Sistemi Operativi

Lezione 3
| Processi

Processi (job, task, sequential process)

|l termine processo € un’astrazione adottata
nell’ambito dei sistemi operativi

« denota un programma (sequenza di istruzioni) in
esecuzione, nelllambito di un determinato ambiente
esecutivo caratterizzato da:

- CPU
« Memoria
* Risorse di I/O

» | processi sono tra loro scorrelati, cioe le risorse di
clascun processo sono private

Corso: Sistemi Operativi

A.A.2014/2015 2 © Danilo Bruschi

Come viene eseguito un programma?

|l codice eseguibile viene caricato in memoria

* Viene allocato spazio alle variabili del programma
* Viene allocato uno stack per il processo

* Vengono aggiornati i registri del processore

|l controllo passa al processo

|l processo esegue un’iistruzione alla volta:
« fetch the instruction from memory
» decode the instruction
* update the IP
« execute the instruction

Corso: Sistemi Operativi
A-A. 201472015 3 © Danilo Bruschi

Processi — Contenuti

« Un processo deve quindi comprende (almeno):

* Uno spazio di indirizzi— di solito protetto e virtuale—
all'interno della memoria contrale

* Il codice da eseguire

| dati necessari per I'esecuzione del codice

« Uno stack e relativo stack pointer (SP)

« Un program counter (PC)

* Un insieme di registri — general purpose e di stato

* Un insieme di risorse del sistema
file, network connections, privileges, ...

Processi — Spazio d’'indirizzamento

OxFFFFFFFF
stack
! (dynamically allocated)
! — SP
T
Virtual heap

address space (dynamically allocated)

static data

program code — pC
(text)

0x00000000

Processi

| processi sono gli oggetti con cui gli utenti di
un sistema interagiscono:
* Web browser
* Word processors
- Mail, ecc.

Corso: Sistemi Operativi

A.A.2014/2015 6 © Danilo Bruschi

Sistemi mono programmati

* Viene eseguito un processo per volta

* Non si esegue il nuovo processo sino a che |l
Processo in esecuzione non e terminato

 Esiste un mapping uno a uno tra le risorse del
sistema e quelle del processo

Corso: Sistemi Operativi
A-A. 201472015 ! © Danilo Bruschi

Multiprogrammazione (su sistemi mono)

* Presenza contemporanea di piu processi

* Una CPU puo eseguire un solo processo alla
volta

» UN PROCESSO E IN ESECUZIONE quando
Il suo ambiente esecutivo € la macchina fisica

e Va introdotto un meccanismo che consente di
“cambiare in corsa” un processo in
esecuzione con un altro

« Mapping molti a uno tra i processi ed il
processore

Corso: Sistemi Operativi

A.A.2014/2015 8 © Danilo Bruschi

Pseudo parallelismo

One program counter
\
'7 - Process
F switch ? D —_ —
Y B Q
= 3 C - —
.
G B — —_—
<"" A — —
j D
Time —»
(a)
(c)
A.A. 2014/2015 9 Corso: Sistemi Operativi

© Danilo Bruschi

A.A. 2014/2015

Parallelismo

Four program counters

B Y

(b)

10

°y

Corso: Sistemi Operativi
© Danilo Bruschi

Le operazioni su un processo

« Compito primario del sistema operativo e
guello di gestire | processi

« Mantenere l'illusione di piu processi in esecuzione
contemporaneamente

« dando ogni processo una porzione di tempo sulla
CPU

« Gestire le diverse fasi del ciclo di vita di processo
dalla sua creazione alla sua terminazione

Corso: Sistemi Operativi
A.A.2014/2015 11 © Danilo Bruschi

Creazione di un processo

 Un processo viene creato a seguito di:

* una richiesta esplicita da parte
dell’'utente;

* una richiesta esplicita da parte di un
processo (vedi fork())
* Durante l'inizializzazione del sistema

* Tramite I'esecuzione di un’apposita routine di
sistema

Corso: Sistemi Operativi
A.A.2014/2015 12 © Danilo Bruschi

Ciclo di vita dei processi

« (Generalmente , vi sono piu processi che competono
per la CPU

* Solo un processo puo essere in esecuzione su ogni CPU
alla volta

* Quando un processo € in " running “, significa che detiene la
CPU !

