
Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

1

Sviluppo software in gruppi di lavoro
complessi1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Anno accademico 2019/20, I semestre

1
cba 2018 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it


Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

47

Lezione V: Design by Contract



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

48

Contratti

La tripla di Hoare {P}S{Q} può diventare un contratto fra chi
implementa (fornitore) S e chi usa (cliente) S

L’implementatore di S si impegna a garantire Q in tutti gli
stati che soddisfano P

L’utilizzatore di S si impegna a chiedere il servizio in un
stato che soddisfa P ed è certo che se S termina, si
giungerà in uno stato in Q vale

Il lavoro dell’implementatore è particolarmente facile quando:
Q è True (vera per ogni risultato!) o quando P è False

(l’utilizzatore non riuscirà mai a portare il sistema in uno stato
in cui tocchi fare qualcosa!). Weakest precondition (data Q) o
strongest postcondition (data P) determinano il ruolo di una
feature.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

49

Eiffel

Eiffel

Un linguaggio object-oriented che introduce i contratti
nell’interfaccia delle classi. Il contratto di default per un
metodo (“feature”) F è {True}F{True}.

feature

decrement is

-- Decrease counter by one.

require

item > 0 -- pre-condition

do

item := item - 1 -- implementation

ensure

item = old item - 1 -- post-condition



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

50

Eiffel

Eiffel è esplicitamente progettato come linguaggio “di
progetto”, non solo “di programmazione”:

“specify, design, implement and modify quality
software” [Ecma standard 367]

“Programmazione in grande” con oggetti, derivati da classi
organizzate in gerarchie di ereditarietà e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

51

Organizzazione delle asserzioni

pre/post-condizioni sulle feature (require, ensure)

Invarianti di classe (invariant)

asserzioni (check)

loop invariant
(from .. invariant .. until .. variant .. loop .. end)



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

52

Il supporto del linguaggio

invarianti di classe sono condizioni che devono essere vere
in ogni momento “critico”, ossia osservabile dall’esterno.
In pratica e come se facessero parte di ogni pre- e
post-condizione.

è possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un’eccezione

L’eccezione porta il sistema nel precedente stato stabile ed
è possibile

terminare con un fallimento
riprovare



Demo

class ROOT_TEST_STABLE_STATES

create make

feature {NONE}

secret: BOOLEAN

feature {ANY}

make -- root class cannot have preconditions

-- require ok_pre("make")

do

print("Executing make%N")

mycommand; secret := TRUE

ensure ok_post("make")

end

mycommand

require ok_pre("mycommand")

do

print("Executing mycommand%N")

secret := FALSE; myother("1"); secret := TRUE

-- But what happens if myother is a "client"?

-- secret := FALSE; Current.myother("2"); secret := TRUE

ensure ok_post("mycommand")

end

myother (s: STRING)

require ok_pre("myother")

do

print("Executing myother " + s + "%N")

ensure ok_post("myother")

end

ok_inv: BOOLEAN do print("Checking ok_inv!%N"); Result := secret; end

ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "%N"); Result := True; end

ok_post (w: STRING): BOOLEAN do print("Checking ok_post @ " + w + "%N"); Result := True; end

invariant ok_inv

end 53



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

54

Demo I

class GCD

create make

feature gcd (x: INTEGER; y: INTEGER): INTEGER

require

positive_parms: x >= 0 and y >= 0

not_zero: x /= 0 or y /= 0

local t: INTEGER

do

if x = 0 or y = 0 then Result := x.max (y)

else

from Result := x; t := y

invariant

positive_result: Result > 0

positive_t: t > 0

gcd_inv: mathgcd(x, y) = mathgcd(Result, t)

until Result = t

loop

if Result > t then Result := Result - t

else t := t - Result

end

variant t.max(Result)

