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Lezione V: Design by Contract
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Contratti

La tripla di Hoare {P}S{@Q} puo diventare un contratto fra chi
implementa (fornitore) S e chi usa (cliente) S

Il modello di
e L'implementatore di S si impegna a garantire Q in tutti gli [

stati che soddisfano P

@ L'utilizzatore di S si impegna a chiedere il servizio in un
stato che soddisfa P ed & certo che se S termina, si
giungera in uno stato in @ vale

Il lavoro dell'implementatore & particolarmente facile quando:
Q & True (vera per ogni risultato!) o quando P & False
(I'utilizzatore non riuscira mai a portare il sistema in uno stato
in cui tocchi fare qualcosa!). Weakest precondition (data Q) o
strongest postcondition (data P) determinano il ruolo di una
feature.
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Eiffel

Il modello di

Un linguaggio object-oriented che introduce i contratti Eiffel
nell'interfaccia delle classi. Il contratto di default per un
metodo (“feature”) F & { True}F{ True}.

feature
decrement is
-— Decrease counter by one.

require

item > O -- pre-condition
do

item := item - 1 -- implementation
ensure

item = old item - 1 -— post-condition
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Eiffel

Eiffel & esplicitamente progettato come linguaggio “di
“specify,

progetto”, non solo “di programmazione”

design, implement and modify quality
software” [Ecma standard 367]
“Programmazione in grande” con oggetti, derivati da classi

organizzate in gerarchie di ereditarieta e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.
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Organizzazione delle asserzioni

° pre/post-condizioni sulle feature (require, ensure)
@ Invarianti di classe (invariant)

@ asserzioni (check)

@ loop invariant

(from .. invariant .. until .. variant .. loop .. end)
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Il supporto del linguaggio

@ invarianti di classe sono condizioni che devono essere vere
in ogni momento ‘“critico”, ossia osservabile dall’esterno.
In pratica e come se facessero parte di ogni pre- e
post-condizione.

@ ¢ possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un'eccezione
@ L'eccezione porta il sistema nel precedente stato stabile ed
& possibile
e terminare con un fallimento
e riprovare
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Demo

class ROOT_TEST_STABLE_STATES
create make
feature {NONE}
secret: BOOLEAN
feature {ANY}
make -- root class cannot have preconditions
-- require ok_pre("make")
do
print ("Executing make’N")
mycommand; secret := TRUE
ensure ok_post("make")
end
mycommand
require ok_pre("mycommand")
do
print ("Executing mycommandN")
secret := FALSE; myother("1"); secret := TRUE
-- But what happens if myother is a "client"?
-- secret := FALSE; Current.myother("2"); secret := TRUE
ensure ok_post ("mycommand")
end
myother (s: STRING)
require ok_pre("myother")
do
print ("Executing myother " + s + "JN")
ensure ok_post("myother")
end
ok_inv: BOOLEAN do print("Checking ok_inv!Y%N"); Result := secret; end
ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "/N"); Result := True; end
ok_post (w: STRING): BOOLEAN do print("Checking ok_post @ " + w + "YN"); Result := True; end
invariant ok_inv
end [m] = =
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create make
feature gcd (x: INTEGER; y: INTEGER): INTEGER
require
positive_parms: x >= 0 and y >= 0
not_zero: x /=0 ory /=0
local t: INTEGER
do

if x = 0 or y = 0 then Result := x.max (y)
else
from Result := x; t :=y

invariant

positive_result: Result > 0

positive_t: t > O

gcd_inv: mathged(x, y) = mathgcd(Result, t)

until Result = t

loop
if Result > t then Result := Result - t
else t := t - Result

end
variant t.max(Result)
end
end
ensure
positive_ris: Result > O
dividex: x = 0 or else x.integer_remainder(Result) = 0
dividey: y = 0 or else y.integer_remainder(Result) = 0
Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic

all (x.integer_remainder(ic.item) /= 0
or y.integer_remainder(ic.item) /= 0) end

end
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make do

print("Ris: " + gcd(126,294).out + " IN")
print("Ris: " + gcd(0,294).out + " IN")
end

mathgcd(x,y: INTEGER):INTEGER do
from Result := x.min(y)
until y.integer_remainder (Result) = 0
and then x.integer_remainder(Result) = 0
loop
Result := Result - 1

sac hh



Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:
do
balance

:= balance - x

ensure
@ Implementazione e specifica

balance
@ How & What

old balance - x

Il client & responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.
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Contratti ed ereditarieta

suo metodo:

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni

@ deve essere accessibile a pre-condizioni uguali o pit deboli

del metodo della superclasse;

@ deve garantire post-condizioni uguali o pit forti del
metodo della superclasse;

Altrimenti il “figlio” non pud essere sostituito al “padre” senza
alterare il sistema.
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Principio di sostituibilita

Le due condizioni sono quindi:

PREparent — PREderived (1)
POS Tderived — POS Tparent (2)

@ (1) in un programma corretto non pud succedere che
PREparent valga e PREgerived NO; I'oggetto evoluto deve
funzionare in ogni stato in cui funzionava |'originale: non
puo avere obbligazioni pild stringenti, semmai pid lasche.

@ (2) in un programma corretto non pud succedere che valga
POST gerived ma non POST parent; un stato corretto

dell'oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell'originale.
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Principio di sostituibilita (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione @, le reali pre- e
post-condizioni siano:

P REderived =P REparent Vv P (3) PREpsrent ==  PREderived
POSTderived = POSTparent /\ Q (4) POSTdérived —— POSTparent

In Eiffel: require else € ensure then
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Contratti “astratti”

extend (x: G)
-— Add "z' at end of lust.

require Stronger precondition. . . ma
space_available: not full weaker (uguali in realta) in
deferred astratto
ensure
full: BOOLEAN
one_more: __ ) .
count = old count + 1 Is represgntatzon ful%.
end -= (Answer: if and only if
-- number of items is equal
full: BOOLEAN - to capacity)
-- Is representation full? ° Result := ( B .
-- (Default: mo) esult := (count = capacit
do end

Result := False
end
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Problema: i parametri. ..

@ Animale mangia Cibo (is_a Cosa)
@ Mucca (is_a Animale) mangia Erba (is_a Cibo)

Ma questa covarianza € contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e I'invarianza (Mucca mangia Cibo, Java) vanno
bene.

Eiffel invece & covariante. . . (il che, impedendo un controllo di
conformita statico, introduce parecchie complicazioni ~~
CATecall, run time type identification. .. ).
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Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni

che vengono trattate in un modo differente da quello dei pid
diffusi linguaggi di programmazione (Ada-like).

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.
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Anti-pattern

sqrt (n: REAL): REAL
do

if x < 0.0 then
raise Negative
else

normal_square_root_computation
end
exception

when Negative =>
print ("Negative argument%N")
return

when others =>
end

In questo caso il meccanismo delle eccezioni & usato come
strumento di controllo del flusso!
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Il trattamento delle eccezioni in Eiffel

Due modalita:

@ Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

@ Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.
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div (num: REAL, denom: REAL): REAL
require

denom /= 0
deferred

quasi_inverse (x: REAL): REAL
-- div(1, z) if possible, otherwise 0

local
division_tried: BOOLEAN
do
if not division_tried then
Result := div (1, x)
else
Result := 0
end
rescue
division_tried := True
retry
end
o = = = =
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Correttezza

Per ogni feature (pubblica)

o {PRE; A INV} bodys {POST¢ A INV'}
o {True} rescuer {INV'}

o {True} retrys {INV N PRE¢}
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