sees our packet, the packet will be
destined for the actual DNS internal network IP, and not to our external
DNS IP. If the packet would not have been translated, the DNS wouldn'’t
have answered the packet. We will show a short example of how the
DNAT code looks:

303

Chapter 14. Example scripts

$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_ 1P\
--dport 53 -j DNAT --to-destination $DMZ_DNS_IP

First of all, DNAT can only be performed in the PREROUTING chain of
the nat table. Then we look for TCP protocol on our $INET_IFACE with
destination IP that matches our $DNS_IP, and is directed to port 53,
which is the TCP port for zone transfers between name servers. If we
actually get such a packet we give a target of DNAT . After that we
specify where we want the packet to go with the --to-destination option
and give it the value of $DMZ_DNS_IP, in other words the IP of the DNS
on our DMZ network. This is how basic DNAT works. When the reply to
the DNAT ed packet is sent through the firewall, it automatically gets
un-DNATed.

By now you should have enough understanding of how everything
works to be able to understand this script pretty well without any huge
complications. If there is something you don’t understand that hasn’t
been gone through in the rest of the tutorial, mail me since it is probably
a fault on my side.

304

Chapter 14. Example scripts

rc.DHCP.firewall.txt

Trusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

.I.!.I' B

IFACE: ethO
IP: Unknown

Internet

The rc.DHCP firewall.txt

305

Chapter 14. Example scripts

(http://iptables-tutorial.frozentux.net/scripts/rc. DHCP.firewall.txt) script is
pretty much identical to the original rc.firewall.txt. However, this script
no longer uses the STATIC_IP variable, which is the main change to the
original rc.firewall.txt script. The reason is that this won't work together
with a dynamic IP connection. The actual changes needed to be done
to the original script are minimal, however, I've had some people mail
me and ask about the problem so this script will be a good solution for
you. This script will allow people who uses DHCP, PPP and SLIP
connections to connect to the Internet.

The rc.DHCP firewall.txt script requires the following options to be
compiled statically to the kernel, or as modules, as a bare minimum to
run properly.

« CONFIG_NETFILTER
« CONFIG_IP_NF_CONNTRACK

« CONFIG_IP_NF_IPTABLES

« CONFIG_IP_NF_MATCH_LIMIT

« CONFIG_IP_NF_MATCH_STATE

« CONFIG_IP_NF_FILTER

« CONFIG_IP_NF_NAT

« CONFIG_IP_NF_TARGET_MASQUERADE
« CONFIG_IP_NF_TARGET_LOG

The main changes done to the script consist of erasing the STATIC_IP
variable as | already said and deleting all references to this variable.
Instead of using this variable the script now does its main filtering on
the variable INET_IFACE. In other words -d $STATIC_IP has been
changed to -i $INET_IFACE. This is pretty much the only change made
and that’s all that's needed really.

There are some more things to think about though. We can no longer
filter in the INPUT chain depending on, for example, --in-interface
$LAN_IFACE --dst $INET _IP . This in turn forces us to filter only based
on interfaces in such cases where the internal machines must access

306

Chapter 14. Example scripts

the Internet addressable IP. One great example is if we are running an
HTTP on our firewall. If we go to the main page (i.e.,
http://192.168.0.1/), which contains static links back to the same host
(i.e., http://foobar.dyndns.net/fuubar.html), which could be some dyndns
solution, we would get a minor problem. The NAT ed box would ask the
DNS for the IP of the HTTP server, then try to access that IP. In case
we filter based on interface and IP, the NAT ed box would be unable to
get to the HTTP because the INPUT chain would DROP the packets
flat to the ground. This also applies in a sense to the case where we got
a static IP, but in such cases it could be gotten around by adding rules
which check the LAN interface packets for our INET_IP, and if so
ACCEPT them.

As you may read from above, it may be a good idea to get a script, or
write one, that handles dynamic IP in a better sense. We could for
example make a script that grabs the IP from ifconfig and adds it to a
variable, upon boot-up of the Internet connection. A good way to do
this, would be to use, for example, the ip-up scripts provided with pppd
and some other programs. For a good site, check out the linuxguruz.org
iptables site which has a huge collection of scripts available to
download. You will find a link to the linuxguruz.org site from the

Other resources and links appendix.

No\e\-

\)This script might be a bit less secure than the rc.firewall.txt script. | would
definitely advise you to use that script if at all possible since this script is
more open to attacks from the outside.

Also, there is the possibility to add something like this to your scripts:

INET_IP=‘ifconfig $INET_IFACE | grep inet | cut-d : -f 2 |\
cut-d’’-f1'

The above would automatically grab the IP address of the
$INET_IFACE variable, grep the correct line which contains the IP
address and then cuts it down to a manageable IP address. For a more
elaborate way of doing this, you could apply the snippets of code

307

Chapter 14. Example scripts

available within the retreiveip.txt (scripts/retrieveip.txt) script, which will
automatically grab your Internet IP address when you run the script. Do
note that this may in turn lead to a little bit of "weird" behavior, such as
stalling connections to and from the firewall on the internal side. The
most common strange behaviors are described in the following list.

1. If the script is run from within a script which in turn is executed by,
for example, the PPP daemon, it will hang all currently active
connections due to the NEW not SYN rules (see the
State NEW packets but no SYN bit set section). It is possible to get
by, if you get rid of the NEW not SYN rules for example, but it is
guestionable.

2. If you got rules that are static and always want to be around, it is
rather harsh to add and erase rules all the time, without hurting the
already existing ones. For example, if you want to block hosts on
your LAN to connect to the firewall, but at the same time operate a
script from the PPP daemon, how would you do it without erasing
your already active rules blocking the LAN?

3. It may get unnecessarily complicated, as seen above which, in turn,
could lead to security compromises. If the script is kept simple, it is
easier to spot problems, and to keep order in it.

308

Chapter 14. Example scripts

rc.UTIN.firewall.txt

UnTrusted Internal Network
IP: 192.168.0.0/24

IFACE: ethl
IP: 192.168.0.2

IFACE: ethO
IP: 194.236.50.155

Internet

The rc.UTIN.firewall.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.UTIN.firewall.txt) script
will in contrast to the other scripts block the LAN that is sitting behind

309

Chapter 14. Example scripts

us. In other words, we don't trust anyone on any networks we are
connected to. We also disallow people on our LAN to do anything but
specific tasks on the Internet. The only things we actually allow are
POP3, HTTP and FTP access to the Internet. We also don't trust the
internal users to access the firewall more than we trust users on the
Internet.

The rc.UTIN.firewall.txt script requires the following options to be
compiled statically to the kernel, or as modules. Without one or more of
these, the script will become more or less flawed since parts of the
script’s required functionalities will be unusable. As you change the
script you use, you could possibly need more options to be compiled
into your kernel depending on what you want to use.

« CONFIG_NETFILTER
« CONFIG_IP_NF_CONNTRACK
« CONFIG_IP_NF_IPTABLES

« CONFIG_IP_NF_MATCH_LIMIT
« CONFIG_IP_NF_MATCH_STATE
« CONFIG_IP_NF_FILTER

« CONFIG_IP_NF_NAT

« CONFIG_IP_NF_TARGET_LOG

This script follows the golden rule to not trust anyone, not even our own
employees. This is a sad fact, but a large part of the hacks and cracks
that a company gets hit by are a matter of people from their own staff
perpetrating the hit. This script will hopefully give you some clues as to
what you can do with your firewall to strengthen it. It's not very different
from the original rc.firewall.txt script, but it does give a few hints at what
we would normally let through etc.

310

Chapter 14. Example scripts

rc.test-iptables.txt

The rc.test-iptables.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.test-iptables.txt) script
can be used to test all the different chains, but it might need some
tweaking depending on your configuration, such as turning on
ip_forwarding , and setting up masquerading etc. It will work for most
everyone who has all the basic set up and all the basic tables loaded
into kernel. All it really does is set some LOG targets which will log ping
replies and ping requests. This way, you will get information on which
chain was traversed and in which order. For example, run this script and
then do:

ping -¢ 1 host.on.the.internet

And tail -n 0 -f /var/log/messages while doing the first command. This
should show you all the different chains used, and in which order,
unless the log entries are swapped around for some reason.

ot
\,N)This script was written for testing purposes only. In other words, it's not a
good idea to have rules like this that log everything of one sort since your
log partitions might get filled up quickly and it would be an effective Denial
of Service attack against you and might lead to real attacks on you that
would be unlogged after the initial Denial of Service attack.

rc.flush-iptables.txt

The rc.flush-iptables.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.flush-iptables.txt) script
should not really be called a script in itself. The rc.flush-iptables.txt
(http://iptables-tutorial.frozentux.net/scripts/rc.flush-iptables.txt) script
will reset and flush all your tables and chains. The script starts by
setting the default policies to ACCEPT on the INPUT, OUTPUT and

311

Chapter 14. Example scripts

FORWARD chains of the filter table. After this we reset the default
policies of the PREROUTING, POSTROUTING and OUTPUT chains of
the nat table. We do this first so we won’t have to bother about closed
connections and packets not getting through. This script is intended for
actually setting up and troubleshooting your firewall, and hence we only
care about opening the whole thing up and resetting it to default values.

After this we flush all chains first in the filter table and then in the NAT
table. This way we know there are no redundant rules lying around
anywhere. When all of this is done, we jump down to the next section
where we erase all the user specified chains in the NAT and filter
tables. When this step is done, we consider the script done. You may
consider adding rules to flush your mangle table if you use it.

o\e\-

\,N)One final word on this issue. Certain people have mailed me asking me to
put this script into the original rc.firewall script using Red Hat Linux syntax
where you type something like rc.firewall start and the script starts.
However, | will not do that since this is a tutorial and should be used as a
place to fetch ideas mainly and it shouldn’t be filled up with shell scripts
and strange syntax. Adding shell script syntax and other things makes the
script harder to read as far as | am concerned and the tutorial was written
with readability in mind and will continue being so.

Limit-match.txt

The limit-match.txt
(http://iptables-tutorial.frozentux.net/scripts/limit-match.txt) script is a
minor test script which will let you test the limit match and see how it
works. Load the script up, and then send ping packets at different
intervals to see which gets through, and how often they get through. All
echo replies will be blocked until the threshold for the burst limit has
again been reached.

312

Chapter 14. Example scripts

Pid-owner.txt

The pid-owner.txt
(http://iptables-tutorial.frozentux.net/scripts/pid-owner.txt) is a small
example script that shows how we could use the PID owner match. It
does nothing real, but you should be able to run the script, and then
from the output of iptables -L -v be able to tell that the rule actually
matches.

Recent-match.txt

The recent-match.txt
(http://iptables-tutorial.frozentux.net/scripts/recent-match.txt) script is a
small example of how the recent match can be used. For a complete
explanation of this script take a look at the Recent match section in the
Iptables matches chapter.

Sid-owner.txt

The sid-owner.txt
(http://iptables-tutorial.frozentux.net/scripts/sid-owner.txt) is a small
example script that shows how we could use the SID owner match. It
does nothing real, but you should be able to run the script, and then
from the output of iptables -L -v be able to tell that the rule actually
matches.

Ttl-inc.txt

A small example ttl-inc.txt
(http://iptables-tutorial.frozentux.net/scripts/ttl-inc.txt) script. This script
shows how we could make the firewall/router invisible to traceroutes,
which would otherwise reveal much information to possible attackers.

313

Chapter 14. Example scripts

Iptables-save ruleset

A small example script
(http://iptables-tutorial.frozentux.net/scripts/iptsave-ruleset.txt) used in
the Saving and restoring large rule-sets chapter to illustrate how
iptables-save may be used. This script is non-working, and should
hence not be used for anything else than a reference.

What's next?

The chapter you have just read basically gave you a brief overlook of all
the different scripts that are available with this tutorial and the basic
idea that they are trying to bring across to you. Hopefully it has been
able to explain something at the very least.

The next chapter will discuss some different graphical user interfaces
that are available for iptables and netfilter. This is far from a complete
listing of all the different interfaces available, but as you can see, there
are quite a lot of othem. These interfaces mostly tries to simplify
creating iptables scripts for you, and for simple setups they are more
than enough most of the time. At other times, you may have higher and
more complex needs and you must have to write your own script none
the less.

314

Chapter 15. Graphical User
Interfaces for Iptables/netfilter

One side of iptables and netfilter that we haven'’t looked at very much
yet, is the graphical user interfaces that are available for iptables and
netfilter. One of the biggest problems with this is that netfilter is a very
complex and flexible setup, that can perform the strangest of tasks. For
this reason, it can become a very daunting task to create a GUI for
netfilter.

Several persons and organisations have tried to create GUI’s for
netfilter and iptables, and some have succeeded better than others,
while others have given up after some time. All have different reasoning
behind their tries as well, so it isn’t an easy task to show them all.
However, this chapter is a small compilation of some of the GUI’s for
iptables and netfilter that may be worth looking at. Suggestions on
others to add are always welcome.

fwbuilder

Firewall Builder, or simply fwbuilder, is an extremely versatile and
powerful tool that can be used to build your own firewalls, or to maintain
several firewalls for that matter. It can be used to create policies for
several different types of firewalls, including iptables (Linux 2.4 and 2.6),
ipfilter (freebsd, netbsd, etc), openbsd pf, and, a module that must be
bought, Cisco PIX.

Fwbuilder has, as you can see, a very big audience and is well taken
care of and continues to be developed. It is run on a separate host
system, where you create the policy files, and then copy them over and
run them on the target system. It is able to handle everything from very
simple rulesets to large and rather complicated ones. It has extensive
abilities to handle different versions and installations of iptables, by
configuration of which targets/matches are available on each host

315

Chapter 15. Graphical User Interfaces for Iptables/netfilter

system, etcetera. The end result may be saved in an xml file, or a
system parsable configuration file (e.g., the real firewall scripts).

= fwbuilder ‘@

File Edit View Inset Rules Tools Help

User|Standard|

General | sysinfo | Compile / Install. Firewll | Network |

Version: = l Options marked (*) require patch-o-matic

~Global Lagging P ~Options
~use LOG _{log TCP seq. numbers I~ Load modules
_llog TCP options I™ Verify interfaces before loading firewall policy
_llog IP options I~ Assume firewall object is part of ‘Any*

_I Use numeric syslog log levels I Clamp MSS o MTU ()

Log Level: 6 info = |
[~ Accept TCP sessions opened prior to
+ use ULOG cprange: [0 -\ firewall restart
queue threshold: [1 4 | | - Accept ESTABLISHED and RELATED
Netlink Group: [1 A packets before first rule

- || _|Bridging firewall
Log Prefix IRULE %N - %A

_{Log all dropped packets (%)

I~ Detect rule shadowing in policy

_llgnore empty groups in rules
Logging Limit: [0 = = | 9 pty group:

_1 Enable support for NAT of locally originated connections
Turn logging ON on all rules (overrides

rule options, use for debugging) Script Options:
_ITurn on debug output in iptables script

rDefault Action on 'Reject’ I~ Configure Interfaces

ICMP admin prohibited =il

I~ Add virtual addresses for NAT

7 o 2pply] % Undo
e |

CHIEN

You can see the configuration of the "firewall" in the above example,
and the main menus of the whole fwbuilder system. fwbuilder can be
found at http://www.fwbuilder.org.

Turtle Firewall Project

Turtle Firewall is an excellent, yet simpler kind of user interface to
iptables. It is integrated in something called webmin (a web

316

Chapter 15. Graphical User Interfaces for Iptables/netfilter

administration interface). It is fairly basic, and neither as complex nor
able to handle as complex changes as the fwbuilder package, but it is
more than able to handle most simpler firewalls, as well as some more
advanced ones as well.

