
Sistemi Operativi

Lezione 3
I Processi

Processi (job, task, sequential process)

•  Il termine processo è un’astrazione adottata
nell’ambito dei sistemi operativi

•  denota un programma (sequenza di istruzioni) in
esecuzione, nell’ambito di un determinato ambiente
esecutivo caratterizzato da:
•  CPU
•  Memoria
•  Risorse di I/O

•  I processi sono tra loro scorrelati, cioè le risorse di
ciascun processo sono private

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

2

Come viene eseguito un programma?

•  Il codice eseguibile viene caricato in memoria
•  Viene allocato spazio alle variabili del programma
•  Viene allocato uno stack per il processo
•  Vengono aggiornati i registri del processore
•  Il controllo passa al processo
•  Il processo esegue un’iistruzione alla volta:

•  fetch the instruction from memory
•  decode the instruction
•  update the IP
•  execute the instruction

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

3

Processi – Contenuti

•  Un processo deve quindi comprende (almeno):
•  Uno spazio di indirizzi– di solito protetto e virtuale–

all’interno della memoria contrale
•  Il codice da eseguire
•  I dati necessari per l’esecuzione del codice
•  Uno stack e relativo stack pointer (SP)
•  Un program counter (PC)
•  Un insieme di registri – general purpose e di stato
•  Un insieme di risorse del sistema

•  file, network connections, privileges, …

Processi – Spazio d’indirizzamento

0x00000000

0xFFFFFFFF

Virtual

address space

program code
(text)

static data

heap
(dynamically allocated)

stack
(dynamically allocated)

PC

SP

Processi

•  I processi sono gli oggetti con cui gli utenti di
un sistema interagiscono:
•  Web browser
•  Word processors
•  Mail, ecc.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

6

Sistemi mono programmati

•  Viene eseguito un processo per volta
•  Non si esegue il nuovo processo sino a che il

processo in esecuzione non è terminato
•  Esiste un mapping uno a uno tra le risorse del

sistema e quelle del processo

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

7

Multiprogrammazione (su sistemi mono)

•  Presenza contemporanea di più processi
•  Una CPU può eseguire un solo processo alla

volta
•  UN PROCESSO È IN ESECUZIONE quando

il suo ambiente esecutivo è la macchina fisica
•  Va introdotto un meccanismo che consente di

“cambiare in corsa” un processo in
esecuzione con un altro

•  Mapping molti a uno tra i processi ed il
processore

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

8

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

9

Pseudo parallelismo

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

10

Parallelismo

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

11

Le operazioni su un processo

•  Compito primario del sistema operativo è
quello di gestire i processi
•  Mantenere l'illusione di più processi in esecuzione

contemporaneamente
•  dando ogni processo una porzione di tempo sulla

CPU
•  Gestire le diverse fasi del ciclo di vita di processo

dalla sua creazione alla sua terminazione

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

12

Creazione di un processo

•  Un processo viene creato a seguito di:
•  una richiesta esplicita da parte

dell’utente;
•  una richiesta esplicita da parte di un

processo (vedi fork())
•  Durante l’inizializzazione del sistema

•  Tramite l’esecuzione di un’apposita routine di
sistema

Ciclo di vita dei processi

•  Generalmente , vi sono più processi che competono
per la CPU
•  Solo un processo può essere in esecuzione su ogni CPU

alla volta
•  Quando un processo è in " running “, significa che detiene la

CPU !
•  Altri processi che potrebbero essere eseguiti, ma

attualmente non hanno la CPU , sono in stato di ”ready"

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

13

Ciclo di vita dei processi

•  Processo nuovi non necessariamente
ottengono subito al CPU

•  Il SO gestisce il “passaggio” della CPU da un
processo all’altro

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

14

Cliclo di vita dei processi

•  I processi devono spesso svolgere operazioni
lente (long-running operation)

•  In questo caso So provvede a togliere loro la
CPU per cederla ad altri processi

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

15

Ciclo di vita dei processi

•  Quando l’operazione lenta termina, il
processo che l’ha eseguita viene rimesso in
ready queue

