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Lezione V: Design by Contract
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Eccezioni

48

Contratti

La tripla di Hoare {P}S{Q} può diventare un contratto fra chi
implementa (fornitore) S e chi usa (cliente) S

L’implementatore di S si impegna a garantire Q in tutti gli
stati che soddisfano P

L’utilizzatore di S si impegna a chiedere il servizio in un
stato che soddisfa P ed è certo che se S termina, si
giungerà in uno stato in Q vale

Il lavoro dell’implementatore è particolarmente facile quando:
Q è True (vera per ogni risultato!) o quando P è False

(l’utilizzatore non riuscirà mai a portare il sistema in uno stato
in cui tocchi fare qualcosa!). Weakest precondition (data Q) o
strongest postcondition (data P) determinano il ruolo di una
feature.



Svigruppo

Monga

Il modello di
Eiffel

Asserzioni

Eiffel

What & How

Contratti ed
ereditarietà
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Eiffel

Eiffel

Un linguaggio object-oriented che introduce i contratti
nell’interfaccia delle classi. Il contratto di default per un
metodo (“feature”) F è {True}F{True}.

feature

decrement is

-- Decrease counter by one.

require

item > 0 -- pre-condition

do

item := item - 1 -- implementation

ensure

item = old item - 1 -- post-condition
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Eiffel

Eiffel è esplicitamente progettato come linguaggio “di
progetto”, non solo “di programmazione”:

“specify, design, implement and modify quality
software” [Ecma standard 367]

“Programmazione in grande” con oggetti, derivati da classi
organizzate in gerarchie di ereditarietà e raggruppate in cluster,
che forniscono feature (command o query) ai loro client.
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Organizzazione delle asserzioni

pre/post-condizioni sulle feature (require, ensure)

Invarianti di classe (invariant)

asserzioni (check)

loop invariant
(from .. invariant .. until .. variant .. loop .. end)
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Il supporto del linguaggio

invarianti di classe sono condizioni che devono essere vere
in ogni momento “critico”, ossia osservabile dall’esterno.
In pratica e come se facessero parte di ogni pre- e
post-condizione.

è possibile avere un supporto run-time alle violazioni: se
una condizione non vale viene sollevata un’eccezione

L’eccezione porta il sistema nel precedente stato stabile ed
è possibile

terminare con un fallimento
riprovare



Demo

class ROOT_TEST_STABLE_STATES

create make

feature {NONE}

secret: BOOLEAN

feature {ANY}

make -- root class cannot have preconditions

-- require ok_pre("make")

do

print("Executing make%N")

mycommand; secret := TRUE

ensure ok_post("make")

end

mycommand

require ok_pre("mycommand")

do

print("Executing mycommand%N")

secret := FALSE; myother("1"); secret := TRUE

-- But what happens if myother is a "client"?

-- secret := FALSE; Current.myother("2"); secret := TRUE

ensure ok_post("mycommand")

end

myother (s: STRING)

require ok_pre("myother")

do

print("Executing myother " + s + "%N")

ensure ok_post("myother")

end

ok_inv: BOOLEAN do print("Checking ok_inv!%N"); Result := secret; end

ok_pre (w: STRING): BOOLEAN do print("Checking ok_pre @ " + w + "%N"); Result := True; end

ok_post (w: STRING): BOOLEAN do print("Checking ok_post @ " + w + "%N"); Result := True; end

invariant ok_inv

end 53
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Demo I

class GCD

create make

feature gcd (x: INTEGER; y: INTEGER): INTEGER

require

positive_parms: x >= 0 and y >= 0

not_zero: x /= 0 or y /= 0

local t: INTEGER

do

if x = 0 or y = 0 then Result := x.max (y)

else

from Result := x; t := y

invariant

positive_result: Result > 0

positive_t: t > 0

gcd_inv: mathgcd(x, y) = mathgcd(Result, t)

until Result = t

loop

if Result > t then Result := Result - t

else t := t - Result

end

variant t.max(Result)

end

end

ensure

positive_ris: Result > 0

dividex: x = 0 or else x.integer_remainder(Result) = 0

dividey: y = 0 or else y.integer_remainder(Result) = 0

Result = x.min(y) or else across ((Result+1).to_integer |..| x.min(y)) as ic

all (x.integer_remainder(ic.item) /= 0

or y.integer_remainder(ic.item) /= 0) end

end
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Demo II

make do

print("Ris: " + gcd(126,294).out + " %N")

print("Ris: " + gcd(0,294).out + " %N")

end

mathgcd(x,y: INTEGER):INTEGER do

from Result := x.min(y)

until y.integer_remainder(Result) = 0

and then x.integer_remainder(Result) = 0

loop

Result := Result - 1

end

end

end
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Procedurale vs. Dichiarativo