One big advantage with Turtle Firewall is the fact that it is web-based,
and hence can be remotely controlled in a totally different manner than
with fwbuilder and most other tools. Of course, it also adds more of a
security risk since webmin is a separate extra service running on the
firewall itself.

317

Chapter 15. Graphical User Interfaces for Iptables/netfilter

..... * Firewall ltems - wox]

“ Eile Edit View Go Bookmarks Tools Window Help

il % https:/localhost:10000/turtlefirews ».
. 4 Home E Red Hat, Inc. % spport F3Shop E3Products »
Webmin Index

et i F|rewaII Items

kmo y Ethernet interface.

Im_ngm Ippp0 My Modem.

create new zone

create new net

create new host

s is a personal firewall, I'm
odem onnected to Internet via lan or modem.

create new group

« Return to turtle firewall index

| [(B ©F D) | root logged into Webmin 1.130 on work3frozentux.net (Debian GNU/Linu... | =m=al A

The above screenshot shows the items page of the Turtle Firewall,
where you can configure network interfaces and networks, and other

items.

318

Chapter 15. Graphical User Interfaces for Iptables/netfilter

. Eile Edit View Go Bookmarks Tools Window Help

|\ A (= — ‘ # -
J (3 > “ﬁ Q % https://localhost:10000/turtlefirew:s : J A (fl’ﬁ.‘ :
.,\ — o - | - — - - v'

T

ome E3Bookmarks . Red Hat, Inc. . Red Hat Network (3Support E3Shop (JProducts »

Webmin
Index

v TUrtle Firewall

Module
Config

ol I e N R

Items NAT, Masquerading Rules Services
and Redirection

IRy

LLSF
Options Log Configuration Backup
Apply changes | Stop | Show iptables chains |

Turtle Firewall 1.27 www. turtlefirewall.com

Chain PREROUTING (policy ACCEPT 139 pack=ts, 7888 byte=s)
pkts byt=s targ=t prot opt in out sourcs d=stination

Chain POSTROUTING (policy ACCEPT 67 pack=ts, 4020 byt=s)

pkts byt=s targ=t prot opt in out sourcs destination
o 0 MASQUERADE all -- * eepl 0.0.0.0/0 0.0.0.0/0

221 15879 MASQUKRADE all -- * =tho 0.0.0.0/0 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 288 pack=ts, 19899 byt=x)
pkts byt=s targ=t prot opt in out sourcs d=stination

Chain IHPUT (policy DROP 0 pack=ts, 0 byt=s)

pkts byt=s targ=t prot opt in out nourcs d=stination
7142 1276K ACCKPT all -- 1lo * 0.0.0.0/0 0.0.0.0/0 f
] (2 ©4 [| root bgged into Webmin 1.130 on work3 frozentux.net (Debian GNU/Linu... | =)

This final screenshot shows the turtlefirewalls main screen, and with the
whole ruleset expanded at the bottom. The whole ruleset isn’t showing,
as you can see, but you get a good general idea of what it looks like in
Turtle Firewall.

319

Chapter 15. Graphical User Interfaces for Iptables/netfilter

You can find the Turtle Firewall Project and more information over at
http://www.turtlefirewall.com/.

Integrated Secure Communications
System

The Integrated Secure Communications System, or shortly ISCS, is still
undergoing development, and no public version has been released.
However, this looks like it will become an extremely helpful tool once it
is finished. The developer has very high standards, and this is the main
reason that it has not been released yet. ISCS integrates several
functionalities into a single suite of administration and management
user interface. Basically this means that once this project is released,
you will be able to fully configure all your firewalls from a centralized
point using a single GUI, including VPN's, VLAN’s, Tunnels, sysctl’s,
etcetera.

The main attack angle that the developer(s) of ISCS has, is to simplify
management and administration and to remove tedious work for the
administrators, so to save as much work hours as possible for the
administrators. This is done by putting together policies, and then the
programs creates the rulesets and "pushes"” them out to the
"enforcements points" (e.g., firewalls, proxies, etcetera). The
administrator doesn’t actually "write" or "click" together the rulesets, just
simply put together policies that are then enforced by ISCS.

This tool isn’t finished yet, as of writing this. However, | have been in
touch with the main developer of this project before, and this is indeed a
very large project. When it is finished, | believe this will be one of the
best tools on the market. Of course, time can only tell, but it is well
worth mentioning here. You can find the ISCS project over at
http://iscs.sourceforge.net/.

No\e\-
\)The main developer, John Sullivan, of ISCS has specifically asked me to

320

Chapter 15. Graphical User Interfaces for Iptables/netfilter

ask people to join his development efforts. The project is very big, and he
would definitely like as much help with the project as possible. If you are
able to help, you are, in other words, more than welcome.

IPMenu

IPMenu is a very able program, yet simple to operate and not too
demanding on resources nor bandwidth. It is a console based program,
so it works perfect over an SSH connection for example. It works
perfectly on machines running over a simple and old modem as well.

As you can see from the screenshot, it is able to handle all iptables
functionality, including filtering, mangling and nating. It is also able to
handle routing tables and bandwidth shaping and to save and restore
rulesets. You can add new rules directly into the currently running
iptables script easily, and handle all of the different tables. Including
adding and removing custom chains.

321

Chapter 15. Graphical User Interfaces for Iptables/netfilter

* xterm <2>

1, Input
Forward

M 70 00 1 & O I

Hoe o+

Let packets through

HELP N N ENTER PREY-FRMINEXT-FRMIM CANCEL BCHMD-MENUN |

As you can see from the screenshot above, the program is rather basic,
but still able to handle most situations rather well. And first of all, it is
very simple, and can be used for remote administration simply enough,
and since it runs on top of ssh via a standard console, it should also be
fairly secure. You can find the homepage of IPMenu at
http://users.pandora.be/stes/ipmenu.html.

Easy Firewall Generator

Easy Firewall Generator is another interesting development when it
comes to iptables and netffilter. Basically, Easy Firewall Generator is a
PHP webpage where you specify options and specifics of your firewall,
and once all of the configurations are done, you click a button, and the
webpage spits out an iptables ruleset that you can utilize.

322

Chapter 15. Graphical User Interfaces for Iptables/netfilter

The script contains all the basic rules, and more specific ones to
contain strange patterns in packets. It also contains specific IP sysctl
changes that may be needed, loads necessary modules, et cetera. The
whole ruleset is also written in a redhat init.d format.

323

Chapter 15. Graphical User Interfaces for Iptables/netfilter

. Eile Edit View Go Bookmarks Tools Window Help

Q Q @ @ il% hnp://eésyfwgen.mﬂl Q, Search | ‘ @0

Ik

. 45 Home [3Bookmarks % Red Hat, Inc. < Red Hat Network E3Support E3Shop »

ulnl,'lny\,u. AARIAI RN L \Jl_"lullﬂ Jarerrr ‘-Ullll_'l\rl\'\.l STHICTIC TITUwWaIm Wi oo retuarmey as o
text document. Save the result as iptables for redhat systems or rc.firewall for many
others.

Internet Interface: Ftho Help

Select Type of Internet Address Help

& Static Internet IP Addressl Help

¢ Dynamic Internet IP Address

Single System or Private Network Gateway? Help
¢ Single System
& Gateway/Firewall

Internal Network Interface: jeth1 |

Internal Network [P Address: |1 92.168.1.1 Help

c. Internal Network:|192.168.1‘0/24 Help
d. Internal Network Broadcast: |192.168. 1.255 Help

[~ Advanced Network Options Help

(]

g
E
o

[Allow Inbound Services Help

m [SSH =
[~ DNS Server Help

[~ Web Server |~ with SSL

[~ FTP Server [~ Allow Passive FTP Connections? Help
[~ Email Server |~ with SSL

[~ Time Server (NTP)

[~ DHCP Server (on the Internet interface)

[T ICQ & AIM File Transfers Help

[~ MSN Messenger File Transfers Help

[~ NFS Server Help

[~ Specify a custom port range Help

|~ Log entries in a Fireparse format? Help

=il S=E

324

Chapter 15. Graphical User Interfaces for Iptables/netfilter

This screenshot shows one of the final stages of configuring the firewall
script that is about to be created by the script. You can find more
information, and a working version of the Easy Firewall Generator at
http://easyfwgen.morizot.net/.

What's next?

In this chapter we have looked closer at what can be done with some
different graphical user interfaces, and other user interfaces as well.
Note that there are several more user interfaces around on the market.
This chapter has mainly given you an idea of the different types of
firewall administration interfaces around on the market. Most of them
are open source and free to use, while some will cost a bit of money to
get full support or functionality from.

325

Chapter 16. Commercial
products based on Linux,
Iptables and netfilter

This section was added so that corporations may have their products
tested and added to this tutorial. If you are a company and would like to
have your products tested and reviewed in this section, you are more
than welcome to contact the author through usual channels (see the top
of this tutorial). Mind you that this section is not the definite place to
look for product testing. It is rather a try to offer something to all of the
corporate producers of Linux based products, and who contribute to the
development of GNU/Linux software.

If someone feels that their product has been badly reviewed here, they
are more than welcome to contact the author for a more complete
description of the problem, or to have their revised product possibly
re-reviewed with newer firmwares etc. This might change, since the
author doesn’t know how popular this review section will be.

Ingate Firewall 1200

In short, the InGate Firewall 1200 is a commercial firewall product. To
be fairly honest, they are definitely in the pricey range and not for
most/any home-users. However, you get what you pay for, and this is an
excellent product in other words. Before we go any further, it should be
noted that the InGate firewalls are hardware and software solutions.
Basically it is a very small computer running a modified Linux kernel. Of
course, you will pretty much never see that it is actually running Linux
(except for naming conventions in the interface, and so forth).

A lot of effort has been put into creating a nicely advanced webinterface
to configure and administrate the firewall from. The InGate 1200 firewall
has 2 10/100 Mbps Ethernet connectors and the larger versions has

326

Chapter 16. Commercial products based on Linux, iptables and netfilter

more (up to 6 10/100/1000 Mbps Ethernet connectors and 2 mini Gbic
ports).

They also have SIP traversal support and SIP support for Internet
telephony, and built in support for TLS. The 1200 came with 2 SIP user
licenses, and the number differs depending on which firewall/SIParator
you buy. The user interface for handling SIP is excellent and very
intuitive, though it does use quite a lot of tech heavy jargon. It might be
a good idea to keep the manual around in other words, which might
actually be true whatever you are doing on this machine, for multiple
reasons really. The manual is excellently written, and it might also be
very hard to understand the interface before you get used to the highly
technical language they have chosen to use. The manual is 250+ pages
and available both in English and Swedish as of this writing, and as I've
already said, very well written.

On top of this, the InGate firewalls has ipsec based VPN and QoS
support. The ipsec based VPN should be interoperable with all other
ipsec implementations, including "Road Warrior" roaming.

The device also has a very simple to setup logging facility. The machine
can either log locally, or via syslog and/or mail. The local logging facility
has exceptionally good and finegrained search capabilities through the
logs. My only problem with the local logging facility is that the search
engine might be a little bit too slow. This is actually my main and only
concern with the whole firewall, the whole user interface is a bit slow,
and sometimes it jumps to the main page after editing. This might have
been fixed in newer versions however. All things considered, this isn't a
bad fault at all, and it could have been much worse than a slow user
interface/weird linking.

The first time | tried the test machine that | got, | borked the
configuration pretty badly (l.e., | inverted the interfaces among other
things). Because of this, my original setup time was around 4-5 hours
before I could reach the Internet. If | hadn’t done these initial errors, the
original configuration time would probably have been around 1 hour or
so. Of course, this can only be expected when using a new and
unknown (to you) interface.

The default values are very good. In other words, they are non-existant

327

Chapter 16. Commercial products based on Linux, iptables and netfilter

except for the most basic options. The first thing you do, is to set the IP
address of the device via a "magic ping" (set the device mac address to
an IP address and then ping the IP address - this must be done locally).
The opposite ethernet port is per default turned off, until you turn it on,
and no configuration except the most basic is done by the InGate
developers (log groups and so on).

In conclusion, this is one of the best commercial firewalls | have seen
on the market. The only real flaw is that the user interface is a tad slow
and that the device is rather high priced. The pros of the device far far
outweighs most cost issues that any company would have, and the
simplicity of not having to scratch install a system of your own could
actually make this a simpler and cheaper device to set up than a scratch
installed system for most companies - especially if the process consists
of a large quantity of firewalls and the administrators are experienced in
other InGate products. Of course, this is always the case | assume!

What's next?

This chapter has discussed some different commercial firewalling
products based on iptables, netfilter and linux. This list is much, much
longer than what you have seen in this chapter. However, for me to try
them out, | must have something to test to begin with. If you know of a
product that you think | should have in this section, why not either give
me access to it for a couple of days, or call the producer and see if they
wouldn’t like to send me a sample/demo copy?

Well, this was the last chapter. What's left is just the different
appendices. Some of them contains some rather interesting information
that didn’t quite fit into any specific chapter, and others are just generic
tables, and so forth. If you have any further interest in the area, there is
tons and tons of material to read, and why not join the mailinglists
available at the netfilter website? Or why not start developing for
iptables and netfilter? | hope you have enjoyed reading this document
and that you have been able to set some of it to the real world test.

328

Appendix A. Detalled
explanations of special
commands

Listing your active rule-set

To list your currently active rule-set you run a special option to the
iptables command, which we have discussed briefly previously in the
How a rule is built chapter. This would look like the following:

iptables -L

This command should list your currently active rule-set, and translate
everything possible to a more readable form. For example, it will
translate all the different ports according to the /etc/services file as well
as DNS all the IP addresses to get DNS records instead. The latter can
be a bit of a problem though. For example, it will try to resolve LAN IP
addresses, i.e. 192.168.1.1, to something useful. 192.168.0.0/16 is a
private range though and should not resolve to anything and the
command will seem to hang while resolving the IP. To get around this
problem we would do something like the following:

iptables -L -n

Another thing that might be interesting is to see a few statistics about
each policy, rule and chain. We could get this by adding the verbose
flag. It would then look something like this:

iptables -L -n -v

Don't forget that it is also possible to list the nat and mangle tables. This
is done with the -t switch, like this:

iptables -L -t nat

There are also a few files that might be interesting to look at in the /proc
file system. For example, it might be interesting to know what

329

Appendix A. Detailed explanations of special commands

connections are currently in the conntrack table. This table contains all
the different connections currently tracked and serves as a basic table
so we always know what state a connection currently is in. This table
can't be edited and even if it was possible, it would be a bad idea. To
see the table you can run the following command:

cat /proc/net/ip_conntrack | less

The above command will show all currently tracked connections even
though it might be a bit hard to understand everything.

Updating and flushing your tables

If at some point you screw up your iptables , there are actually
commands to flush them, so you don’t have to reboot. I've actually
gotten this question a couple times by now so | thought I'd answer it
right here. If you added a rule in error, you might just change the -A
parameter to -D in the line you added in error. iptables will find the
erroneous line and erase it for you, in case you've got multiple lines
looking exactly the same in the chain, it erases the first instance it finds
matching your rule. If this is not the wanted behavior you might try to
use the -D option as iptables -D INPUT 10 which will erase the 10th
rule in the INPUT chain.

There are also instances where you want to flush a whole chain, in this
case you might want to run the -F option. For example, iptables -F
INPUT will erase the whole INPUT chain, though, this will not change
the default policy, so if this is set to DROP you'll block the whole INPUT
chain if used as above. To reset the chain policy, do as you did to set it
to DROP, for example iptables -P INPUT ACCEPT .

I have made a rc.flush-iptables.txt (available as an appendix as well)
that will flush and reset your iptables that you might consider using
while setting up your rc.firewall.txt file properly. One thing though; if you
start mucking around in the mangle table, this script will not erase
those, it is rather simple to add the few lines needed to erase those but |
have not added those here since the mangle table is not used in my
rc.firewall.txt script so far.