end

end

ensure

positive_ris: Result > 0

dividex: x = 0 or else x.integer_remainder(Result) = 0

dividey: y = 0 or else y.integer_remainder(Result) = 0

Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic

all (x.integer_remainder(ic.item) /= 0

or y.integer_remainder(ic.item) /= 0) end

end



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

55

Demo II

make do

print("Ris: " + gcd(126,294).out + " %N")

print("Ris: " + gcd(0,294).out + " %N")

end

mathgcd(x,y: INTEGER):INTEGER do

from Result := x.min(y)

until y.integer_remainder(Result) = 0

and then x.integer_remainder(Result) = 0

loop

Result := Result - 1

end

end

end



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

56

Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:

do

balance := balance - x

ensure

balance = old balance - x

Implementazione e specifica

How & What

Il client è responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

57

Contratti ed ereditarietà

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:

deve essere accessibile a pre-condizioni uguali o piú deboli
del metodo della superclasse;

deve garantire post-condizioni uguali o piú forti del
metodo della superclasse;

Altrimenti il “figlio” non può essere sostituito al “padre” senza
alterare il sistema.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

58

Principio di sostituibilità

Le due condizioni sono quindi:

PREparent =⇒ PREderived (1)

POSTderived =⇒ POSTparent (2)

(1) in un programma corretto non può succedere che
PREparent valga e PREderived no; l’oggetto evoluto deve
funzionare in ogni stato in cui funzionava l’originale: non
può avere obbligazioni piú stringenti, semmai piú lasche.

(2) in un programma corretto non può succedere che valga
POSTderived ma non POSTparent ; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell’originale.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

59

Principio di sostituibilità (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent ∨ P (3)

POSTderived = POSTparent ∧ Q (4)

PREparent =⇒ PREderived

POSTderived =⇒ POSTparent

In Eiffel: require else e ensure then



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

60

Contratti “astratti”

extend (x: G)

-- Add `x' at end of list.

require

space_available: not full

deferred

ensure

one_more:

count = old count + 1

end

full: BOOLEAN

-- Is representation full?

-- (Default: no)

do

Result := False

end

Stronger precondition. . . ma
weaker (uguali in realtà) in
astratto

full: BOOLEAN

-- Is representation full?

-- (Answer: if and only if

-- number of items is equal

-- to capacity)

do

Result := (count = capacity)

end



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

61

Problema: i parametri. . .

Animale mangia Cibo (is a Cosa)

Mucca (is a Animale) mangia Erba (is a Cibo)

Ma questa covarianza è contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e l’invarianza (Mucca mangia Cibo, Java) vanno
bene.
Eiffel invece è covariante. . . (il che, impedendo un controllo di
conformità statico, introduce parecchie complicazioni  
CATcall, run time type identification. . . ).



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

62

Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni,
che vengono trattate in un modo differente da quello dei piú
diffusi linguaggi di programmazione (Ada-like).

Exception

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

63

Anti-pattern

sqrt (n: REAL): REAL

do

if x < 0.0 then

raise Negative

else

normal_square_root_computation

end

exception

when Negative =>

print("Negative argument%N")

return

when others => ..

end

In questo caso il meccanismo delle eccezioni è usato come
strumento di controllo del flusso!



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

64

Il trattamento delle eccezioni in Eiffel

Due modalità:

1 Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

2 Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

65

Esempio

div (num: REAL, denom: REAL): REAL

require

denom /= 0

deferred

quasi_inverse (x: REAL): REAL

-- div(1, x) if possible, otherwise 0

local

division_tried: BOOLEAN

do

if not division_tried then

Result := div (1, x)

else

Result := 0

end

rescue

division_tried := True

retry

end



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà

Eccezioni

66

Correttezza

Per ogni feature (pubblica) f :

{PREf ∧ INV } bodyf {POSTf ∧ INV }
{True} rescuef {INV }
{True} retryf {INV ∧ PREf }


	Il modello di Eiffel
	Asserzioni

	Eiffel
	What & How
	Contratti ed ereditarietà
	Eccezioni


