Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

)
mattia.monga@unimi.it

Anno accademico 2019/20, | semestre

@@@ 2018 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-sa/4 0fdeed:it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lezione V: Design by Contract

o & = = =z 9ac 47

Contratti

La tripla di Hoare {P}S{@Q} puo diventare un contratto fra chi
implementa (fornitore) S e chi usa (cliente) S

Il modello di
e L'implementatore di S si impegna a garantire Q in tutti gli [

stati che soddisfano P

@ L'utilizzatore di S si impegna a chiedere il servizio in un
stato che soddisfa P ed & certo che se S termina, si
giungera in uno stato in @ vale

Il lavoro dell'implementatore & particolarmente facile quando:
Q & True (vera per ogni risultato!) o quando P & False
(I'utilizzatore non riuscira mai a portare il sistema in uno stato
in cui tocchi fare qualcosa!). Weakest precondition (data Q) o
strongest postcondition (data P) determinano il ruolo di una
feature.

o & - = z 9ac 48

Eiffel

Il modello di

Un linguaggio object-oriented che introduce i contratti Eiffel
nell'interfaccia delle classi. Il contratto di default per un
metodo (“feature”) F & { True}F{ True}.

feature
decrement is
-— Decrease counter by one.

require

item > O -- pre-condition
do

item := item - 1 -- implementation
ensure

item = old item - 1 -— post-condition

o & - = z 9ac 49

Eiffel

Eiffel & esplicitamente progettato come linguaggio “di
“specify,

progetto”, non solo “di programmazione”

design, implement and modify quality
software” [Ecma standard 367]
“Programmazione in grande” con oggetti, derivati da classi

organizzate in gerarchie di ereditarieta e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.

aac 50

Il modello di
Eiffel

Organizzazione delle asserzioni

° pre/post-condizioni sulle feature (require, ensure)
@ Invarianti di classe (invariant)

@ asserzioni (check)

@ loop invariant

(from .. invariant .. until .. variant .. loop .. end)

o & = = wace bl

Il supporto del linguaggio

@ invarianti di classe sono condizioni che devono essere vere
in ogni momento ‘“critico”, ossia osservabile dall’esterno.
In pratica e come se facessero parte di ogni pre- e
post-condizione.

@ ¢ possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un'eccezione
@ L'eccezione porta il sistema nel precedente stato stabile ed
& possibile
e terminare con un fallimento
e riprovare

o <9 = = = 9ac §2

Demo

class ROOT_TEST_STABLE_STATES
create make
feature {NONE}
secret: BOOLEAN
feature {ANY}
make -- root class cannot have preconditions
-- require ok_pre("make")
do
print ("Executing make’N")
mycommand; secret := TRUE
ensure ok_post("make")
end
mycommand
require ok_pre("mycommand")
do
print ("Executing mycommandN")
secret := FALSE; myother("1"); secret := TRUE
-- But what happens if myother is a "client"?
-- secret := FALSE; Current.myother("2"); secret := TRUE
ensure ok_post ("mycommand")
end
myother (s: STRING)
require ok_pre("myother")
do
print ("Executing myother " + s + "JN")
ensure ok_post("myother")
end
ok_inv: BOOLEAN do print("Checking ok_inv!Y%N"); Result := secret; end
ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "/N"); Result := True; end
ok_post (w: STRING): BOOLEAN do print("Checking ok_post @ " + w + "YN"); Result := True; end
invariant ok_inv
end [m] = =

= o>

5%

create make
feature gcd (x: INTEGER; y: INTEGER): INTEGER
require
positive_parms: x >= 0 and y >= 0
not_zero: x /=0 ory /=0
local t: INTEGER
do

if x = 0 or y = 0 then Result := x.max (y)
else
from Result := x; t :=y

invariant

positive_result: Result > 0

positive_t: t > O

gcd_inv: mathged(x, y) = mathgcd(Result, t)

until Result = t

loop
if Result > t then Result := Result - t
else t := t - Result

end
variant t.max(Result)
end
end
ensure
positive_ris: Result > O
dividex: x = 0 or else x.integer_remainder(Result) = 0
dividey: y = 0 or else y.integer_remainder(Result) = 0
Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic