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

16

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

17

Ciclo di vita di un processo

•  Primo o poi i processi terminano :
•  Terminazione normale (esecuzione dell’istruzione exit)
•  Scadenza del tempo di permanenza nel sistema
•  Memoria non disponibile
•  Violazione delle protezioni/Errori durante l’esecuzione

Ciclo di vita di un processo

•  Quelli che abbiamo visto sono gli stati fondamentali
presenti in tutti i SO, esistono poi ulteriori stati
“facoltativi”

•  Suspend/resume
•  un utente sospende un processo con Ctrl-Z
•  Un processo può sospendere un altro processo con

SIGSTOP

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

18

Ciclo di vita di un processo

•  Un processo sospeso può essere in stato di
blocked

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

19

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

20

Evoluzione dei Processi (3)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

21

Evoluzione dei processi

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

22

Context switch (1)

•  Per poter implementare il ciclo di vita un processo è
necessario individuare un meccanismo che consenta
di “togliere” il processore dal processo che lo sta
utilizzando a favore di un altro processo

•  La sospensione di un processo in esecuzione, a
favore di un altro processo avviene attraverso
l’operazione di context switch

•  Il contesto di un processo è il valore delle variabili
che caratterizzano il suo ambiente esecutivo (vedi
slide successive)

Process Controlo Block

•  I contesto di un processo è memorizzato in
un’apposita struttura dati del kernel nota come PCB

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

23

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

24

Identification

•  Le informazioni per l’identificazione del
processo contengono:
•  Identificatore del processo
•  Identificatore del processo padre
•  Identificatore dell’utente proprietario del processo

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

25

State vector (1)

•  Lo stato del processore
•  Tutti i registri del processore
•  PC (EIP)
•  Condition codes (EFLAGS)
•  Variabili di stato: flag di interrupt, execution mode
•  Stack pointer: puntatori allo stack associato al

processo
•  Gestione della Memoria

•  Tabelle delle pagine o dei segmenti

•  Risorse utilizzate
•  File aperti e/o creati

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

26

Status info (3)

•  Process state: running, ready, waiting, halted.
•  Eventi: identificativo dell’evento di cui il processo è

eventualmente in attesa

Other

•  Priorità di scheduling
•  Informazioni per l’algoritmo di scheduling:

tempo di permanenza nel sistema, tempo di
CPU,

•  Variabili per la comunicazione tra processi

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

27

Context Switch

•  Quando il kernel decide che deve essere
eseguito un altro processo effettua un context
switch, per forzare il sistema ad operare nel
contesto del nuovo processo

•  Per effettuare un context switch, il kernel:
•  salva le informazioni sufficienti a ripristinare, in un

tempo successivo, il contesto del processo
sospeso

•  carica il contesto del nuovo processo sulla
macchina fisica

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

28

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

29

Quando si effettua un context switch

•  Il context swith è un’operazione interrupt
driven che viene svolta dal kernel a seguito
di:
•  Clock interrupt
•  I/O interrupt
•  Memory fault
•  Eccezioni

Context switch in dettaglio

•  Durante un context switch le operazioni svolte
sono:
•  Salvataggio del contenuto dei registri di CPU
•  Ripristino del contenuto dei registri di CPU con i

nuovi contenuti
•  Esecuzione di interrupt handler
•  Esecuzione dello scheduler
•  Flush della pipeline del processore
•  Flush della TLB

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

30

Il costo di un context swith

•  Molto difficile da determinare perché in
funzione del tipo di processore

•  Mediamente il costo varia tra i 2 e i 7
microsecondi

•  Può però arrivare a punte di 50 microsecondi

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

31

context switch

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

32

Mode switch

•  Durante l’esecuzione di un processo vi sono
delle transizioni da user mode a kernel mode
(es. syscall, page fault)

•  Durante queste transizioni il kernel salva le
informazioni necessarie per riprendere
successivamente l’esecuzione del processo
momentaneamente sospeso