 Altri processi che potrebbero essere eseguiti, ma
attualmente non hanno la CPU , sono in stato di "ready"

A.A. 2014/2015

rso: Sistemi Operativi
© Danilo Bruschi

Ciclo di vita del processi

 Processo nuovi non necessariamente
ottengono subito al CPU

« || SO gestisce il “passaggio” della CPU da un
processo all’altro

scheduled running

time-slice
expired

queued

Corso: Sistemi Operativi

A.A. 2014/2015 14 © Danilo Bruschi

Cliclo di vita dei processi

processi devono spesso svolgere operazioni
ente (long-running operation)

n questo caso So provvede a togliere loro la
CPU per cederla ad altri processi

scheduled running

time-slice
expired

long-running
3 operation
queue

blocked

Corso: Sistemi Operativi
A.A.2014/2015 15 © Danilo Bruschi

Ciclo di vita dei processi

« Quando 'operazione lenta termina, il
processo che I'ha eseguita viene rimesso in
ready queue

scheduled running

time-slice
expired

long-running
3 operation
queue

operation complete

Corso: Sistemi Operativi
A.A.2014/2015 16 © Danilo Bruschi

Ciclo di vita di un processo

Primo o poi i processi terminano :
« Terminazione normale (esecuzione dell’istruzione exit)
« Scadenza del tempo di permanenza nel sistema
. Memoria non disponibile
* Violazione delle protezioni/Errori durante I'esecuzione

i exit / abort / ... :
scheduled running terminated

time-slice long-running
expired operation

queued

operation complete

Corso: Sistemi Operativi
A.A.2014/2015 17 © Danilo Bruschi

Ciclo di vita di un processo

* Quelli che abbiamo visto sono gli stati fondamentali
presenti in tutti i SO, esistono poi ulteriori stati
“facoltativi’

e Suspend/resume

* un utente sospende un processo con Ctrl-Z
* Un processo puo sospendere un altro processo con

X exit / abort / ... :
scheduled running terminated

time-slice long-running
expired operation

queued

operation complete

resume

ready _

suspended

Ciclo di vita di un processo

« Un processo sospeso puo essere in stato di
blocked

exit / abort / ...

time-slice long-running
expired operation

queued

operation complete blocked

resume stop

ready blocked
suspended operation complete |-l

Corso: Sistemi Operativi
A.A. 2014/2015 19 © Danilo Bruschi

Evoluzione del Processi (3)

LA AN A ANRAAIANANAAFANRAAIPANANAANRAANANRINANANAAIRANRNANIPPNNAPRAANANIIRNANNARIIAN)
Process B Dt e e e e e e e et e e e e e e e e e e et e e s e e e e 00 e e e e e e et e e e b0 20 20 %0 %0 %0 " e bt

QOCOOOOOCOOOOCOOQOCOOOOOCOOOQOCOOOOOCOOOOCOOOOOOOQOCOOOOOCOOOOC)

ORISR RRABRRRAS LRI BERK

|IIII|IIII|IIII|IIII|IIII|llll|llll|llll|IIII|IIII|II
0 5 10 15 20 25 30 a5 40 45 50

- = Running = Ready

Figure 3.6 Process States for Trace of Figure 3.3

Corso: Sistemi Operativi

A.A. 2014/2015 20 © Danilo Bruschi

Evoluzione deil processi

Release

Admit Dispatch
‘ £Ba-
Timeout
et}
Event 1 Queue E R T
- ven ‘a
Event 1 il
Occurs
Event 2 Queue
i Event 2 Walit
Event 2
Occurs
¥
¥
¥
Event n Queue
Event n Event n Wait
Occurs