330

Appendix B. Common problems
and questions

Problems loading modules

You may run into a few problems with loading modules. For example,
you could get errors claiming that there is no module by such a name
and so on. This may, for example look like the following.

insmod: iptable_filter: no module by that name found

This is no reason for concern yet. This or these modules may possibly
have been statically compiled into your kernel. This is the first thing you
should look at when trying to solve this problem. The simplest way to
see if these modules have been loaded already or if they are statically
compiled into the kernel, is to simply try and run a command that uses
the specific functionality. In the above case, we could not load the filter
table. If this functionality is not there, we should be unable to use the
filter table at all. To check if the filter table is there, we do the following.

iptables -t filter -L

This should either output all of the chains in the filter table properly, or it
should fail. If everything is 0.k., then it should look something like this
depending on if you have rules inserted or not.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

331

Appendix B. Common problems and questions

If you do not have the filter table loaded, you would get an error that
looks something like this instead.

iptables v1.2.5: can't initialize iptables table ‘filter’: Table \
does not exist (do you need to insmod?)
Perhaps iptables or your kernel needs to be upgraded.

This is a bit more serious since it points out that we, first of all, do not
have the functionality compiled into the kernel, and second, that the
module is not possible to find in our normal module paths. This may
either mean that you have forgotten to install your modules, you have
forgotten to run depmod -a to update your module databases, or you
have not compiled the functionality as either module or statically into the
kernel. There may of course be other reasons for the module not to be
loaded, but these are the main reasons. Most of these problems are
easily solved. The first problem would simply be solved by running
make modules_install in the kernel source directory (if the source has
already been compiled and the modules have already been built). The
second problem is solved by simply running depmod -a once and see if
it works afterward. The third problem is a bit out of the league for this
explanation, and you are more or less left to your own wits here. You will
most probably find more information about this on the

Linux Documentation Project homepage.

Another error that you may get when running iptables is the following
error.

iptables: No chain/target/match by that name

This error tells us that there is no such chain, target or match. This
could depend upon a huge set of factors, the most common being that
you have misspelled the chain, target or match in question. Also, this
could be generated in case you are trying to use a match that is not
available, either because you did not load the proper module, it was not
compiled into the kernel, or iptables failed to automatically load the
module. In general, you should look for all of the above solutions but
also look for misspelled targets of some sort or another in your rule.

332

Appendix B. Common problems and questions

State NEW packets but no SYN bit set

There is a certain feature in iptables that is not so well documented
and may therefore be overlooked by a lot of people (yes, including me).
If you use state NEW, packets with the SYN bit unset will get through
your firewall. This feature is there because in certain cases we want to
consider that a packet may be part of an already ESTABLISHED
connection on, for instance, another firewall. This feature makes it
possible to have two or more firewalls, and for one of the firewalls to go
down without any loss of data. The firewalling of the subnet could then
be taken over by our secondary firewall. This does however lead to the
fact that state NEW will allow pretty much any kind of TCP connection,
regardless if this is the initial 3-way handshake or not. To take care of
this problem we add the following rules to our firewalls INPUT,
OUTPUT and FORWARD chain:

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"
$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

fiont

cat

\ 2 The above rules will take care of this problem. This is a badly
documented behavior of the Netfilter /iptables project and should
definitely be more highlighted. In other words, a huge warning is in its
place for this kind of behavior on your firewall.

Note that there are some troubles with the above rules and bad
Microsoft TCP/IP implementations. The above rules will lead to certain
conditions where packets generated by Microsoft product gets labeled
as state NEW and hence get logged and dropped. It will however not
lead to broken connections to my knowledge. The problem occurs when
a connection gets closed, the final FIN/ACK is sent, the state machine
of Netfilter closes the connection and it is no longer in the conntrack
table. At this point the faulty Microsoft implementation sends another
packet which is considered as state NEW but lacks the SYN bit and
hence gets matched by the above rules. In other words, don’t worry to

333

Appendix B. Common problems and questions

much about this rule, or if you are worried anyways, set the
--log-headers option to the rule and log the headers too and you'll get
a better look at what the packet looks like.

There is one more known problem with these rules. If someone is
currently connected to the firewall, let's say from the LAN, and you have
the script set to be activated when running a PPP connection. In this
case, when you start the PPP connection, the person previously
connected through the LAN will be more or less killed. This only applies
when you are running with the conntrack and nat code bases as
modules, and the modules are loaded and unloaded each time you run
the script. Another way to get this problem is to run the rc.firewall.txt
script from a telnet connection from a host not on the actual firewall. To
put it simply, you connect with telnet or some other stream connection.
Start the connection tracking modules, then load the NEW not SYN
packet rules. Finally, the telnet client or daemon tries to send
something. the connection tracking code will not recognize this
connection as a legal connection since it has not seen packets in any
direction on this connection before, also there will be no SYN bits set
since it is not actually the first packet in the connection. Hence, the
packet will match to the rules and be logged and after-wards dropped to
the ground.

SYN/ACK and NEW packets

Certain TCP spoofing attacks uses a technique called Sequence
Number Prediction. In this type of attack, the attacker spoofs some
other hosts IP address, while attacking someone, and tries to predict
the Sequence number used by that host.

Let’s look on typical TCP spoofing by sequence number prediction.
Players: "attacker” [A], trying to send packets to a "victim" [V],
pretending to be some "other host" [O].

1. [A] sends SYN to [V] with source IP of [O].
2. [V] replies to [O] by SYN/ACK.

334

Appendix B. Common problems and questions

3. now [O] should reply to an unknown SYN/ACK by RST and the
attack is unsuccesful, but let's assume [O] is down (flooded, turned
off or behind firewall that has dropped the packets).

4. if [O] didn’t mess it up, [A] now can talk to [V] pretending to be [O]
as long as it predicts correct sequence numbers.

As long as we do not send the RST packet to the unknown SYN/ACK
in step 3, we will allow [V] to be attacked, and ourselves to be
incriminated. Common courtesy, would hence be to send the RST to
[V]in a proper way. If we use the NEW not SYN rules specified in the
ruleset, SYN/ACK packets will be dropped. Hence, we have the
following rules in the bad_tcp_packets chain, just above the NEW not
SYN rules:

iptables -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN, ACK\
-m state --state NEW -j REJECT --reject-with tcp-reset

The chance of being [O] in this scenario should be relatively small, but
these rules should be safe in almost all cases. Except when you run
several redundant firewalls which will often take over packets or
streams from each other. In such case, some connections may be
blocked, even though they are legit. This rule may actually also allow a
few portscans to see our firewall as well, but they should not be able to
tell much more than that.

Internet Service Providers who use
assigned IP addresses

| have added this since a friend of mine told me something | have totally
forgotten. Certain stupid Internet Service Providers use IP addresses
assigned by IANA for their local networks on which you connect to. For
example, the Swedish Internet Service Provider and phone monopoly
Telia uses this approach for example on their DNS servers, which uses
the 10.x.x.x IP address range. A common problem that you may run into

335

Appendix B. Common problems and questions

when writing your scripts, is that you do not allow connections from any
IP addresses in the 10.x.x.x range to yourself, because of spoofing
possibilities. Well, here is unfortunately an example where you actually
might have to lift a bit on those rules. You might just insert an ACCEPT
rule above the spoof section to allow traffic from those DNS servers, or
you could just comment out that part of the script. This is how it might
look:

/usr/local/sbin/iptables -t nat -| PREROUTING -i ethl -s \
10.0.0.1/32 -j ACCEPT

I would like to take my moment to bitch at these Internet Service
Providers. These IP address ranges are not assigned for you to use for
dumb stuff like this, at least not to my knowledge. For large corporate
sites it is more than o.k., or your own home network, but you are not
supposed to force us to open up ourselves just because of some whim
of yours. You are large Internet providers, and if you can’t afford buying
some 3-4 IP addresses for your DNS servers, | have a very hard time
trusting you.

Letting DHCP requests through
iptables

This is a fairly simple task really, once you get to know how DHCP
works, however, you must be a little bit cautious with what you do let in
and what you do not let in. First of all, we should know that DHCP
works over the UDP protocol. Hence, this is the first thing to look for.
Second, we should check which interface we get and send the request
from. For example, if our ethO interface is set up with DHCP, we should
not allow DHCP requests on ethl. To make the rule a bit more specific,
we only allow the actual UDP ports used by DHCP, which should be
ports 67 and 68. These are the criteria that we choose to match packets
on, and that we allow. The rule would now look like this:

336

Appendix B. Common problems and questions

$IPTABLES -1 INPUT -i $LAN_IFACE -p udp --dport 67:68 --spor t\
67:68 - ACCEPT

Do note that we allow all traffic to and from UDP port 67 and 68 now,
however, this should not be such a huge problem since it only allows
requests from hosts doing the connection from port 67 or 68 as well.
This rule could, of course, be even more restrictive, but it should be
enough to actually accept all DHCP requests and updates without
opening up too large of holes. If you are concerned, this rule could of
course be made even more restrictive.

mIRC DCC problems

mIRC uses a special setting which allows it to connect through a firewall
and to make DCC connections work properly without the firewall
knowing about it. If this option is used together with iptables and
specifically the ip_conntrack_irc and ip_nat_irc modules, it will simply
not work. The problem is that mIRC will automatically NAT the inside of
the packets for you, and when the packet reaches the firewall, the
firewall will simply not know how and what to do with it. mIRC does not
expect the firewall to be smart enough to take care of this by itself by
simply querying the IRC server for its IP address and sending DCC
requests with that address instead.

Turning on the "l am behind a firewall" configuration option and using
the ip_conntrack_irc and ip_nat_irc modules will result in Netfilter
creating log entries with the following content "Forged DCC send
packet".

The simplest possible solution is to just uncheck that configuration
option in mIRC and let iptables do the work. This means, that you
should tell mIRC specifically that it is not behind a firewall.

337

Appendix C. ICMP types

This is a complete listing of all ICMP types. Note the reference pointing
to the RFC or person who introduced the type and code. For a complete
and absolute up to date listing of all ICMP types and codes, look at the
icmp-parameters (http://www.iana.org/assignments/icmp-parameters)
document at Internet Assigned Numbers Authority .

Ny

\ Iptables and netfilter uses ICMP type 255 internally since it is not
reserved for any real usage, and most likely will never have any real
usage. If you set a rule to match iptables -A INPUT -p icmp --icmp-type
255 -j DROP, this will DROP all ICMP packets. It is in other words used to
match all ICMP types.

Table C-1. ICMP types

TYPE |CODEDescription Query |[Error [Reference
0 0 |Echo Reply X RFC792
3 0 |Network Unreachable X |RFC792
3 1 |Host Unreachable X |RFC792
3 2 |Protocol Unreachable X [RFC792
3 3 |Port Unreachable X [RFC792
3 4 [Fragmentation needed but no X |RFC792

frag. bit set
3 5 [Source routing failed X [RFC792
3 6 |Destination network unknown X [RFC792
3 7 |Destination host unknown X |RFC792
3 8 [Source host isolated (obsolete) X |RFC792
3 9 |Destination network X [RFC792
administratively prohibited

338

Appendix C. ICMP types

TYPE |CODEDescription Query |[Error [Reference
3 10 |Destination host administratively X [RFC792
prohibited
11 |Network unreachable for TOS X |RFC792
12 |Host unreachable for TOS X |RFC792
13 |Communication administratively x |RFC1812
prohibited by filtering
3 14 |Host precedence violation X |RFC1812
3 15 |Precedence cutoff in effect X |RFC1812
4 0 [Source quench RFC792
5 0 |Redirect for network RFC792
5 1 |Redirect for host
5 2 |Redirect for TOS and network RFC792
5 3 |Redirect for TOS and host RFC792
8 0 |Echo request X RFC792
9 0 |Router advertisement - Normal RFC1256
router advertisement
9 16 |Router advertisement - Does not RFC2002
route common traffic
10 0 |Route selection RFC1256
11 0 |[TTL equals O during transit X [RFC792
11 1 |TTL equals O during reassembly X |RFC792
12 0 |IP header bad (catchall error) X |RFC792
12 1 |Required options missing x |RFC1108
12 2 |IP Header bad length X [RFC792
13 0 ([Timestamp request (obsolete) X RFC792
14 Timestamp reply (obsolete) X RFC792
15 0 |Information request (obsolete) X RFC792

339

Appendix C. ICMP types

TYPE |CODEDescription Query |[Error [Reference
16 0 |Information reply (obsolete) X RFC792
17 /Address mask request X RFC950
18 Address mask reply X RFC950

20-29 Reserved for robustness Zaw-Sing

experiment Su
30 Traceroute X RFC1393
31 Datagram Conversion Error X [RFC1475
32 Mobile Host Redirect David
Johnson
33 0 [IPv6 Where-Are-You X Bill
Simpson
34 0 |[IPv6 I-Am-Here X Bill
Simpson
35 0 |Mobile Registration Request X Bill
Simpson
36 0 |Mobile Registration Reply X Bill
Simpson
39 0 [SKIP Tom
Markson
40 0 |Photuris RFC2521

340

Appendix D. TCP options

This appendix is a simple and brief list of all the TCP options that are
officially recognized. These references and numbers were all retreived
from the Internet Assigned Numbers Authority website. The master file
can be found at this location
(http://lwww.iana.org/assignments/tcp-parameters). The full contact
details of the people referenced in this document has been removed, so
to create less workload for them hopefully.

Table D-1. TCP Options

Copy [Class [Number [Value Name Reference
0 0 0 0 |[EOOL - End of Options [RFC791, JBP]
List
0 0 1 1 |NOP - No Operation [RFC791, JBP]
130 |SEC - Security [RFC1108]
1 0 3 131 |LSR - Loose Source [RFC791, JBP]
Route
0 2 4 68 [TS - Time Stamp [RFC791, JBP]
133 [E-SEC - Extended [RFC1108]
Security
1 0 6 134 |CIPSO - Commercial [??7]
Security
0 0 7 7 |RR - Record Route [RFC791, JBP]
136 |SID - Stream ID [RFC791, JBP]
1 0 9 137 |SSR - Strict Source Route[[RFC791, JBP]
0 0 10 10 [ZSU - Experimental [ZSu]
Measurement
0 0 11 11 |[MTUP - MTU Probe [RFC1191]*

341

Appendix D. TCP options

Copy [Class [Number [Value Name Reference
0 0 12 12 |MTUR - MTU Reply [RFC1191]*
13 205 |FINN - Experimental Flow [[Finn]
Control
1 0 14 142 |VISA - Experimental [Estrin]
Access Control
0 15 15 [ENCODE - ??? [VerSteeq]
16 144 [MITD - IMI Traffic [Lee]
Descriptor
1 0 17 145 [EIP - Extended Internet [RFC1385]
Protocol
0 18 82 [TR - Traceroute [RFC1393]
19 147 |ADDEXT - Address [Ulimann IPv7]
Extension
1 20 148 |RTRALT - Router Alert [RFC2113]
1 21 149 |SDB - Selective Directed [Graff]
Broadcast
1 0 22 150 NSAPA - NSAP [Carpenter]
Addresses
1 0 23 151 DPS - Dynamic Packet [Malis]
State
1 0 24 152 |UMP - Upstream Multicast[Farinacci]

Pkt.

342

Appendix E. Other resources
and links

Here is a list of links to resources and where | have gotten information
from, etc :

- ip-sysctl.txt (http://iptables-tutorial.frozentux.net/other/ip-sysctl.txt) -
from the 2.4.14 kernel. A little bit short but a good reference for the IP
networking controls and what they do to the kernel.

- InGate (http://www.ingate.com) - InGate is a commercial firewall
producer that uses Linux as the base for their firewall products. Their
productrange goes from basic firewalls to SIP gateways and QoS
machines.