Spesso si scrivono le “stesse” cose due volte:

do

balance := balance - x

ensure

balance = old balance - x

Implementazione e specifica

How & What

Il client è responsabile delle precondizioni, il fornitore di
postcondizioni e invarianti.
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Contratti ed ereditarietà

Il principio di sostituzione di Liskov stabilisce che, perché un
oggetto di una classe derivata soddisfi la relazione is-a, ogni
suo metodo:

deve essere accessibile a pre-condizioni uguali o piú deboli
del metodo della superclasse;

deve garantire post-condizioni uguali o piú forti del
metodo della superclasse;

Altrimenti il “figlio” non può essere sostituito al “padre” senza
alterare il sistema.
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Principio di sostituibilità

Le due condizioni sono quindi:

PREparent =⇒ PREderived (1)

POSTderived =⇒ POSTparent (2)

(1) in un programma corretto non può succedere che
PREparent valga e PREderived no; l’oggetto evoluto deve
funzionare in ogni stato in cui funzionava l’originale: non
può avere obbligazioni piú stringenti, semmai piú lasche.

(2) in un programma corretto non può succedere che valga
POSTderived ma non POSTparent ; un stato corretto
dell’oggetto evoluto deve essere corretto anche quando ci
si attende i benefici dell’originale.
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Principio di sostituibilità (cont.)

Un modo per garantire che le condizioni (1) e (2) siano
automaticamente vere consiste nell’assumere implicitamente
che, se la classe evoluta specifica esplicitamente una
precondizione P e una postcondizione Q, le reali pre- e
post-condizioni siano:

PREderived = PREparent ∨ P (3)

POSTderived = POSTparent ∧ Q (4)

PREparent =⇒ PREderived

POSTderived =⇒ POSTparent

In Eiffel: require else e ensure then
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Contratti “astratti”

extend (x: G)

-- Add `x' at end of list.

require

space_available: not full

deferred

ensure

one_more:

count = old count + 1

end

full: BOOLEAN

-- Is representation full?

-- (Default: no)

do

Result := False

end

Stronger precondition. . . ma
weaker (uguali in realtà) in
astratto

full: BOOLEAN

-- Is representation full?

-- (Answer: if and only if

-- number of items is equal

-- to capacity)

do

Result := (count = capacity)

end
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Problema: i parametri. . .

Animale mangia Cibo (is a Cosa)

Mucca (is a Animale) mangia Erba (is a Cibo)

Ma questa covarianza è contraria al principio di Liskov perché
restringe le precondizioni. La controvarianza (Mucca mangia
Cosa, Sather) e l’invarianza (Mucca mangia Cibo, Java) vanno
bene.
Eiffel invece è covariante. . . (il che, impedendo un controllo di
conformità statico, introduce parecchie complicazioni  
CATcall, run time type identification. . . ).
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Trattamento delle situazioni anomale

Nel modello di Eiffel hanno un ruolo importante le eccezioni,
che vengono trattate in un modo differente da quello dei piú
diffusi linguaggi di programmazione (Ada-like).

Exception

An exception is a run-time event that may cause a routine call
to fail (contract violation). A failure of a routine causes an
exception in its caller.
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Anti-pattern

sqrt (n: REAL): REAL

do

if x < 0.0 then

raise Negative

else

normal_square_root_computation

end

exception

when Negative =>

print("Negative argument%N")

return

when others => ..

end

In questo caso il meccanismo delle eccezioni è usato come
strumento di controllo del flusso!
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Il trattamento delle eccezioni in Eiffel

Due modalità:

1 Failure (organized panic): clean up the environment,
terminate the call and report failure to the caller.

2 Retry: attempt to change the conditions that led to the
exception and to execute the routine again from the start.

Per trattare il secondo caso, Eiffel introduce il costrutto
rescue/retry. Se il corpo del ‘rescue’ non fa ‘retry’, si ha un
failure.
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Esempio

div (num: REAL, denom: REAL): REAL

require

denom /= 0

deferred

quasi_inverse (x: REAL): REAL

-- div(1, x) if possible, otherwise 0

local

division_tried: BOOLEAN

do

if not division_tried then

Result := div (1, x)

else

Result := 0

end

rescue

division_tried := True

retry

end
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Correttezza

Per ogni feature (pubblica) f :

{PREf ∧ INV } bodyf {POSTf ∧ INV }
{True} rescuef {INV }
{True} retryf {INV ∧ PREf }


	Il modello di Eiffel
	Asserzioni

	Eiffel
	What & How
	Contratti ed ereditarietà
	Eccezioni