A.A.2014/2015

(b) Multiple blocked queues

21

Corso: Sistemi Operativi
© Danilo Bruschi

Context switch (1)

« Per poter implementare il ciclo di vita un processo e
necessario individuare un meccanismo che consenta
di “togliere” il processore dal processo che lo sta
utilizzando a favore di un altro processo

« La sospensione di un processo in esecuzione, a
favore di un altro processo avviene attraverso
I'operazione di context switch

|l contesto di un processo ¢ il valore delle variabilli
che caratterizzano il suo ambiente esecutivo (vedi
slide successive)

Corso: Sistemi Operativi

A.A. 2014/2015 22 © Danilo Bruschi

Process Controlo Block

| contesto di un processo € memorizzato in
un’apposita struttura dati del kernel nota come PCB

ID| IDType Identification
CPU State | StateType State Vector
Processor Int
Memory . e | Flags
Resources ® m:
Status | StatusType Running, Ready, Blocked Status Info
Status Data ® To process’ current queue
Parent . > Parent process Hierarchy
Children ® » List of children
Priority Int Other

|dentification

* Le informazioni per I'identificazione del
Processo Contengono:
|dentificatore del processo
|dentificatore del processo padre
|dentificatore dell’'utente proprietario del processo

Corso: Sistemi Operativi

A.A. 2014/2015 24 © Danilo Bruschi

State vector (1)

» Lo stato del processore
Tutti | registri del processore
PC (EIP)
Condition codes (EFLAGS)
Variabili di stato: flag di interrupt, execution mode

Stack pointer: puntatori allo stack associato al
Processo

» Gestione della Memoria
» Tabelle delle pagine o dei segmenti

 Risorse utilizzate

 File aperti e/o creati

A.A. 2014/2015 25 Corso: Sistemi Operativi

© Danilo Bruschi

Status info (3)

* Process state: running, ready, waiting, halted.

« Eventi: identificativo dell’evento di cui il processo e
eventualmente in attesa

Corso: Sistemi Operativi

A.A. 2014/2015 26 © Danilo Bruschi

Other

* Priorita di scheduling

* Informazioni per I'algoritmo di scheduling:

tempo di permanenza nel sistema, tempo di
CPU,

 Variabili per la comunicazione tra processi

Corso: Sistemi Operativi

A.A. 2014/2015 27 © Danilo Bruschi

Context Switch

« Quando il kernel decide che deve essere
eseguito un altro processo effettua un context
switch, per forzare il sistema ad operare nel
contesto del nuovo processo

« Per effettuare un context switch, il kernel:

 salva le informazioni sufficienti a ripristinare, in un
tempo successivo, il contesto del processo
SOSpeso

* carica il contesto del nuovo processo sulla
macchina fisica

Corso: Sistemi Operativi

A.A. 2014/2015 28 © Danilo Bruschi

Quando si effettua un context switch

* || context swith € un’operazione interrupt
driven che viene svolta dal kernel a seguito
di:

* Clock interrupt
* 1/O interrupt

* Memory fault
« Eccezioni

Corso: Sistemi Operativi
A.A.2014/2015 29 © Danilo Bruschi

Context switch in dettaglio

» Durante un context switch le operazioni svolte
sSono.
« Salvataggio del contenuto dei registri di CPU

* Ripristino del contenuto dei registri di CPU con |
nuovi contenuti

Esecuzione di interrupt handler
Esecuzione dello scheduler

Flush della pipeline del processore
Flush della TLB

Corso: Sistemi Operativi
A.A.2014/2015 30 © Danilo Bruschi

Il costo di un context swith

« Molto difficile da determinare perche in
funzione del tipo di processore

e Mediamente il costovariatrai2ei?
microsecondi

* Puo pero arrivare a punte di 50 microsecondi

Corso: Sistemi Operativi

A.A. 2014/2015 31 © Danilo Bruschi

context switch

J@ Console Window Help |J D = ﬂ | ’