« RFC 768 - User Datagram Protocol
(http://iptables-tutorial.frozentux.net/other/rfc768.txt) - This is the
official RFC describing how the UDP protocol should be used, in
detail, and all of it's headers.

+ RFC 791 - Internet Protocol
(http://iptables-tutorial.frozentux.net/other/rfc791.txt) - The IP
specification as still used on the Internet, with additions and updates.
The basic is still the same for IPv4.

« RFC 792 - Internet Control Message Protocol
(http://iptables-tutorial.frozentux.net/other/rfc792.txt) - The definitive
resource for all information about ICMP packets. Whatever technical
information you need about the ICMP protocol, this is where you
should turn first. Written by J. Postel.

« RFC 793 - Transmission Control Protocol
(http://iptables-tutorial.frozentux.net/other/rfc793.txt) - This is the
original resource on how TCP should behave on all hosts. This
document has been the standard on how TCP should work since
1981 and forward. Extremely technical, but a must read for anyone
who wants to learn TCP in every detail. This was originally a

343

Appendix E. Other resources and links

Department of Defense standard written by J. Postel.

RFC 1122 - Requirements for Internet Hosts - Communication Layers
(http://iptables-tutorial.frozentux.net/other/rfc1122.txt) - This RFC
defines the requirements of the software running on a Internet host,
specifically the communication layers.

RFC 1349 - Type of Service in the Internet Protocol Suite
(http://iptables-tutorial.frozentux.net/other/rfc1349.txt) - RFC
describing some changes and clarifications of the TOS field in the IP
header.

RFC 1812 - Requirements for IP Version 4 Routers
(http://iptables-tutorial.frozentux.net/other/rfc1812.txt) - This RFC
specifies how routers on the Internet should behave and how they are
expected to handle different situations. Very interesting reading.

RFC 2401 - Security Architecture for the Internet Protocol
(http://iptables-tutorial.frozentux.net/other/rfc2401.txt) - This is an
RFC talking about the IPSEC implementation and standardisation.
Well worth reading if you are working with IPSEC.

RFC 2474 - Definition of the Differentiated Services Field (DS Field)
in the IPv4 and IPv6 Headers
(http://iptables-tutorial.frozentux.net/other/rfc2474.txt) - In this
document you will find out how the DiffServ works, and you will find
much needed information about the TCP/IP protocol
additions/changes needed for the DiffServ protocol to work.

RFC 2638 - A Two-bit Differentiated Services Architecture for the
Internet (http://iptables-tutorial.frozentux.net/other/rfc2638.txt) - This
RFC describes a method of implementing two different differentiated
service architecture into one. Both where described originally by D.
Clark and van Jacobsen at the Munich IETH meeting 1997.

RFC 2960 - Stream Control Transmission Protocol
(http://iptables-tutorial.frozentux.net/other/rfc2960.txt) - This is a
relatively new protocol developed by several large telecoms
companies to complement UDP and TCP as a layer 3 protocol with
higher reliability and resilience.

344

Appendix E. Other resources and links

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to
IP (http://iptables-tutorial.frozentux.net/other/rfc3168.txt) - This RFC
defines how ECN is to be used on a technical level and how it should
be implemented in the TCP and IP protocols. Written by K.
Ramakrishnan, S. Floyd and D. Black.

RFC 3260 - New Terminology and Clarifications for Diffserv
(http://iptables-tutorial.frozentux.net/other/rfc3260.txt) - This memo
captures Diffserv working group agreements concerning new and
improved terminology, and provides minor technical clarifications.

RFC 3286 - An Introduction to the Stream Control Transmission
Protocol (http://iptables-tutorial.frozentux.net/other/rfc3286.txt) - RFC
introducing the Stream Control Transmission Protocol, a relatively
new layer 3 protocol in the TCP/IP stack. Developed by several large
telecom companies.

ip_dynaddr.txt
(http://iptables-tutorial.frozentux.net/other/ip_dynaddr.txt) - from the
2.4.14 kernel. A really short reference to the ip_dynaddr settings
available via sysctl and the proc file system.

iptables.8 (http://iptables-tutorial.frozentux.net/other/iptables.html) -
The iptables 1.3.1 man page. This is an HTMLized version of the man
page which is an excellent reference when reading/writing iptables
rule-sets. Always have it at hand.

Ipsysctl tutorial (http://ipsysctl-tutorial.frozentux.net) - Another tutorial
I have written about the IP System Control in Linux. A try to make a
complete listing of all the IP variables that can be set on the fly in
Linux.

Policy Routing Using Linux
(http:/lwww.policyrouting.org/PolicyRoutingBook/) - This is an
excellent book that has now been opened up on the Internet
regarding Policy routing in Linux. It is well written and most definitely
worth buying. Written by Matthew G. Marsh.

Security-Enhanced Linux (http://www.nsa.gov/selinux/) - The official
site of the Security-Enhanced Linux (SELinux) system developed as
a proof of concept by the National Security Agency (NSA). SELinux is

345

Appendix E. Other resources and links

a fine grained Mandatory Access Control system, which lets you have
a much higher control on who can do what and what processes has
what privileges, et cetera.

Firewall rules table (http://iptables-
tutorial.frozentux.net/other/firewall_rules_table_final.pdf) - A small
PDF document gracefully given to this project by Stuart Clark, which
gives a reference form where you can write all of the information
needed for your firewall, in a simple manner.

http://I7-filter.sourceforge.net/ - The I7-filter project is basically a set of
patches and files to make iptables and netfilter able to handle layer 7
filtering, mainly for QoS and traffic accounting. It works less reliably
for filtering however, since it will allow the first couple of packets
through before actually blocking traffic.

http://www.netfilter.org/ - The official Netfilter and iptables site. Itis a
must for everyone wanting to set up iptables and Netfilter in linux.

http://www.insecure.org/nmap/ - Nmap is one of the best, and most
known, port scanners available. It is very useful when debugging your
firewall scripts. Take a closer look at it.

http://www.netfilter.org/documentation/index.html#FAQ - The official
Netfilter Frequently Asked Questions. Also a good place to start at
when wondering what iptables and Netfilter is about.

http://www.netfilter.org/unreliable-guides/packet-filtering-
HOWTO/index.html - Rusty Russells Unreliable Guide to packet
filtering. Excellent documentation about basic packet filtering with
iptables written by one of the core developers of iptables and
Netfilter .

http://www.netfilter.org/unreliable-guides/NAT-HOWTO/index.html -
Rusty Russells Unreliable Guide to Network Address Translation.
Excellent documentation about Network Address Translation in
iptables and Netfilter written by one of the core developers, Rusty
Russell.

http://www.netfilter.org/unreliable-guides/netfilter-hacking-
HOWTO/index.html - Rusty Russells Unreliable Netfilter Hacking
HOW-TO. One of the few documentations on how to write code in the

346

Appendix E. Other resources and links

Netfilter and iptables user-space and kernel space code-base. This
was also written by Rusty Russell.

http://www.linuxguruz.org/iptables/ - Excellent link-page with links to
most of the pages on the Internet about iptables and Netfilter . Also
maintains a list of iptables scripts for different purposes.

Policy Routing using Linux (http://www.policyrouting.org) - The best
book | have ever read on Policy routing nad linux. This is an absolute
must when it comes to routing in linux. Written by Matthew G. Marsh.

Implementing Quality of Service Policies with DSCP
(http://lwww.cisco.com/warp/public/105/dscpvalues.html) - A link
about the cisco implementation of DSCP. This shows some classes
used in DSCP, and so on.

IETF SIP Working Group
(http:/lwww.ietf.org/html.charters/sip-charter.html) - SIP is one of the
"next big things" it seems. Basically it is the defacto standards for
Internet telephony today. It is horribly complex as you can see from
the amount of documentation on the working groups homepage, and
should hopefully be able to cope with pretty much any needs of
session initiation in the future. It is used mainly to setup peer to peer
connections between known users, for example to connect to
user@example.org and setup a phone connection to that user. This is
the IETF Working group handling all SIP work.

IETF TLS Working Group
(http://lwww.ietf.org/html.charters/tls-charter.html) - TLS is a transport
layer security model that is one of the most common host to server
based security mechanisms. The current version is running is 1.1 and
work is ongoing to get 1.2 out the door with support for newer and
better cryptos as of this writing. This is a standardized way of sending
and receiving public keys for servers and handling trusted certificate
agents etc. For more information, read the RFC’s on this page.

IPSEC Howto (http://www.ipsec-howto.org) - This is the official IPSEC
howto for Linux 2.6 kernels. It describes how IPSEC works in the 2.6
kernels and up, however, it is not the place to find out exactly how the
Linux 2.2 and 2.4 kernels worked when it comes to IPSEC. Go to the

347

Appendix E. Other resources and links

FreeS/WAN site for that information.

FreeS/WAN (http://www.freeswan.org) - This is the official site for
FreeS/WAN, an IPSEC implementation for the Linux 2.2 and 2.4
kernel series. This site contains documentation and all necessary
downloads for the IPSEC implementation. This effort has been
discontinued due to several reasons discussed on the page, but
efforts will still be put into bugfixes, documentation and the forums.
For an IPSEC implementation for Linux 2.6 kernels, please look at
the IPSEC Howto site and the information there.

http://www.islandsoft.net/veerapen .html
(http:/lwww.islandsoft.net/veerapen.html) -Excellent discussion on
automatic hardening of iptables and how to make small changes that
will make your computer automatically add hostile sites to a special
ban list in iptables .

letc/protocols (http://iptables-tutorial.frozentux.net/other/protocols.txt) -
An example protocols file taken from the Slackware distribution. This
can be used to find out what protocol number different protocols
have, such as the IP, ICMP or TCP protocols have.

letc/services (http://iptables-tutorial.frozentux.net/other/services.txt) -
An example services file taken from the Slackware distribution. This
is extremely good to get used to reading once in a while, specifically if
you want to get a basic look at what protocols runs on different ports.

Internet Assigned Numbers Authority (http://www.iana.org) - The
IANA is the organisation that is responsible for fixing all numbers in
the different protocols in an orderly fashion. If anyone has a specific
addition to make to a protocol (for example, adding a new TCP
option), they need to contact the IANA, which will assign the numbers
requested. In other words, extremely important site to keep an eye
on.

RFC-editor.org (http://www.rfc-editor.org) - This is an excellent site for
finding RFC documents in a fast and orderly way. Functions for
searching RFC documents, and general information about the RFC
community (l.e., errata, news, et cetera).

Internet Engineering Task Force (http://www.ietf.org) - This is one of

348

Appendix E. Other resources and links

the biggest groups when it comes to setting and maintaining Internet
standards. They are the ones maintaining the RFC repository, and
consist of a large group of companies and individuals that work
together to ensure the interoperability of the Internet.

Linux Advanced Routing and Traffic Control HOW-TO
(http://lwww.lartc.org) - This site hosts the Linux Advanced Routing
and Traffic Control HOWTO. It is one of the biggest and best
documents regarding Linux advanced routing. Maintained by Bert
Hubert.

Paksecured Linux Kernel patches
(http:/lwww.paksecured.com/patches/) - A site containing all of the
kernel patches written by Matthew G. Marsh. Among others, the
FTOS patch is available here.

ULOGD project page
(http://www.gnumonks.org/gnumonks/projects/project_details?p_id=1)
- The homepage of the ULOGD site.

The Linux Documentation Project (http://www.linuxdoc.org) is a great
site for documentation. Most big documents for Linux is available
here, and if not in the TLDP, you will have to search the net very
carefully. If there is anything you want to know more about, check this
site out.

Snort (http://www.snort.org) - this is an excellent open source
"network intrusion detection system" (NIDS) which looks for
signatures in the packets that it sees, and if it sees a signature of
some kind of attack or break-in it can do different actions that can be
defined (notifying the administrator, or take action, or simply logging
it).

Tripwire (http://www.tripwire.org) - tripwire is an excellent security tool
which can be used to find out about host intrusions. It makes
checksums of all the files specified in a configuration file, and then it
tells the administrator about any files that has been tampered with in
an illegit way every time it is run.

Squid (http://www.squid.org) - This is one of the most known
webproxies available on the market. It is open source, and free. It can

349

Appendix E. Other resources and links

do several of the filtering tasks that should be done before the traffic
actually hits your webserver, as well as doing the standard
webcaching functions for your networks.

- http://kalamazoolinux.org/presentations/20010417/conntrack.html -
This presentation contains an excellent explanation of the conntrack
modules and their work in Netfilter. If you are interested in more
documentation on conntrack, this is a "must read".

« http://www.docum.org - Excellent information about the CBQ, tc and
the ip commands in Linux. One of the few sites that has any
information at all about these programs. Maintained by Stef Coene.

- http://lists.samba.org/m ailman/listinfo/netfilter
(http://lists.samba.org/mailman/listinfo/netfilter)- The official Netfilter
mailing-list. Extremely useful in case you have questions about
something not covered in this document or any of the other links here.

And of course the iptables source, documentation and individuals who
helped me.

350

Appendix F. Acknowledgments

I would like to thank the following people for their help on this document:

- Fabrice Marie (mailto:fabriceATcelestixDOTcom), For major updates
to my horrible grammar and spelling. Also a huge thanks for updating
the tutorial to DocBook format with make files etc.

« Marc Boucher (mailto:marc+nfATmbsiDOTca), For helping me out on
some aspects on using the state matching code.

- Frode E. Nyboe (mailto:fenATimprobusDOTcom), For greatly
improving the rc.firewall rules and giving great inspiration while i was
to rewrite the rule-set and being the one who introduced the multiple
table traversing into the same file.

« Chapman Brad (mailto:kakadu_crocATyahooDOTcom), Alexander W.
Janssen (mailto:yallaATynfonaticDOTde), Both for making me realize
I was thinking wrong about how packets traverse the basic NAT and
filters tables and in which order they show up.

« Michiel Brandenburg (mailto:michielbATstackDOTnl), Myles Uyema
(mailto:mylesATpuckDOTnetherDOTnet), For helping me out with
some of the state matching code and getting it to work.

- Kent ‘Artech’ Stahre (mailto:artechATboingworldDOTcom), For
helping me out with the graphics. | know | suck at graphics, and
you're better than most | know who do graphics;). Also thanks for
checking the tutorial for errors etc.

« Anders 'DeZENT’ Johansson, For hinting me about strange ISPs and
so on that uses reserved networks on the Internet, or at least on the
Internet for you.

- Jeremy ‘Spliffy’ Smith (mailto:di99smjeATchIDOTchalmersDOTse),
For giving me hints at stuff that might screw up for people and for
trying it out and checking for errors in what I've written.

And of course everyone else | talked to and asked for comments on this
file, sorry for not mentioning everyone.

351

Appendix G. History

Version 1.2.2 (19 Nov 2006)
http://iptables-tutorial.frozentux.net

By Oskar Andreasson

Contributors: Jens Larsson and G. W. Haywood.

Version 1.2.1 (29 Sep 2006)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Ortwin Glueck, Mao, Marcos Roberto Greiner, Christian Font,
Tatiana, Andrius, Alexey Dushechkin, Tatsuya Nonogaki and Fred.

Version 1.2.0 (20 July 2005)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Corey Becker, Neil Perrins, Watz and Spanish translation team.

Version 1.1.19 (21 May 2003)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Peter van Kampen, Xavier Bartol, Jon Anderson, Thorsten Bremer
and Spanish Translation Team.

Version 1.1.18 (24 Apr 2003)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Stuart Clark, Robert P. J. Day, Mark Orenstein and Edmond Shwayri.

Version 1.1.17 (6 Apr 2003)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Geraldo Amaral Filho, Ondrej Suchy, Dino Conti, Robert P. J. Day,
Velev Dimo, Spencer Rouser, Daveonos, Amanda Hickman, Olle Jonsson and
Bengt Aspvall.