all (x.integer_remainder(ic.item) /= 0
or y.integer_remainder(ic.item) /= 0) end

end

& =

54

make do

print("Ris: " + gcd(126,294).out + " IN")
print("Ris: " + gcd(0,294).out + " IN")
end

mathgcd(x,y: INTEGER):INTEGER do
from Result := x.min(y)
until y.integer_remainder (Result) = 0
and then x.integer_remainder(Result) = 0
loop
Result := Result - 1

sac hh

Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:
do
balance

:= balance - x

ensure
@ Implementazione e specifica

balance
@ How & What

old balance - x

Il client & responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.

9ac hh

Contratti ed ereditarieta

suo metodo:

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni

@ deve essere accessibile a pre-condizioni uguali o pit deboli

del metodo della superclasse;

@ deve garantire post-condizioni uguali o pit forti del
metodo della superclasse;

Altrimenti il “figlio” non pud essere sostituito al “padre” senza
alterare il sistema.

aac K7

Principio di sostituibilita

Le due condizioni sono quindi:

PREparent — PREderived (1)
POS Tderived — POS Tparent (2)

@ (1) in un programma corretto non pud succedere che
PREparent valga e PREgerived NO; I'oggetto evoluto deve
funzionare in ogni stato in cui funzionava |'originale: non
puo avere obbligazioni pild stringenti, semmai pid lasche.

@ (2) in un programma corretto non pud succedere che valga
POST gerived ma non POST parent; un stato corretto

dell'oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell'originale.

o «@» «=» «2» = 9oac hF

Principio di sostituibilita (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione @, le reali pre- e
post-condizioni siano:

P REderived =P REparent Vv P (3) PREpsrent == PREderived
POSTderived = POSTparent /\ Q (4) POSTdérived —— POSTparent

In Eiffel: require else € ensure then

o = = = z wac K90

Contratti “astratti”

extend (x: G)
-— Add "z' at end of lust.

require Stronger precondition. . . ma
space_available: not full weaker (uguali in realta) in
deferred astratto
ensure
full: BOOLEAN
one_more: __) .
count = old count + 1 Is represgntatzon ful%.
end -= (Answer: if and only if
-- number of items is equal
full: BOOLEAN - to capacity)
-- Is representation full? ° Result := (B .
-- (Default: mo) esult := (count = capacit
do end

Result := False
end

o = = = z 9ac 60

Problema: i parametri. ..

@ Animale mangia Cibo (is_a Cosa)
@ Mucca (is_a Animale) mangia Erba (is_a Cibo)

Ma questa covarianza € contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e I'invarianza (Mucca mangia Cibo, Java) vanno
bene.

Eiffel invece & covariante. . . (il che, impedendo un controllo di
conformita statico, introduce parecchie complicazioni ~~
CATecall, run time type identification. ..).

o <9 = = z 9ac 61

Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni

che vengono trattate in un modo differente da quello dei pid
diffusi linguaggi di programmazione (Ada-like).

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.

Do H2

Anti-pattern

sqrt (n: REAL): REAL
do

if x < 0.0 then
raise Negative
else

normal_square_root_computation
end
exception

when Negative =>
print ("Negative argument%N")
return

when others =>
end

In questo caso il meccanismo delle eccezioni & usato come
strumento di controllo del flusso!

9ac H3

Il trattamento delle eccezioni in Eiffel

Due modalita:

@ Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

@ Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.

o <9 = = =z 9ac 64

div (num: REAL, denom: REAL): REAL
require

denom /= 0
deferred

quasi_inverse (x: REAL): REAL
-- div(1, z) if possible, otherwise 0

local
division_tried: BOOLEAN
do
if not division_tried then
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry
end
o = = = =

9o Hh

Correttezza

Per ogni feature (pubblica)

o {PRE; A INV} bodys {POST¢ A INV'}
o {True} rescuer {INV'}

o {True} retrys {INV N PRE¢}

9o 66

	Il modello di Eiffel
	Asserzioni

	Eiffel
	What & How
	Contratti ed ereditarietà
	Eccezioni