J Action Yiew Favorites H - = | I B

1000

800

600

400

200

0

Last | 17.000 Average | 9.862 Minimum | 0.000
M aximurm | £5.000 Duration | 1:40

Color | Scale Counter Instance | Parent | Object | Com

_____ % Processor Time Proces... “\COM
1.000 Interrupts/sec _Total Proces... “\\COM
100.000 Processor Queue Length - System \\COM
1.000 Context Switches/sec System A\WCOM

Figure 7.5 Systemwide Context Switches During a Processor Bottleneck

wuisu. oisweini Operativi
A.A. 2014/2015 32 © Danilo Bruschi

Mode switch

« Durante I'esecuzione di un processo vi sono
delle transizioni da user mode a kernel mode
(es. syscall, page fault)

« Durante queste transizioni il kernel salva le
iInformazioni necessarie per riprendere
successivamente |'esecuzione del processo
momentaneamente sospeso

* |n questo caso si parla di mode change ma
non di context switch

Corso: Sistemi Operativi

A.A. 2014/2015 33 © Danilo Bruschi

mode switch in dettaglio

» Durante un context switch le operazioni svolte
sSoNo:

« Salvataggio di alcuni dei registri di CPU

* Ripristino del contenuto dei registri di CPU con |
nuovi contenuti

« Esecuzione di interrupt handler
* Flush della pipeline del processore

« Un mode switching costa mediamente un
centinaio di nano secondi

Corso: Sistemi Operativi
A.A.2014/2015 34 © Danilo Bruschi

Processi: aspetti realizzativi

Interrupt/Eccezioni

« Meccanismi introdotti per interrompere il ciclo fetch-
decode-execute delle Cpu e consentire I'esecuzione
di attivita alternative al processo in esecuzione

| modo con cui I'hw reagisce ai due eventi sono
molto simili, vediamo di seguito le modalita di
gestione degli interrupt

Corso: Sistemi Operativi
A.A.2014/2015 36 © Danilo Bruschi

Interrupt handling

Interrupt controller segnala I'occorrenza di un
interrupt, e passa il numero dell'interrupt
(vettore)

|| processore usa il vettore dell'interrupt per
decidere quale handler attivare

|| processore interrompe il processo corrente
PROC, e ne salva lo stato (contesto)

|| processore salta a un interrupt handler

« Quando l'interrupt & stato gestito, lo stato di
PROC viene ripristinato e PROC riprende
I'esecuzione da dove era stato sospeso

Corso: Sistemi Operativi
© Danilo Bruschi

A.A. 2014/2015 37

Interrupt handling

(a): CPU sta
eseguendo
I'istruzione 100 di
un programma

Concorrentemente

(b): P1 acquisisce
dei dati in un suo
registro di indirizzo
0x8000

A.A. 2014/2015

Program memory
IH
16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO
19: RETI # ISR return

Main program

100: instruction
101: instruction

Inta
Int

EIP

100

Data memory

38

System bus
P1 P2
16
0x8000 0x8001
o
o

Corso: Sistemi Operativi

© Danilo Bruschi

Interrupt handling

2: P1 asserisce |l
segnale Int per
richiedere
I'intervento del
microprocessore

A.A. 2014/2015

Program memory
IH

16: MOV RO, 0x8000
17: # modifies RO
18: MOV 0x8001, RO

19: RETI # ISR return
Main program

100: instruction
101: instruction

Inta

Int

EIP

100

Data memory

System bus

P1 P2

39

0x8000 0x8001

Corso: Sistemi Operativi
© Danilo Bruschi

Interrupt handling

3: Dopo aver

| Program memory uP Data memory
IH
COmp ?tato . 16: MOV RO, 0x8000
|,|StrUZ|One N 17: # modifies RO System bus
. . 18: MOV 0x8001, RO

esecuzione, 'I 19: RETI # ISR return 1
processore sente Main program Int
il segnale INT 100: instructi g E