Version 1.1.16 (16 Dec 2002)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Clemens Schwaighower, Uwe Dippel and Dave Wreski.

352

Appendix G. History

Version 1.1.15 (13 Nov 2002)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Mark Sonarte, A. Lester Buck, Robert P. J. Day, Togan Muftuoglu,
Antony Stone, Matthew F. Barnes and Otto Matejka.

Version 1.1.14 (14 Oct 2002)

http://iptables-tutorial.frozentux.net

By: Oskar Andreasson

Contributors: Carol Anne, Manuel Minzoni, Yves Soun, Miernik, Uwe Dippel,
Dave Klipec and Eddy L O Jansson.

Version 1.1.13 (22 Aug 2002)
http://iptables-tutorial.haringstad.com

By: Oskar Andreasson

Contributors: Tons of people reporting bad HTML version.

Version 1.1.12 (19 Aug 2002)

http://www.netfilter.org/tutorial/

By: Oskar Andreasson

Contributors: Peter Schubnell, Stephen J. Lawrence, Uwe Dippel, Bradley
Dilger, Vegard Engen, Clifford Kite, Alessandro Oliveira, Tony Earnshaw,
Harald Welte, Nick Andrew and Stepan Kasal.

Version 1.1.11 (27 May 2002)

http://www.netfilter.org/tutorial/

By: Oskar Andreasson

Contributors: Steve Hnizdur, Lonni Friedman, Jelle Kalf, Harald Welte,
Valentina Barrios and Tony Earnshaw.

Version 1.1.10 (12 April 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/

By: Oskar Andreasson

Contributors: Jelle Kalf, Theodore Alexandrov, Paul Corbett, Rodrigo
Rubira Branco, Alistair Tonner, Matthew G. Marsh, Uwe Dippel, Evan
Nemerson and Marcel J.E. Mol.

Version 1.1.9 (21 March 2002)

http://www.boingworld.com/workshops/linux/iptables-tutorial/
By: Oskar Andreasson

353

Appendix G. History

Contributors: Vince Herried, Togan Muftuoglu, Galen Johnson, Kelly Ashe, Janne
Johansson, Thomas Smets, Peter Horst, Mitch Landers, Neil Jolly, Jelle Kalf,
Jason Lam and Evan Nemerson.

Version 1.1.8 (5 March 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/
By: Oskar Andreasson

Version 1.1.7 (4 February 2002)
http://www.boingworld.com/workshops/linux/iptables-tutorial/

By: Oskar Andreasson

Contributors: Parimi Ravi, Phil Schultz, Steven McClintoc, Bill Dossett,

Dave Wreski, Erik Sjélund, Adam Mansbridge, Vasoo Veerapen, Aladdin and
Rusty Russell.

Version 1.1.6 (7 December 2001)

http://people.unix-fu.org/andreasson/

By: Oskar Andreasson

Contributors: Jim Ramsey, Phil Schultz, Géran Bage, Doug Monroe, Jasper
Aikema, Kurt Lieber, Chris Tallon, Chris Martin, Jonas Pasche, Jan
Labanowski, Rodrigo R. Branco, Jacco van Koll and Dave Wreski.

Version 1.1.5 (14 November 2001)
http://people.unix-fu.org/andreasson/

By: Oskar Andreasson

Contributors: Fabrice Marie, Merijn Schering and Kurt Lieber.

Version 1.1.4 (6 November 2001)

http://people.unix-fu.org/andreasson

By: Oskar Andreasson

Contributors: Stig W. Jensen, Steve Hnizdur, Chris Pluta and Kurt Lieber.

Version 1.1.3 (9 October 2001)
http://people.unix-fu.org/andreasson

By: Oskar Andreasson

Contributors: Joni Chu, N.Emile Akabi-Davis and Jelle Kalf.

Version 1.1.2 (29 September 2001)

http://people.unix-fu.org/andreasson
By: Oskar Andreasson

354

Appendix G. History

Version 1.1.1 (26 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Contributors: Dave Richardson.

Version 1.1.0 (15 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.9 (9 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.8 (7 September 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.7 (23 August 2001)
http://people.unix-fu.org/andreasson
By: Oskar Andreasson
Contributors: Fabrice Marie.

Version 1.0.6
http://people.unix-fu.org/andreasson
By: Oskar Andreasson

Version 1.0.5
http://people.unix-fu.org/andreasson
By: Oskar Andreasson
Contributors: Fabrice Marie.

355

Appendix H. GNU Free
Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by
others.

This License is a kind of "copyleft", which means that derivative works
of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

356

Appendix H. GNU Free Documentation License

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. The "Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A "Transparent" copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not

357

Appendix H. GNU Free Documentation License

“Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work'’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

358

Appendix H. GNU Free Documentation License

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than
100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material,
which the general network-using public has access to download
anonymously at no charge using public-standard network protocols. If
you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

359

4.

Appendix H. GNU Free Documentation License

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the
Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from

that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

. State on the Title page the name of the publisher of the Modified

Version, as the publisher.

D. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent

to the other copyright notices.

. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and

required Cover Texts given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section entitled "History", and its title, and add to it an

item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,

360

Appendix H. GNU Free Documentation License

then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications”,
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section entitled "Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"” or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover

361

Appendix H. GNU Free Documentation License

Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections entitled "History" in
the various original documents, forming one section entitled "History";
likewise combine any sections entitled "Acknowledgements"”, and any
sections entitled "Dedications”. You must delete all sections entitled
"Endorsements."

362

Appendix H. GNU Free Documentation License

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy of
this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

/. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version of
the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

363

Appendix H. GNU Free Documentation License

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a
disagreement between the translation and the original English version
of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of

364

Appendix H. GNU Free Documentation License

any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.

How to use this License for your
documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no Front-Cover
Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.

365

Appendix I. GNU General Public
License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy
and distribute verbatim copies of this license document, but changing it is
not allowed.

0. Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You

366

Appendix I. GNU General Public License

must make sure that they, too, receive or can get the source code. And
you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

1. TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND
MODIFICATION

1. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program”,
below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is

367

Appendix I. GNU General Public License

included without limitation in the term "modification".) Each licensee
is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

1. You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

2. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

3. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under

368

Appendix I. GNU General Public License

these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But
when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program)
on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

A. Accompany it with the complete corresponding
machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

B. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to

369

Appendix I. GNU General Public License

be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

C. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you
under this License will not have their licenses terminated so long as
such parties remain in full compliance.

. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so,

370

Appendix I. GNU General Public License

and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot
impose that choice.

371

10.

11.

Appendix I. GNU General Public License

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

. The Free Software Foundation may publish revised and/or new

versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not
specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE
EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"

372

12.

Appendix I. GNU General Public License

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

2.

How to Apply These Terms to Your

New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey
the exclusion of warranty; and each file should have at least the

373

Appendix I. GNU General Public License

"copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision
comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This
is free software, and you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker. <signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

374

Appendix I. GNU General Public License

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

375

Appendix J. Example scripts
code-base

Example rc.firewall script

#!/bin/sh

#

rc.firewall - Initial SIMPLE IP Firewall script for Linux 2.4.x and iptables
#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>

#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

A L L A A L MG S R L G L L G L L S
#

1. Configuration options.

#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.155"

376

Appendix J. Example scripts code-base

INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
#1.1.1 DHCP
#

#
#1.1.2 PPPoE
#

#

1.2 Local Area Network configuration.

#

your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="l0"
LO_IP="127.0.0.1"

#

1.5 IPTables Configuration.
#
IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.

377

Appendix J. Example scripts code-base
#

A L L A A L L MG S L G L L G L L S
#

2. Module loading.

#

#
Needed to initially load modules
#

/shin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/shin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/shin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/shin/modprobe ipt_LOG
/shin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_ REJECT
#/sbin/modprobe ipt. MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

B T T T T R B T A A R T T T BT B R T i

#
3. /proc set up.

378

Appendix J. Example scripts code-base
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

A L L A A L MG S L G L L G L L S
#

4. rules set up.

#

HtHHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#

Create chain for bad tcp packets
#

379

Appendix J. Example scripts code-base
$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK\

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

380

Appendix J. Example scripts code-base

#
UDP ports
#

#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 123 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 2074 -j ACCEPT
#SIPTABLES -A udp_packets -p UDP -s 0/0 --destination-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A udp_packets -p UDP -i SINET_IFACE -d 255.255.255.255\
#--destination-port 67:68 - DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#

Bad TCP packets we don’t want.
#

381

Appendix J. Example scripts code-base
$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP -j ACCEPT

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT

#
Rules for incoming packets from the internet.
#

$IPTABLES -A INPUT -p ALL -d SINET_IP -m state --state ESTABLISHED,RELATED\
-j ACCEPT

$IPTABLES -A INPUT -p TCP -i $INET_IFACE - tcp_packets

$IPTABLES -A INPUT -p UDP -i SINET_IFACE -j udp_packets

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#

If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#SIPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 -j DROP
#
Log weird packets that don’t match the above.

#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \

382

Appendix J. Example scripts code-base
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don’t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don’t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#

#4.1.6 OUTPUT chain

#

#

Bad TCP packets we don’t want.

#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#

Special OUTPUT rules to decide which IP’s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT

383

Appendix J. Example scripts code-base

$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $SINET_IP -j ACCEPT

#
Log weird packets that don’t match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HitHHHHHH
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#

4.2.4 PREROUTING chain

#

#

4.2.5 POSTROUTING chain

#

#

Enable simple IP Forwarding and Network Address Translation

#

$IPTABLES -t nat-A POSTROUTING -0 $INET_IFACE -j SNAT --to-source $INET_IP

#

384

Appendix J. Example scripts code-base

#4.2.6 OUTPUT chain
#

Tttt
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
4.3.7 OUTPUT chain
#

#

4.3.8 POSTROUTING chain
#

385

Appendix J. Example scripts code-base

Example rc.DMZ.firewall script

#!/bin/sh

#

rc.DMZ.firewall - DMZ IP Firewall script for Linux 2.4.x and iptables

#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

A L L A A L MG S L G L G L L B S
#

1. Configuration options.

#

#
1.1 Internet Configuration.
#

INET_IP="194.236.50.152"
HTTP_IP="194.236.50.153"
DNS_IP="194.236.50.154"
INET_IFACE="eth0"

386

Appendix J. Example scripts code-base

#
#1.1.1 DHCP
#

#
#1.1.2 PPPoE
#

#

1.2 Local Area Network configuration.

#

your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

#

LAN_IP="192.168.0.1"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

DMZ_HTTP_IP="192.168.1.2"
DMZ_DNS_IP="192.168.1.3"
DMZ_IP="192.168.1.1"
DMZ_IFACE="eth2"

#
1.4 Localhost Configuration.
#

LO_IFACE="l0"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/shin/iptables"

387

Appendix J. Example scripts code-base

#
1.6 Other Configuration.
#

A L A A L MG S L G L L L G L L S
#

2. Module loading.

#

#

Needed to initially load modules
#

/sbin/depmod -a

#
2.1 Required modules
#

/shin/modprobe ip_tables
/sbin/modprobe ip_conntrack
/shin/modprobe iptable_filter
/shin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/shin/modprobe ipt_LOG
/sbin/modprobe ipt_limit
/shin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_ REJECT
#/sbin/modprobe ipt_ MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

388

Appendix J. Example scripts code-base

W T R R T
#

3. Iproc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

I T T T R T
#

4. rules set up.

#

HtHHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP
#

4.1.2 Create userspecified chains

#

#

389

Appendix J. Example scripts code-base

Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
ICMP rules
#

Changed rules totally

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

390

Appendix J. Example scripts code-base

#
#4.1.4 INPUT chain
#

#
Bad TCP packets we don’t want
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Packets from the Internet to this box
#

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#
Packets from LAN, DMZ or LOCALHOST
#

#
From DMZ Interface to DMZ firewall IP
#

$IPTABLES -A INPUT -p ALL -i $DMZ_IFACE -d $DMZ_IP -j ACCEPT
#

From LAN Interface to LAN firewall IP

#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -d $SLAN_IP -j ACCEPT
#

From Localhost interface to Localhost IP’s

#

$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT

$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $INET_IP -j ACCEPT

391

Appendix J. Example scripts code-base

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -] ACCEPT

#

All established and related packets incoming from the internet to the
firewall

#

$IPTABLES -A INPUT -p ALL -d $INET_IP -m state --state ESTABLISHED,RELATED\
-j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#SIPTABLES -A INPUT -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#SIPTABLES -A INPUT -p UDP -i $INET_IFACE -d 255.255.255.255\
#--destination-port 67:68 - DROP

#

If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 - DROP

#
Log weird packets that don’t match the above.

392

Appendix J. Example scripts code-base
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don’t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#

DMZ section
#

General rules
#

$IPTABLES -A FORWARD -i $DMZ_IFACE -0 $INET_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $INET_IFACE -0 $DMZ_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT

$IPTABLES -A FORWARD -i $LAN_IFACE -0 $DMZ_IFACE -j ACCEPT
$IPTABLES -A FORWARD -i $DMZ_IFACE -0 $LAN_IFACE -m state \
--state ESTABLISHED,RELATED -j ACCEPT

#
#HTTP server
#

$IPTABLES -A FORWARD -p TCP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_HTTP_IP\
--dport 80 -j allowed

$IPTABLES -A FORWARD -p ICMP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_HTTP_IP\
-j icmp_packets

#

DNS server
#

393

Appendix J. Example scripts code-base

$IPTABLES -A FORWARD -p TCP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP\
--dport 53 -j allowed

$IPTABLES -A FORWARD -p UDP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP\
--dport 53 - ACCEPT

$IPTABLES -A FORWARD -p ICMP -i $INET_IFACE -0 $DMZ_IFACE -d $DMZ_DNS_IP\
-j icmp_packets

#
LAN section
#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -] ACCEPT

#
Log weird packets that don’t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
#4.1.6 OUTPUT chain
#

#

Bad TCP packets we don’t want.

#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#

Special OUTPUT rules to decide which IP’s to allow.

#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $SINET_IP -j ACCEPT

#

394

Appendix J. Example scripts code-base

Log weird packets that don’t match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HitHHH
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

$IPTABLES -t nat-A PREROUTING -p TCP -i $INET_IFACE -d $HTTP_IP --dport 80\
-j DNAT --to-destination $DMZ_HTTP_IP

$IPTABLES -t nat -A PREROUTING -p TCP -i $INET_IFACE -d $DNS_IP --dport 53\
-j DNAT --to-destination $DMZ_DNS_IP

$IPTABLES -t nat -A PREROUTING -p UDP -i $INET_IFACE -d $DNS_IP --dport 53\
-j DNAT --to-destination $DMZ_DNS_IP

#
4.2.5 POSTROUTING chain
#

#

Enable simple IP Forwarding and Network Address Translation
#

395

Appendix J. Example scripts code-base
$IPTABLES -t nat-A POSTROUTING -0 $INET_IFACE -j SNAT --to-source $INET_IP

#
#4.2.6 OUTPUT chain
#

dabiia
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
#4.3.7 OUTPUT chain
#

#

4.3.8 POSTROUTING chain
#

396

Appendix J. Example scripts code-base

Example rc.UTIN.firewall script

#!/bin/sh

#

rc.UTIN.firewall - UTIN Firewall script for Linux 2.4.x and iptables

#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

A L L L A S L G S L G L L L L L S Y
#

1. Configuration options.

#

#
1.1 Internet Configuration.

#

INET_IP="194.236.50.155"

397

Appendix J. Example scripts code-base

INET_IFACE="eth0"
INET_BROADCAST="194.236.50.255"

#
#1.1.1 DHCP
#

#
#1.1.2 PPPoE
#

#

1.2 Local Area Network configuration.

#

your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#
1.3 DMZ Configuration.
#

#
1.4 Localhost Configuration.
#

LO_IFACE="l0"
LO_IP="127.0.0.1"

#

1.5 IPTables Configuration.
#
IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.

398

Appendix J. Example scripts code-base
#

A L L A A L L MG S L G L L G L L S
#

2. Module loading.

#

#
Needed to initially load modules
#

/shin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_tables
/shin/modprobe ip_conntrack
/sbin/modprobe iptable_filter
/shin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/shin/modprobe ipt_LOG
/shin/modprobe ipt_limit
/sbin/modprobe ipt_state

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_ REJECT
#/sbin/modprobe ipt. MASQUERADE
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

B T T T T R B T A A R T T T BT B R T i

#
3. /proc set up.

399

Appendix J. Example scripts code-base
#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

A L L A A L MG S L G L L G L L S
#

4. rules set up.

#

HtHHHHH
4.1 Filter table
#

#
4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#

Create chain for bad tcp packets
#

400

Appendix J. Example scripts code-base
$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

$IPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK\

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#
allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

401

Appendix J. Example scripts code-base

#
UDP ports
#

#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
#SIPTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
#SIPTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#$IPTABLES -A udp_packets -p UDP -i $INET_IFACE -d $INET_BROADCAST \
#--destination-port 135:139 -j DROP

#

If we get DHCP requests from the Outside of our network, our logs will
be swamped as well. This rule will block them from getting logged.

#

#$IPTABLES -A udp_packets -p UDP -i SINET_IFACE -d 255.255.255.255\
#--destination-port 67:68 - DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -j ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
4.1.4 INPUT chain
#

#

Bad TCP packets we don’t want.
#

402

Appendix J. Example scripts code-base
$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LO_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s $LAN_IP -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE -s SINET_IP -j ACCEPT

#
Rules for incoming packets from anywhere.
#

$IPTABLES -A INPUT -p ALL -d $INET _IP -m state --state ESTABLISHED,RELATED\
-j ACCEPT

$IPTABLES -A INPUT -p TCP -j tcp_packets

$IPTABLES -A INPUT -p UDP -j udp_packets

$IPTABLES -A INPUT -p ICMP -j icmp_packets

#

If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#SIPTABLES -A INPUT -i SINET_IFACE -d 224.0.0.0/8 -j DROP
#
Log weird packets that don’t match the above.

#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don’t want

403

Appendix J. Example scripts code-base
#
$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets

#
Accept the packets we actually want to forward
#

$IPTABLES -A FORWARD -p tcp --dport 21 -i SLAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 80 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 110 -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#
Log weird packets that don’t match the above.
#

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
#4.1.6 OUTPUT chain
#

#
Bad TCP packets we don’t want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP’s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $SINET_IP -j ACCEPT

#

Log weird packets that don’t match the above.
#

404

Appendix J. Example scripts code-base

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HitHHHH
4.2 nat table
#

#
4.2.1 Set policies
#

#
4.2.2 Create user specified chains
#

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

#
Enable simple IP Forwarding and Network Address Translation
#

$IPTABLES -t nat-A POSTROUTING -0 $INET_IFACE -j SNAT --to-source $INET_IP
#

#4.2.6 OUTPUT chain

#

A

4.3 mangle table
#

405

Appendix J. Example scripts code-base

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#
4.3.4 PREROUTING chain
#

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
#4.3.7 OUTPUT chain
#

#

4.3.8 POSTROUTING chain
#

406

Appendix J. Example scripts code-base

Example rc.DHCP.firewall script

#!/bin/sh

#

rc.DHCP.firewall - DHCP IP Firewall script for Linux 2.4.x and iptables
#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

T T T T R T
#

1. Configuration options.

#

#

1.1 Internet Configuration.
#

INET_IFACE="eth0"

#

#1.1.1 DHCP

#

#
Information pertaining to DHCP over the Internet, if needed.

407

Appendix J. Example scripts code-base

#

Set DHCP variable to no if you don’t get IP from DHCP. If you get DHCP
over the Internet set this variable to yes, and set up the proper IP

address for the DHCP server in the DHCP_SERVER variable.

#

DHCP="no"
DHCP_SERVER="195.22.90.65"

#
#1.1.2 PPPoE
#

Configuration options pertaining to PPPoE.

#

If you have problem with your PPPoE connection, such as large mails not
getting through while small mail get through properly etc, you may set
this option to "yes" which may fix the problem. This option will set a

rule in the PREROUTING chain of the mangle table which will clamp
(resize) all routed packets to PMTU (Path Maximum Transmit Unit).

#

Note that it is better to set this up in the PPPOE package itself, since
the PPPoE configuration option will give less overhead.

#

PPPOE_PMTU="no"

#

1.2 Local Area Network configuration.

#

your LAN's IP range and localhost IP. /24 means to only use the first 24
bits of the 32 bit IP address. the same as netmask 255.255.255.0

#

LAN_IP="192.168.0.2"
LAN_IP_RANGE="192.168.0.0/16"
LAN_IFACE="eth1"

#

1.3 DMZ Configuration.
#

408

Appendix J. Example scripts code-base

#
1.4 Localhost Configuration.
#

LO_IFACE="I0"
LO_IP="127.0.0.1"

#
1.5 IPTables Configuration.
#

IPTABLES="/usr/sbin/iptables"

#
1.6 Other Configuration.
#

A L L A S L MG S R L G L L G L L S
#

2. Module loading.

#

#
Needed to initially load modules
#

/shin/depmod -a

#
2.1 Required modules
#

/sbin/modprobe ip_conntrack
/shin/modprobe ip_tables
/sbin/modprobe iptable_filter
/shin/modprobe iptable_mangle
/sbin/modprobe iptable_nat
/sbin/modprobe ipt_LOG
/shin/modprobe ipt_limit
/sbin/modprobe ipt_ MASQUERADE

409

Appendix J. Example scripts code-base

#
2.2 Non-Required modules
#

#/sbin/modprobe ipt_owner
#/sbin/modprobe ipt_ REJECT
#/sbin/modprobe ip_conntrack_ftp
#/sbin/modprobe ip_conntrack_irc
#/sbin/modprobe ip_nat_ftp
#/sbin/modprobe ip_nat_irc

HITHE T T T T R T
#

3. /proc set up.

#

#
3.1 Required proc configuration
#

echo "1" > /proc/sys/net/ipv4/ip_forward

#
3.2 Non-Required proc configuration
#

#echo "1" > /proc/sys/net/ipv4/conf/all/rp_filter
#echo "1" > /proc/sys/net/ipv4/conf/all/proxy_arp
#echo "1" > /proc/sys/net/ipv4/ip_dynaddr

HIHE T T T T T
#

4. rules set up.

#

HitHH
4.1 Filter table
#

#

410

Appendix J. Example scripts code-base

4.1.1 Set policies
#

$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP

#
4.1.2 Create userspecified chains
#

#
Create chain for bad tcp packets
#

$IPTABLES -N bad_tcp_packets

#
Create separate chains for ICMP, TCP and UDP to traverse
#

SIPTABLES -N allowed
$IPTABLES -N tcp_packets
$IPTABLES -N udp_packets
$IPTABLES -N icmp_packets

#
4.1.3 Create content in userspecified chains
#

#
bad_tcp_packets chain
#

$IPTABLES -A bad_tcp_packets -p tcp --tcp-flags SYN,ACK SYN,ACK \

-m state --state NEW -j REJECT --reject-with tcp-reset

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \
--log-prefix "New not syn:"

$IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP

#

411

Appendix J. Example scripts code-base

allowed chain
#

$IPTABLES -A allowed -p TCP --syn -j ACCEPT
$IPTABLES -A allowed -p TCP -m state --state ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A allowed -p TCP -j DROP

#
TCP rules
#

$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 21 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 22 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 80 -j allowed
$IPTABLES -A tcp_packets -p TCP -s 0/0 --dport 113 -j allowed

#
UDP ports
#

$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
if [$DHCP =="yes"] ; then

$IPTABLES -A udp_packets -p UDP -s $DHCP_SERVER --sport 67 \
--dport 68 -j ACCEPT

fi

#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 53 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 123 -j ACCEPT
#SIPTABLES -A udp_packets -p UDP -s 0/0 --source-port 2074 -j ACCEPT
#$IPTABLES -A udp_packets -p UDP -s 0/0 --source-port 4000 -j ACCEPT

#

In Microsoft Networks you will be swamped by broadcasts. These lines
will prevent them from showing up in the logs.

#

#SIPTABLES -A udp_packets -p UDP -i SINET_IFACE \
#--destination-port 135:139 -j DROP

#
If we get DHCP requests from the Outside of our network, our logs will

412

Appendix J. Example scripts code-base

be swamped as well. This rule will block them from getting logged.
#

#$IPTABLES -A udp_packets -p UDP -i SINET_IFACE -d 255.255.255.255\
#--destination-port 67:68 - DROP

#
ICMP rules
#

$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 8 -] ACCEPT
$IPTABLES -A icmp_packets -p ICMP -s 0/0 --icmp-type 11 -j ACCEPT

#
#4.1.4 INPUT chain
#

#
Bad TCP packets we don’t want.
#

$IPTABLES -A INPUT -p tcp -j bad_tcp_packets

#
Rules for special networks not part of the Internet
#

$IPTABLES -A INPUT -p ALL -i $LAN_IFACE -s $LAN_IP_RANGE -j ACCEPT
$IPTABLES -A INPUT -p ALL -i $LO_IFACE - ACCEPT

#

Special rule for DHCP requests from LAN, which are not caught properly
otherwise.

#

$IPTABLES -A INPUT -p UDP -i $LAN_IFACE --dport 67 --sport 68 -j ACCEPT
#

Rules for incoming packets from the internet.
#

413

Appendix J. Example scripts code-base

$IPTABLES -A INPUT -p ALL -i $INET_IFACE -m state --state ESTABLISHED,RELATED\
-j ACCEPT

$IPTABLES -A INPUT -p TCP -i $INET_IFACE -j tcp_packets

$IPTABLES -A INPUT -p UDP -i $INET_IFACE -j udp_packets

$IPTABLES -A INPUT -p ICMP -i $INET_IFACE -j icmp_packets

#

If you have a Microsoft Network on the outside of your firewall, you may
also get flooded by Multicasts. We drop them so we do not get flooded by
logs

#

#$IPTABLES -A INPUT -i $INET_IFACE -d 224.0.0.0/8 - DROP

#
Log weird packets that don’t match the above.
#

$IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT INPUT packet died: "

#
4.1.5 FORWARD chain
#

#
Bad TCP packets we don’t want
#

$IPTABLES -A FORWARD -p tcp -j bad_tcp_packets
#
Accept the packets we actually want to forward

#

$IPTABLES -A FORWARD -i $LAN_IFACE -j ACCEPT
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

#

Log weird packets that don’t match the above.
#

414

Appendix J. Example scripts code-base

$IPTABLES -A FORWARD -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT FORWARD packet died: "

#
#4.1.6 OUTPUT chain
#

#
Bad TCP packets we don’t want.
#

$IPTABLES -A OUTPUT -p tcp -j bad_tcp_packets

#
Special OUTPUT rules to decide which IP’s to allow.
#

$IPTABLES -A OUTPUT -p ALL -s $LO_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -s $LAN_IP -j ACCEPT
$IPTABLES -A OUTPUT -p ALL -0 $INET_IFACE -j ACCEPT

#
Log weird packets that don’t match the above.
#

$IPTABLES -A OUTPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \
--log-level DEBUG --log-prefix "IPT OUTPUT packet died: "

HHHHHH
4.2 nat table
#

#
4.2.1 Set policies
#

#

4.2.2 Create user specified chains
#

415

Appendix J. Example scripts code-base

#
4.2.3 Create content in user specified chains
#

#
4.2.4 PREROUTING chain
#

#
4.2.5 POSTROUTING chain
#

if [$PPPOE_PMTU =="yes"] ; then

$IPTABLES -t nat -A POSTROUTING -p tcp --tcp-flags SYN,RST SYN\
-] TCPMSS --clamp-mss-to-pmtu

fi

$IPTABLES -t nat -A POSTROUTING -0 $INET_IFACE -] MASQUERADE

#
#4.2.6 OUTPUT chain
#

A
4.3 mangle table
#

#
4.3.1 Set policies
#

#
4.3.2 Create user specified chains
#

#
4.3.3 Create content in user specified chains
#

#

4.3.4 PREROUTING chain
#

416

Appendix J. Example scripts code-base

#
4.3.5 INPUT chain
#

#
4.3.6 FORWARD chain
#

#
#4.3.7 OUTPUT chain
#

#
4.3.8 POSTROUTING chain
#

Example rc.flush-iptables script

#!/bin/sh

#

rc.flush-iptables - Resets iptables to default values.

#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

417

Appendix J. Example scripts code-base

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

Configurations

#
IPTABLES="/usr/sbin/iptables"

#

reset the default policies in the filter table.
#

$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT

#

reset the default policies in the nat table.

#

$IPTABLES -t nat -P PREROUTING ACCEPT
$IPTABLES -t nat -P POSTROUTING ACCEPT
$IPTABLES -t nat -P OUTPUT ACCEPT

#

reset the default policies in the mangle table.

#

$IPTABLES -t mangle -P PREROUTING ACCEPT
$IPTABLES -t mangle -P POSTROUTING ACCEPT
$IPTABLES -t mangle -P INPUT ACCEPT
$IPTABLES -t mangle -P OUTPUT ACCEPT
$IPTABLES -t mangle -P FORWARD ACCEPT

#

flush all the rules in the filter and nat tables.

#

$IPTABLES -F

$IPTABLES -t nat -F

$IPTABLES -t mangle -F

#

erase all chains that's not default in filter and nat table.

418

Appendix J. Example scripts code-base

#

$IPTABLES -X
$IPTABLES -t nat -X
$IPTABLES -t mangle -X

Example rc.test-iptables script

#!/bin/bash

#

rc.test-iptables - test script for iptables chains and tables.

#

Copyright (C) 2001 Oskar Andreasson <bluefluxATkoffeinDOTnet>
#

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

#

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License
along with this program or from the site that you downloaded it

from; if not, write to the Free Software Foundation, Inc., 59 Temple

Place, Suite 330, Boston, MA 02111-1307 USA

#

#

Filter table, all chains

#

iptables -t filter -A INPUT -p icmp --icmp-type echo-request \

419

Appendix J. Example scripts code-base

-j LOG --log-prefix="filter INPUT:"

iptables -t filter -A INPUT -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="filter INPUT:"

iptables -t filter -A OUTPUT -p icmp --icmp-type echo-request \
-j LOG --log-prefix="filter OUTPUT:"

iptables -t filter -A OUTPUT -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="filter OUTPUT:"

iptables -t filter -A FORWARD -p icmp --icmp-type echo-request\
-j LOG --log-prefix="filter FORWARD:"

iptables -t filter -A FORWARD -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="filter FORWARD:"

#

NAT table, all chains except OUTPUT which don’t work.