. . : Instruction — /| ox8000 | 0x5001
asserito, salva il 101 instruction
valore di EIP e
asserisce Inta
A.A. 2014/2015 40 Corso: Sistemi Operativi

© Danilo Bruschi

Interrupt Handling

' P P Dat
4(a): P1rileva Inta |m - g ata memory
: 16: MOV RO, 0x8000
S abbassa II 17: # modifies 1){(0 16| €----- S Systembuf
segna|e di Int 18: MOV 0x8001, RO < o >
19: RETI # ISR return - v
- oo na K
4(b) |I prOCeSSOl'e Main program Int 1;)1:' P2
- - cee < EIP)
riasserisce Inta 100: instruction 000 | | oxsoor
4() P1 I d 101: instruction 100
C). rneva dai

nuovo Inta e pone il

vettore dell’interrupt
(16) sul bus dati

Corso: Sistemi Operativi
A.A.2014/2015 41 © Danilo Bruschi

Interrupt handling

5(a): il processore
salta all'interrupt
handler associato
all'interrupt 16.

L’handler legge I
dato da 0x8000, lo
modifica e lo riscrive
all'indirizzo 0x8001.

A.A.2014/2015

Program memory
15R Vi
16: MOV RO, 0x8000
17: # modifies RO

18: MOV 0x8001, RO

N

\
1
1
1
)
)
1
1

19: RETI # ISR return ,’I

Main program .

100: instruction
101: instruction

ppP
v @®
\\ ‘

Inta
Int

EIP

100

Data memory

~ -

42

I pe———

Corso

: Sistemi Operativi

© Danilo Bruschi

Interrupt handling

6: Alla fine . Program memory up Data memory
'handler, esegue e System bus
listruzione RET] 19: RETY 4 ISR roumn

che ripristina il Mainprogram 2| EIPI:H P [
valore diEIPa i T T e

100+1=101, da
dove il processore
riprende
I'esecuzione

Corso: Sistemi Operativi
A.A. 2014/2015 43 © Danilo Bruschi

Context Switch

Process 1 Process 2
' Waitin
Running Save contex{ g
. '_

| .

i Load context

I

I

I

Waiting | Running

i

|

i Save context

| : 4

* 1
|
Running Load context | Waiting
|
|
A.A. 2014/2015 44 Corso: Sistemi Operativi

© Danilo Bruschi

A.A. 2014/2015 45

Strutture Dati

Per poter effettuare questa operazione
efficacemente, il sistema operativo usa una
particolare struttura dati, detta Process Control Block
(PCB)

All'avvio di ogni processo il sistema provvede a
costruire il PCB per il nuovo processo ed inserirlo
nella tabella dei processi

Il PCB e deallocato quando il processo termina
Esiste un PCB distinto per ogni processo

|| PCB é struttura dati del kernel e risiede nella zona
di memoria corrispondente

Corso: Sistemi Operativi
© Danilo Bruschi

—> struct Trapframe {

struct PushRegs tf_regs;

JOS PCB (ENV) u@ntls_t tf_es; .
uintl6_t tf_paddingl;

uintl6e_t tf_ds;

uintlé_t tf_padding2;

uint32_t tf_trapno;

uint32_t tf_err;

uintptr_t tf_eip;

struct Env { uintlé_t tf_cs;

struct Trapframe env_tf; // Saved registers uintl6_t tf_padding3;
struct Env xenv_link; // Next free Env uint32_t tf_eflags;
envid_t env_id; // Unique environment identifier uintptr_t tf_esp;
envid_t env_parent_id; // env_id of this env's parent uintl6_t tf_ss;

enum EnvType env_type; // Indicates special system enviro uint1é t tf_padding4;
unsigned env_status; // Status of the environment } attribate T(acked)):
uint32_t env_runs; // Number of times environment has - _— —\\P !

int env_cpunum; // The CPU that the env is running on

// Address space
pde_t *xenv_pgdir; // Kernel virtual address of page dir

// Exception handling
void xenv_pgfault_upcall; // Page fault upcall entry point

// Lab 4 IPC
bool env_ipc_recving; // Env is blocked receiving
void *env_ipc_dstva; // VA at which to map received page
uint32_t env_ipc_value; // Data value sent to us
envid_t env_ipc_from; // envid of the sender
int env_ipc_perm; // Perm of page mapping received
b
AA 2014/2015 46 Corso: Sistemi Operativi

© Danilo Bruschi

//
//

Envs array (Process Table)

Mark all environments in 'envs' as free, set their env_ids to 0,
and insert them into the env_free_list.