#

iptables -t nat -A PREROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat PREROUTING:"

iptables -t nat -A PREROUTING -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="nat PREROUTING:"

iptables -t nat -A POSTROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="nat POSTROUTING:"

iptables -t nat -A POSTROUTING -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="nat POSTROUTING:"

iptables -t nat -A OUTPUT -p icmp --icmp-type echo-request\

-j LOG --log-prefix="nat OUTPUT:"

iptables -t nat -A OUTPUT -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="nat OUTPUT:"

#

Mangle table, all chains

#

iptables -t mangle -A PREROUTING -p icmp --icmp-type echo-request \
-j LOG --log-prefix="mangle PREROUTING:"

iptables -t mangle -A PREROUTING -p icmp --icmp-type echo-reply \
-j LOG --log-prefix="mangle PREROUTING:"

iptables -t mangle -| FORWARD 1 -p icmp --icmp-type echo-request\
-j LOG --log-prefix="mangle FORWARD:"

iptables -t mangle -| FORWARD 1 -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="mangle FORWARD:"

iptables -t mangle -I INPUT 1 -p icmp --icmp-type echo-request\

-j LOG --log-prefix="mangle INPUT:"

420

Appendix J. Example scripts code-base

iptables -t mangle -I INPUT 1 -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="mangle INPUT:"

iptables -t mangle -A OUTPUT -p icmp --icmp-type echo-request\

-j LOG --log-prefix="mangle OUTPUT:"

iptables -t mangle -A OUTPUT -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="mangle OUTPUT:"

iptables -t mangle -| POSTROUTING 1 -p icmp --icmp-type echo-request\
-j LOG --log-prefix="mangle POSTROUTING:"

iptables -t mangle -| POSTROUTING 1 -p icmp --icmp-type echo-reply \

-j LOG --log-prefix="mangle POSTROUTING:"

421

Index

Symbols

SINET _IP, 270
$LAN_IFACE, 288
$LAN_IP, 289
$LOCALHOST_IP, 289
$STATIC_IP, 289
--ahspi, 168
--chunk-types, 161
--clamp-mss-to-pmtu, 242
--clustermac, 210
--cmd-owner, 191
--comment, 170
--ctexpire, 171
--ctorigdst, 171
--ctorigsrc, 171
--ctproto, 171
--ctrepldst, 171
--ctreplsrc, 171
--ctstate, 171
--ctstatus, 171
--destination, 149
--destination-port, 154, 158, 161,
189

--dscp, 176
--dscp-class, 176
--dst-range, 183
--dst-type, 165

--ecn, 177
--ecn-ip-ect, 177
--ecn-tcp-ece, 177
--ecn-tcp-remove, 224
--espspi, 168

422

--fragment, 149
--gid-owner, 191
--hash-init, 210

--hashlimit, 179
--hashlimit-burst, 179
--hashlimit-htable-expire, 179
--hashlimit-htable-expire match,
179
--hashlimit-htable-gcinterval, 179
--hashlimit-htable-max, 179
--hashlimit-htable-size, 179
--hashlimit-mode, 179
--hashlimit-name, 179
--hashmode, 210

--helper, 182

--hitcount, 195

--icmp-type, 160
--in-interface, 149

--length, 184

--limit, 185

--limit-burst, 185
--local-node, 210
--log-ip-options, 225
--log-level, 225

--log-prefix, 225
--log-tcp-options, 225
--log-tcp-sequence, 225
--mac-source, 187

--mark, 170, 188

--mask, 214

--match, 153

--mss, 202

--name, 195

--new, 210

--nodst, 238
--out-interface, 149
--pid-owner, 191

--pkt-type, 193 --to-ports, 229, 235

--pkt-type match, 193 --to-source, 240
--port, 189 --tos, 203
--protocol, 149 --total-nodes, 210
--queue-num, 233 --ttl-dec, 246
--rcheck, 195 --ttl-eq, 204
--rdest, 195 --ttl-gt, 204
--realm, 194 --ttl-inc, 246
--reject-with, 236 --ttl-It, 204
--remove, 195 --ttl-set, 246
--restore, 216 --uid-owner, 191

--restore-mark, 214
--rsource, 195
--rttl, 195

--save, 216
--save-mark, 214
--seconds, 195
--selctx, 239

--set, 195
--set-class, 209
--set-dscp, 223

--ulog-cprange, 249
--ulog-nlgroup, 249
--ulog-prefix, 249
--ulog-qthreshold, 249
--update, 195
[ASSURED], 115
[UNREPLIED], 114

--set-dscp-class, 223 A

--set-mark, 214, 228

--set-mss, 242 Accept, 63

--set-tos, 244 ACCEPT target, 209, 274, 283
--sid-owner, 191 ACK, 20

--source, 149 Acknowledgment Number, 19
--source-port, 154, 158, 161, 189 Addrtype match, 165
--src-range, 183 --dst-type, 165

--src-type, 165 --src-type, 165

--state, 201 ANYCAST, 165

--syn, 154 BLACKHOLE, 165
--tcp-flags, 154 BROADCAST, 165
--tcp-option, 154 LOCAL, 165

--to, 232, 238 MULTICAST, 165
--to-destination, 217 NAT, 165

--to-destination target, 217 PROHIBIT, 165

423

THROW, 165
UNICAST, 165
UNREACHABLE, 165
UNSPEC, 165
XRESOLVE, 165
Advanced routing, 57
AH/ESP match, 168
--ahspi, 168
Ahspi match, 168
Amanda, 125
ANYCAST, 165
Application layer, 5
ASSURED, 107, 114

Preparations, 79

Proc set up, 273

Raw table, 139

Speed considerations, 130
State machine, 106
Tables, 139

User specified chains, 279
User-land setup, 84

BLACKHOLE, 165
BROADCAST, 165

B

Bad_tcp_packets, 280, 286
Bash, 254
+-sign, 255
-X, 255
Basics, 79
Commands, 142
Compiling iptables, 85
Displacement, 274
Drawbacks with restore, 131
Filter table, 139
Installation on Red Hat 7.1, 87
iptables-restore, 130, 135
iptables-save, 130
Mangle table, 139
Modules, 271
(see also Modules)
NAT, 69
Nat table, 139
Policy, 279

C

Chain, 62
FORWARD, 92, 274, 288, 289,
296, 299
INPUT, 92, 274, 284, 286, 296,
299
OUTPUT, 92, 102, 274, 289,
296, 298, 299
POSTROUTING, 92, 290, 297,
299
PREROUTING, 92, 102, 289,
297, 298
Traversing, 92
User specified, 103
Checksum, 21, 23, 25
Chkconfig, 87
Chunk flags (SCTP), 161
Chunk types (SCTP), 161
Chunk-types match, 161
Cisco PIX, 66
Clamp-mss-to-pmtu target, 242
CLASSIFY target, 209
--set-class, 209

CLUSTERIP target, 210 Amanda, 125

--clustermac, 210 FTP, 125

--hash-init, 210 IRC, 125

--hashmode, 210 TFTP, 125

--local-node, 210 Connection, 2

--new, 210 Connection tracking, 63

--total-nodes, 210 connection-oriented, 11
Clustermac target, 210 Connmark match, 170
Cmd-owner match, 191 --mark, 170
cmd.exe, 60 CONNMARK target, 214
Code, 25 --mask, 214
Commands, 142 --restore-mark, 214

--append, 142 --save-mark, 214

--delete, 142 --set-mark, 214

--delete-chain, 142 CONNSECMARK target, 101, 216

--flush, 142 --restore, 216

--insert, 142 --save, 216

--list, 142 Conntrack, 106

--new-chain, 142 Entries, 107

--policy, 142 Helpers, 125

--rename-chain, 142 ip_conntrack, 107

--replace, 142 Conntrack match, 171

--zero, 142 --ctexpire, 171
Comment match, 170 --ctorigdst, 171

--comment, 170 --ctorigsrc, 171
Commercial products, 326 --ctproto, 171

Ingate Firewall 1200, 326 --ctrepldst, 171
Common problems, 331 --ctreplsrc, 171

DHCP, 336 --ctstate, 171

IRC DCC, 337 --ctstatus, 171

ISP using private IP’s, 335 console, 258

Listing rule-sets, 329 cron, 67, 258

Modules, 331 crontab, 258

NEW not SYN, 333 Ctexpire match, 171

SYN/ACK and NEW, 334 Ctorigdst match, 171

Updating and flushing, 330 Ctorigsrc match, 171
Complex protocols Ctproto match, 171

425

Ctrepldst match, 171
Ctreplsrc match, 171
Ctstate match, 171
Ctstatus match, 171
CWR, 19

D

Data Link layer, 5
Data Offset, 19
De-Militarized Zone (DMZ), 301
Debugging, 253
Bash, 254
Common problems, 331
DHCP, 336
Echo, 254
Iptables, 260
IRC DCC, 337
ISP using private IP’s, 335
Listing rule-sets, 329
Modules, 331
Nessus, 253
NEW not SYN, 333
Nmap, 253
Other tools, 253
SYN/ACK and NEW, 334
System tools, 258
Updating and flushing, 330
Deny, 61
Destination address, 16, 25
Destination match, 149
Destination port, 18, 23
Destination Unreachable, 26

Communication administratively

prohibited by filtering, 28

426

Destination host administratively
prohibited, 27
Destination host unknown, 27
Destination network
administratively prohibited, 27
Destination network unknown,
27
Fragmentation needed and DF
set, 27
Host precedence violation, 28
Host unreachable, 27
Host unreachable for TOS, 28
Network unreachable, 27
Network unreachable for TOS,
27
Port unreachable, 27
Precedence cutoff in effect, 28
Protocol unreachable, 27
Source host isolated, 27
Source route failed, 27
Destination-port match, 154, 158,
161, 189
Detailed explanations, 329
Listing rule-sets, 329
Updating and flushing, 330
DHCP, 229, 270, 274
Differentiated Services, 14
DiffServ, 15
Displacement, 274
Dmesg, 225
DMZ, 64
DNAT, 2, 60, 69
DNAT target, 99, 101, 217, 289
--to-destination, 217
DNAT target examples, 217
DNS, 12, 283

Drawbacks with iptables-restore,
131
Drop, 61
DROP target, 223, 283, 288, 289
DSCP, 14
Dscp match, 176
--dscp, 176
--dscp-class, 176
DSCP target, 223
--set-dscp, 223
--set-dscp-class, 223
Dscp-class match, 176
Dst-range match, 183
Dst-type match, 165
Dynamic Host Configuration
Protocol (DHCP), 304

E

e-mail, 67
Easy Firewall Generator, 322
ECE, 19
Echo, 254
Echo Request/Reply, 25
ECN, 14, 29
ECN IP field, 177
Ecn match, 177
--ecn, 177
--ecn-ip-ect, 177
--ecn-tcp-ece, 177
ECN target, 224
--ecn-tcp-remove, 224
Ecn-ip-ect match, 177
Ecn-tcp-ece match, 177
Ecn-tcp-remove target, 224

427

Errors
Table does not exist, 261
Unknown arg, 260
ESP match
--espspi, 168
Espspi match, 168
Example
Hardware requirements, 72
Machine placement, 74
Example scripts, 253, 376
biggest, 69
Configuration, 293
DHCP, 293
DMZ, 293
Filter table, 295
Internet, 293
iptables, 293
Iptables-save ruleset, 313
iptsave-ruleset.txt, 132
LAN, 293
Limit-match.txt, 312
Localhost, 293
Module loading, 294
NAT, 72
Non-required modules, 294

Non-required proc configuration,

295

Other, 293

Pid-owner.txt, 312

PPPoE, 293

proc configuration, 294
rc.DHCP firewall.txt, 304, 406
rc.DMZ firewall.txt, 301, 386

rc.firewall.txt, 269, 292, 299, 376

rc.flush-iptables.txt, 311, 417
rc.test-iptables.txt, 310, 419
rc.UTIN.firewall.txt, 308, 397

Recent-match.txt, 195, 313
Required modules, 294
Required proc configuration, 295
Rules set up, 295
Set policies, 295
Sid-owner.txt, 313
Structure, 269, 292, 269
(see also Example structure)
TTL-inc.txt, 313
User specified chains, 295
User specified chains content,
295
Example structure
Configuration, 270
Explicit Congestion Notification, 14
Explicit matches, 164

F

Fast-NAT, 69
File
ip_ct_generic_timeout, 124
Ip_dynaddr, 273
Ip_forward, 273
Files
ip_conntrack, 107
ip_conntrack_max, 107
ip_conntrack_tcp_loose, 115
Filter table, 139, 295
Filtering, 9
Introduction, 59
Layer 7, 59
FIN, 17, 20
FIN/ACK, 17
Firewall Builder, 315

428

Flags, 15

Flush iptables, 311
fragment, 15
Fragment match, 149
Fragment Offset, 15
FreeSWAN, 168
FTP, 125

fwbuilder, 315

G

Generic matches, 149
GGP, 23
Gid-owner match, 191
Graphical user interfaces, 315
Easy Firewall Generator, 322
fwbuilder, 315
Integrated Secure
Communications System, 320
IPmenu, 321
Turtle Firewall Project, 316
GRE, 9

H

Handshake, 11

Hardware
Machine placement, 74
Placement, 74
Requirements, 72
Structure, 74

Hash-init target, 210

Hashlimit match, 179
--hashlimit, 179

--hashlimit-burst, 179 Header Checksum, 25

--hashlimit-htable-expire, 179 Headers, 24
--hashlimit-htable-gcinterval, 179 Identification, 24
--hashlimit-htable-max, 179 Identifier, 26
--hashlimit-htable-size, 179 Information request, 32
--hashlimit-mode, 179 (see also Information request)
--hashlimit-name, 179 Internet Header Length, 24
Hashlimit-burst match, 179 Parameter problem, 31
Hashlimit-htable-gcinterval match, (see also Parameter problem)
179 Protocol, 25
Hashlimit-htable-max match, 179 Redirect, 29
Hashlimit-htable-size match, 179 (see also Redirect)

Sequence number, 26
Source Address, 25
Source Quench, 28

(see also Source Quench)
Time To Live, 25
Timestamp, 31

(see also Timestamp)
Total Length, 24
TTL equals zero, 30

Hashlimit-mode match, 179

Hashlimit-name match, 179

Hashmode target, 210

Header checksum, 16, 25

Helper match, 182
--helper, 182

Hitcount match, 195

How a rule is built, 138

Hittp, 274 (see also TTL equals zero)
Type, 25
Type of Service, 24
I Types, 329
Version, 24
ICMP, 5, 23, 119, 284 ICMP match, 160, 284
Characteristics, 23 --icmp-type, 160
Checksum, 25 Icmp-type match, 160
Code, 25 icmp_packets, 284
Destination Address, 25 ICQ, 65
Destination Unreachable, 26 Identd, 274
(see also Destination Identification, 15, 24
Unreachable) Identifier, 26
Echo Request/Reply, 25 IHL, 13
(see also Echo Implicit matches, 153
Request/Reply) In-interface match, 149

429

Information request, 32
Ingate, 326
Ingate Firewall 1200, 326
Integrated Secure
Communications System, 320
Interface, 270
Internet Header Length, 24
Internet layer, 5, 9
Introduction, 1
NAT, 69
Intrusion detection system
Host-based, 67
Network, 67
IP,5
Characteristics, 9
Destination address, 16
DSCP, 14
ECN, 14
Flags, 15
Fragment Offset, 15
Header checksum, 16
Headers, 12
Identification, 15
IHL, 13
Options, 16
Padding, 16
Protocol, ??
Source address, 16
Time to live, 15
Total Length, 15
Type of Service, 14
Version, 13
IP filtering, 59
Planning, 64
IP range match, 183
--dst-range, 183
--src-range, 183

430

Ipchains, 87
IPmenu, 321
IPSEC, 2, 168
Iptables
Basics, 138
Iptables debugging, 253
Iptables matches, 149
(see also Match)
Iptables targets, 208
(see also Target)
iptables-restore, 130, 135
drawbacks, 131
Speed considerations, 130
iptables-save, 130, 132, 253
drawbacks, 131
Speed considerations, 130
Iptables-save ruleset, 313
ipt_*, 262
ipt_ REJECT.ko, 262
ipt_state.ko, 262
Ip_conntrack, 107
ip_conntrack_max, 107
ip_conntrack_tcp_loose, 115
IRC, 125

J

Jump, 63

K

Kernel setup, 79
Kernel space, 2
kernwarnings, 260

L

LAN, 66, 270, 288

layered security, 65

Length, 23

Length match, 184
--length, 184

Limit match, 185, 312
--limit, 185
--limit-burst, 185

Limit-burst match, 185

Limit-match.txt, 312

LOCAL, 165

Local-node target, 210

LOG target, 225, 283, 288
--log-ip-options, 225
--log-level, 225
--log-prefix, 225
--log-tcp-options, 225
--log-tcp-sequence, 225

Log-ip-options target, 225

Log-level target, 225

Log-prefix target, 225

Log-tcp-options target, 225

Log-tcp-sequence target, 225

M

Mac match, 187
--mac-source, 187
Mac-source match, 187

Mangle table, 139

Mark match, 170, 188
--mark, 188

MARK target, 100, 228
--set-mark, 228

431

Mask target, 214
MASQUERADE target, 102, 229,
290
--to-ports, 229
Match, 62, 149
--destination, 149
--fragment, 149
--in-interface, 149
--match, 153, 164
--out-interface, 149
--protocol, 149
--source, 149
Addrtype, 165
(see also Addrtype match)
AH/ESP, 168
(see also AH/ESP match)
Basics, 138
Comment, 170
(see also Comment match)
Connmark, 170
(see also Connmark match)
Conntrack, 171
(see also Conntrack match)
Dscp, 176
(see also Dscp match)
Ecn, 177
(see also Ecn match)
Explicit, 164
(see also Explicit matches)
Generic, 149
Hashlimit, 179
(see also Hashlimit match)
Helper, 182
(see also Helper match)
ICMP, 160
(see also ICMP match)
Implicit, 153

IP range, 183

(see also IP range match)
Length, 184

(see also Length match)
Limit, 185

(see also Limit match)
Mac, 187

(see also Mac match)
Mark, 188

(see also Mark match)
Multiport, 189

(see also Multiport match)
Owner, 191

(see also Owner match)
Packet type, 193

(see also Packet type match)
Realm, 194

(see also Realm match)
Recent, 195

(see also Recent match)
SCTP, 161

(see also SCTP match)
State, 201

(see also State match)
TCP, 154

(see also TCP match)
Tcpmss, 202

(see also Tcpmss match)
Tos, 203

(see also Tos match)
Ttl, 205

(see also Ttl match)
UDP, 158

(see also UDP match)
Unclean, 206

(see also Unclean match)

MIRROR target, 231

432

Modules, 271
FTP, 271
H.323, 271
IRC, 271
Patch-o-matic, 271
Mss match, 202
MTU, 36
MULTICAST, 165
Multiport match, 189
--destination-port, 189
--port, 189
--source-port, 189

N

Name match, 195

NAT, 66, 69, 165, 229, 290
Caveats, 71
Examples, 72
Hardware, 72
Placement, 74

Nat table, 139

Negotiated ports, 65

Nessus, 253

Netfilter-NAT, 69

NETMAP target, 232
--to, 232

Network Access layer, 5

Network address translation (NAT),

139

Network layer, 5

New target, 210

NFQUEUE target, 233
--queue-num, 233

NIDS, 67

Nmap, 253

Nmapfe, 264

Nodst target, 238
non-standards, 68

NOTRACK target, 102, 124, 234
NTP, 283

O

Options, 16, 21, 79
--exact, 142
--line-numbers, 142
--modprobe, 142
--numeric, 142
--set-counters, 142
--verbose, 142

osl
Application layer, 5
Data Link layer, 5
Network layer, 5
Physical layer, 5
Presentation layer, 5
Reference model, 5
Session layer, 5
Transport layer, 5

Other resources, 343

Out-interface match, 149

Owner match, 191, 312, 313
--cmd-owner, 191
--gid-owner, 191
--pid-owner, 191
--sid-owner, 191
--uid-owner, 191
Pid match, 312
Sid match, 313

433

P

Packet, 2
Packet type match, 193
--pkt-type, 193
Padding, 16, 21
Parameter problem, 31
IP header bad (catchall error),
31
Required options missing, 31
Physical layer, 5
Pid-owner match, 191
Pid-owner.txt, 312
Planning
|P filters, 64
PNAT, 69
Policy, 63, 65, 279, 288
Port
Negotiated, 65
Port match, 189
POSTROUTING, 240, 274
PPP, 274
PPPoOE, 270
precautions, 258
Preparations, 79
Where to get, 79
PREROUTING, 217
Presentation layer, 5
Proc set up, 273
PROHIBIT, 165
Protocol, 16, 25
Protocol match, 149
Proxy, 8, 60, 67
Placement, 74
PSH, 20
PUSH, 20

Q

Qdisc, 228

QosS, 3

QUEUE target, 234
Queue-num target, 233

R

Raw table, 139
rc.DHCP: firewall.txt, 304
rc.DMZ firewall.txt, 301
rc.firewall explanation, 269
rc.firewall.txt, 292, 299
rc.flush-iptables.txt, 311
rc.test-iptables.txt, 310
rc.UTIN.firewall.txt, 308
Rcheck match, 195
Rdest match, 195
Realm match, 194

--realm, 194
Recent match, 195, 313

--hitcount, 195

--name, 195

--rcheck, 195

--rdest, 195

--remove, 195

--rsource, 195

--rttl, 195

--seconds, 195

--set, 195

--update, 195
Recent match example, 195
Recent-match.txt, 313
Redirect, 29

Redirect for host, 30

434

Redirect for network, 30
Redirect for TOS and host, 30
Redirect for TOS and network,
30
REDIRECT target, 235
--to-ports, 235
Reject, 62
REJECT target, 236, 280
--reject-with, 236
Reject-with target, 236
Remove match, 195
Reserved, 19
Restore target, 216
Restore-mark target, 214
Restoring rulesets, 130
RETURN target, 238
RFC, 12
1122, 202
1349, 12
1812, 210
2401, 168
2474,12, 14, 223
2638, 176
2960, 33
3168, 12, 14, 177
3260, 12, 15
3268, 19, 19
3286, 33
768, 21
791,12, 15
792, 24, 284
793, 3, 19, 112, 202, 236
Routing, 57, 228
ANYCAST, 165
BLACKHOLE, 165
BROADCAST, 165
LOCAL, 165

MULTICAST, 165
NAT, 165
PROHIBIT, 165
THROW, 165
UNICAST, 165
UNREACHABLE, 165
UNSPEC, 165
XRESOLVE, 165
Routing realm, 194
Rsource match, 195
RST, 20
Rttl match, 195
Rule, 63
Rules, 138
Basics, 138
Ruleset, 63

S

SACK, 16
SAME target, 238
--nodst, 238
--to, 238
Save target, 216
Save-mark target, 214
Saving rulesets, 130
Script structure, 292
SCTP, 33
ABORT, 35, 37, 40
Advertised Receiver Window
Credit, 47, 51, 53
B-bit, 43
Characteristics, 33
Checksum, 37

Chunk Flags, 39, 42, 44, 46, 47,
51, 53, 55, 56, 161
Chunk Length, 40, 46, 47, 51,
53, 55, 56
Chunk types, 161
Chunk Value, 40
Cookie, 42
COOKIE ACK, 35, 41
COOKIE ECHO, 35, 41
Cumulative TSN Ack, 53, 55
DATA, 35, 36, 42
Data sending and control
session, 35
Destination port, 37
Duplicate TSN #1, 54
Duplicate TSN #X, 55
E-bit, 43
ECN, 34
ERROR, 35, 44
Cookie Received While
Shutting Down, 44
Invalid Mandatory Parameter,
44
Invalid Stream Identifier, 44
Missing Mandatory
Parameter, 44
No User Data, 44
Out of Resource, 44
Stale Cookie Error, 44
Unrecognized Chunk Type, 44
Unrecognized Parameters, 44
Unresolvable Address, 44
Error causes, 44
Gap Ack Block #1 End, 54
Gap Ack Block #1 Start, 54
Gap Ack Block #N End, 54
Gap Ack Block #N Start, 54

Generic Header format, 36
Headers, 36
HEARTBEAT, 35, 45
HEARTBEAT ACK, 35, 46
Heartbeat Information TLV, 46,
46
INIT, 35, 36, 37, 46

Variable Parameters, 46
INIT ACK, 35, 36, 50

Variable Parameters, 50
Initial TSN, 48, 51
Initialization, 35
Initiate Tag, 47, 51
Length, 41, 41, 42, 43, 44, 46,
57
Message oriented, 34
MTU, 36
Multicast, 33
Number of Duplicate TSNs, 54
Number of Gap Ack Blocks, 54

Number of Inbound Streams, 48,

51

Number of Outbound Streams,
48, 51

Payload Protocol Identifier, 43
Rate adaptive, 34

SACK, 34, 35, 52
SHUTDOWN, 35, 55
SHUTDOWN ACK, 35, 56
Shutdown and abort, 35
SHUTDOWN COMPLETE, 35,
36, 37, 56

Source port, 37

Stream ldentifier, 43

Stream Sequence Number, 43
T-bit, 41, 57

TCB, 41

436

TSN, 43
Type, 40
U-bit, 43
Unicast, 33
User data, 44
Verification tag, 37
SCTP match, 161
--chunk-types, 161
--destination-port, 161
--source-port, 161
SECMARK target, 100, 239
--selctx, 239
Seconds match, 195
Segment, 3
Selctx target, 239
SELinux, 216, 239
Sequence Number, 19, 26
Session layer, 5
Set match, 195
Set-class target, 209
Set-dscp target, 223
Set-dscp-class target, 223
Set-mark target, 214, 228
Set-mss target, 242
Set-tos target, 244
Sid-owner match, 191
Sid-owner.txt, 313
SLIP, 274
SNAT, 3, 60, 69
SNAT target, 101, 240, 274, 290
--to-source, 240
Snort, 66
Source address, 16, 25
Source match, 149
Source port, 18, 22
Source Quench, 28

Source-port match, 154, 158, 161,
189
Speed considerations, 130
Spoofing, 334
Squid, 60, 67, 235
Src-range match, 183
Src-type match, 165
SSH, 258, 274
Standardized, 67
State
Conntrack match, 171
(see also Conntrack match)
State machine, 106
Default connections, 123
State match, 3, 62, 106, 201
--state, 201
CLOSED, 21
Complex protocols, 125
(see also Complex protocols)
ESTABLISHED, 106, 109, 119,
282, 286
ICMP, 119
INVALID, 106, 109, 280
NEW, 106, 109, 119, 280
NOTRACK, 124
(see also NOTRACK target)
RELATED, 106, 109, 112, 282,
284, 286
TCP, 112
UDP, 117
UNTRACKED, 109
Untracked connections, 124
[ASSURED], 117
[UNREPLIED], 117
Stream, 3
SYN, 20, 280, 334
Syn match, 154

437

SYN_RECV, 114
SYN_SENT, 107
Syslog, 225, 259
alert, 259
crit, 259
debug, 259
emerg, 259
err, 259
info, 259
notice, 259
warning, 259
syslog.conf, 259
System tools, 253

T

Table, 62
Filter, 92, 102
Mangle, 92, 99, 298
Nat, 92, 101, 296
Raw, 92, 102
Traversing, 92
Table does not exist error, 261
Tables, 139
Target, 63, 208
ACCEPT, 209
Basics, 138
CLASSIFY, 209
(see also CLASSIFY target)
CLUSTERIP, 210
(see also CLUSTERIP target)
CONNMARK, 214
(see also CONNMARK target)
CONNSECMARK, 216

(see also CONNSECMARK

target)
DNAT, 217

(see also DNAT target)
DROP, 223

(see also DROP target)
DSCP, 223

(see also DSCP target)
ECN, 224

(see also ECN target)
LOG, 225

(see also LOG target)
MARK, 228

(see also MARK target)
MASQUERADE, 229

(see also MASQUERADE

target)
MIRROR, 231

(see also MIRROR target)
NETMAP, 232

(see also NETMAP target)
NFQUEUE, 233

(see also NFQUEUE target)
NOTRACK, 234

(see also NOTRACK target)
QUEUE, 234

(see also QUEUE target)
REDIRECT, 235

(see also REDIRECT target)
REJECT, 236

(see also REJECT target)
RETURN, 238

(see also RETURN target)
SAME, 238

(see also SAME target)
SECMARK, 239

(see also SECMARK target)

438

SNAT, 240

(see also SNAT target)
TCPMSS, 242

(see also TCPMSS target)
TOS, 244

(see also TOS target)
TTL, 246

(see also TTL target)
ULOG, 249

(see also ULOG target)

TCP, 5, 112, 280, 282
ACK, 20
Acknowledgment Number, 19
Characteristics, 17
Checksum, 21
CWR, 19
Data Offset, 19
Destination port, 18
ECE, 19
FIN, 17, 20
FIN/ACK, 17
Handshake, 17
Headers, 18
Opening, 112
Options, 21, 341
Padding, 21
PSH, 20
PUSH, 20
Reserved, 19
RST, 20
Sequence number, 19
Source port, 18
SYN, 17, 20
URG, 20, 21
Urgent Pointer, 21
Window, 21
TCP match, 154

--destination-port, 154
--source-port, 154
--syn, 154
--tcp-flags, 154
--tcp-option, 154
Tcp-flags match, 154
Tcp-option match, 154
TCP/IP, 5
Application layer, 5
Internet layer, 5
Layers, 5
Network Access layer, 5
Stack, 5
Transport layer, 5
TCP/IP routing, 57
Tcpmss match, 202
--mss, 202
TCPMSS target, 242
--clamp-mss-to-pmtu, 242
--set-mss, 242
tcp_chain, 282
Terms, 2
NAT, 69
TFTP, 125
THROW, 165
Time Exceeded Message, 30
Time to live, 15, 25
Timestamp, 29
To target, 232, 238
To-ports target, 229, 235
To-source target, 240
TOS, 99
Tos match, 203
--tos, 203
TOS target, 244
--set-tos, 244
Total Length, 15, 24

439

Total-nodes target, 210
Transport layer, 5
Traversing of tables and chains, 92
General, 92
Tripwire, 67
TTL, 284
TTL equals zero, 30
TTL equals 0 during reassembly,
31
TTL equals 0 during transit, 31
Ttl match, 204
--ttl-eq, 204
--ttl-gt, 204
--ttl-It, 204
TTL target, 100, 246, 313
--ttl-dec, 246
--ttl-inc, 246
--ttl-set, 246
Ttl-dec target, 246
Ttl-eq match, 204
Ttl-gt match, 204
Ttl-inc target, 246
TTL-inc.txt, 313
Ttl-It match, 204
Ttl-set target, 246
Turtle Firewall Project, 316
Type, 25
Type of Service, 14, 24

U

UDP, 5, 21, 117, 158, 283
Characteristics, 21
Checksum, 23
Destination port, 23

Length, 23 V
Source port, 22
UDP match, 283 Version, 13, 24
--destination-port, 158 VPN, 4
--source-port, 158
udp_packets, 283
Uid-owner match, 191 W
ULOG target, 249
--ulog-cprange, 249
--ulog-nigroup, 249
--ulog-prefix, 249
--ulog-qthreshold, 249
Ulog-cprange target, 249
Ulog-nigroup target, 249
Ulog-prefix target, 249 X
Ulog-qgthreshold target, 249
Unclean match, 206
UNICAST, 165
Unknown arg, 260
UNREACHABLE, 165
unreliable protocol, 11
UNREPLIED, 114
UNSPEC, 165
Update match, 195
URG, 20, 21
Urgent Pointer, 21
User interfaces, 315
Graphical, 315
(see also Graphical user
interfaces)
User space, 3
User specified chains, 103, 279
User-land setup, 84
User-land states, 109
Userland, 3

Webproxy, 61

(see also Proxy)
Window, 21
Words, 2

XRESOLVE, 165

440