// Make sure the environments are in the free list in the same order
// they are in the envs array (i.e., so that the first call to
// env_alloc() returns envs[0]).
//
void
env_init(void)
{

// Set up envs array

// LAB 3: Your code here.

int 1i;

for (i = @; i !'= NENV - 1; ++1i) {

envs[i]l.env_id = 0;
envs[i].env_link = &envs[i + 1];

}

envs [NENV - 1].env_link = NULL;

env_free_list = &envs[0];

// Per-CPU part of the initialization

env_init_percpu();
}
AA 2014/2015 47 Corso: Sistemi Operativi

© Danilo Bruschi

env_create

// Allocates a new env with env_alloc, loads the named elf
// binary into it with load_icode, and sets its env_type.
// This function is ONLY called during kernel initialization,
// before running the first user-mode environment.
// The new env's parent ID is set to @.
//
void
env_create(uint8_t xbinary, size_t size, enum EnvType type)
{

// LAB 3: Your code here.

struct Env xe;

int result = env_alloc(&e, 0);
if (result == -E_NO_FREE_ENV)

panic("env_create: no free environment (exceeding NENVS)");
else if (result == —-E_NO_MEM)

panic("env_create: not enough memory");

load_icode(e, binary, size); //load the binary and set EIP to its entry point

e->env_type = type;

A.A. 2014/2015 48 Corso: Sistemi Operativi

© Danilo Bruschi

env_alloc

// Allocates and initializes a new environment.
// 0On success, the new environment is stored in *xnewenv_store.
//
int
env_alloc(struct Env *xknewenv_store, envid_t parent_id)
{ int32_t generation;

int r;

struct Env xe;

if (!'(e = env_free_list))

return —E_NO_FREE_ENV;

// Allocate and set up the page directory for this environment.

if ((r = env_setup_vm(e)) < 0)
return r;
// Generate an env_id for this environment.
e—>env_id = generation | (e - envs);
// Set the basic status variables.
e—>env_parent_id = parent_id;
e—>env_type = ENV_TYPE_USER;
e—>env_status = ENV_RUNNABLE;

e->env_runs = 0;
A.A. 2014/2015 49

Corso: Sistemi Operativi
© Danilo Bruschi

Stato processi

ENV_FREE

ENV_RUNNABLE (READY)
ENV_RUNNING
ENV_NOT_RUNNABLE (WAITING)
ENV_DYING (Zombie)

Corso: Sistemi Operativi

A.A. 2014/2015 50 © Danilo Bruschi

Context Switch

« Salva lo stato del processore sul PCB del
Processo in esecuzione

* Modifica lo stato del suddetto PCB in - ready,
blocked, ecc.

» Seleziona dalla tabella dei processi un altro
processo per I'esecuzione

* Ripristina con le informazioni contenute nel
PCB del nuovo processo lo stato del
processore e le strutture per la gestione della
memoria

A.A. 2014/2015 51 Corso: Sistemi Operativi

© Danilo Bruschi

Creazione di un processo via syscall

« La system call fork() crea una copia del processo chiamante

- Altermine dell’esecuzione di una fork() da parte di un
processo A saranno in esecuzione due processi: il processo
A e il processo da lui generato (figlio)

|l processo figlio eredita dal padre una copia esatta del
codice, stack, file descriptor, heap, variabili globali, e
program counter

- |l figlio riceve un nuovo pid, time, signals, file locks, ...

« fork() restituisce
* -1in caso di errore
« 0 al processo figlio
il PID del figlio al processo padre

Corso: Sistemi Operativi
A.A. 2014/2015 52 © Danilo Bruschi

Esempio

#include <stdio.h>
#include <unistd.h>

int main(void) {
pid_t x;
x = fork();
if (x == 0)
printf(*In child: fork() returned %ld\n”, (long) x);
else
printf("In parent: fork() returned %ld\n", (long) x);

Corso: Sistemi Operativi

A.A. 2014/2015 53 © Danilo Bruschi

Creazione di processi

| processi padre generano i processi figli che a
loro volta generano altri processi in questo
modo si crea una gerarchia di processi

UNIX: process group

* Windows non possiede nozioni di gerarchia di
processi

Tutti | processi sono uguali

Corso: Sistemi Operativi
A.A.2014/2015 54 © Danilo Bruschi

Esempi

pid t childpid = 0;
for (i=1;i<n;i++)
if (fork() != 0) kill;

pid t childpid = 0;
for (i=1;i<n;i++)
if (fork() == 0) kill;

Corso: Sistemi Operativi
A.A. 2014/2015 55 © Danilo Bruschi 5

Esempi

pid t childpid = 0; pid t childpid = 0;
for (i=1l;i<n;i++) for (i=1l;i<n;i++)
if (fork() != 0) kill; if (fork() = 0) kill;

/N

Corso: Sistemi Operativi

A.A. 2014/2015 56 © Danilo Bruschi

56

Terminazione di un processo

 Normale (volontaria)
« Altermine della procedura main()

« exit(0)
Per errore (volontaria)
« exit(2) o abort()
« Errore imprevisto (involontaria)
- Divisione per 0, seg fault, exceeded resources

 Killed (involontaria)
- Signal: kill(proclD)

Corso: Sistemi Operativi

A.A. 2014/2015 57 © Danilo Bruschi

Operazioni di terminazione

« Quando un processo termina:
- | file aperti vengono chiusi
« | file Tmp sono cancellati

« Le risorse dei processi figli sono deallocate
File descriptor, memoria, semafori, ecc.

. Il processo padre viene notificato via signal

. Lo stato di terminazione (EXxit status) € disponibile
al genitore attraverso la syscall wait()

Corso: Sistemi Operativi
A.A.2014/2015 58 © Danilo Bruschi

System call: wait(), waitpid()

« walit() il genitore si sospende in
attesa che qualche processo
figlio termini

« wait() il pid e un codice di
ritorno sono restituiti al
genitore

« waitpid() il genitore si mette in
attesa della terminazione di un
determinato figlio

A.A. 2014/2015 59

errno Cause
Caller has no
ECHILD unwaited-for
children
Function was
EINTR interrupted by
signal
Options parameter
EINVAL of waitpid was

invalid

Corso: Sistemi Operativi
© Danilo Bruschi 59

Esempio

#include <errno.h>
#include <sys/wait.h>

pid t childpid;

childpid = wait(NULL);
if (childpid != -1)
printf(“waited for child with pid %1d\n”,
childpid);

Corso: Sistemi Operativi
A.A. 2014/2015 60 © Danilo Bruschi

What's a Zombie Process?

 When a process dies on Linux, it isn’t all removed from memory
immediately — its process descriptor stays in memory (the
process descriptor only takes a tiny amount of memory).

« The process’s status becomes EXIT _ZOMBIE and the
process’s parent is notified that its child process has died with
the SIGCHLD signal.

« The parent process is then supposed to execute the wait()
system call to read the dead process’s exit status and other
information. After wait() is called, the zombie process is
completely removed from memory.

« This normally happens very quickly, so you won’t see zombie
processes accumulating on your system. However, if a parent
process isn’'t programmed properly and never calls wait(), its
zombie children will stick around in memory until they’re cleaned
up.

Corso: Sistemi Operativi
A.A.2014/2015 61 © Danilo Bruschi