•  In questo caso si parla di mode change ma
non di context switch

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

33

mode switch in dettaglio

•  Durante un context switch le operazioni svolte
sono:
•  Salvataggio di alcuni dei registri di CPU
•  Ripristino del contenuto dei registri di CPU con i

nuovi contenuti
•  Esecuzione di interrupt handler
•  Flush della pipeline del processore

•  Un mode switching costa mediamente un
centinaio di nano secondi

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

34

Processi: aspetti realizzativi

Interrupt/Eccezioni

•  Meccanismi introdotti per interrompere il ciclo fetch-
decode-execute delle Cpu e consentire l’esecuzione
di attività alternative al processo in esecuzione

•  Il modo con cui l’hw reagisce ai due eventi sono
molto simili, vediamo di seguito le modalità di
gestione degli interrupt

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

36

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

37

Interrupt handling

•  Interrupt controller segnala l’occorrenza di un
interrupt, e passa il numero dell’interrupt
(vettore)

•  Il processore usa il vettore dell’interrupt per
decidere quale handler attivare

•  Il processore interrompe il processo corrente
PROC, e ne salva lo stato (contesto)

•  Il processore salta a un interrupt handler
•  Quando l’interrupt è stato gestito, lo stato di

PROC viene ripristinato e PROC riprende
l’esecuzione da dove era stato sospeso

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

38

Interrupt handling

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

IH

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP

100

Int
Inta

16

(a): CPU sta
eseguendo
l’istruzione 100 di
un programma
Concorrentemente
(b): P1 acquisisce
dei dati in un suo
registro di indirizzo
0x8000

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

39

Interrupt handling

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

IH

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP

100

Inta

16

2: P1 asserisce il
segnale Int per
richiedere
l’intervento del
microprocessore

Int
1

Int

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

40

Interrupt handling

3: Dopo aver
completato
l’istruzione in
esecuzione, il
processore sente
il segnale INT
asserito, salva il
valore di EIP e
asserisce Inta

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

IH

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP
Int

Inta

16

100 100

1
Inta

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

41

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

IH

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP
Int

Inta

16

Interrupt Handling

100

4(a): P1 rileva Inta
e abbassa il
segnale di Int
4(b): il processore
riasserisce Inta
4(c): P1 rileva di
nuovo Inta e pone il
vettore dell’interrupt
(16) sul bus dati

16

16

System bus

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

42

Interrupt handling

5(a): il processore
salta all’interrupt
handler associato
all’interrupt 16.
L’handler legge il
dato da 0x8000, lo
modifica e lo riscrive
all’indirizzo 0x8001.

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP
Int

Inta

16

100

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

IH

100:
101:

instruction
instruction

...
Main program

...
P1 P2

0x8000 0x8001

System bus

0
Int

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

43

Interrupt handling

6: Alla fine
l’handler, esegue
l’istruzione RETI
che ripristina il
valore di EIP a
100+1=101, da
dove il processore
riprende
l’esecuzione

µP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

Program memory

EIP

Int

100 100
+1

16: MOV R0, 0x8000
17: # modifies R0
18: MOV 0x8001, R0
19: RETI # ISR return

ISR

100:
101:

instruction
instruction

...
Main program

...

100

Context Switch

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

44

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

45

Strutture Dati

•  Per poter effettuare questa operazione
efficacemente, il sistema operativo usa una
particolare struttura dati, detta Process Control Block
(PCB)

•  All’avvio di ogni processo il sistema provvede a
costruire il PCB per il nuovo processo ed inserirlo
nella tabella dei processi

•  Il PCB è deallocato quando il processo termina
•  Esiste un PCB distinto per ogni processo
•  Il PCB è struttura dati del kernel e risiede nella zona

di memoria corrispondente

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

46

JOS PCB (ENV)

Envs array (Process Table)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

47

env_create

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

48

env_alloc
// Allocates and initializes a new environment. !
// On success, the new environment is stored in *newenv_store. !
// !

int!
env_alloc(struct Env **newenv_store, envid_t parent_id) !

{ int32_t generation; !
int r; !
struct Env *e; !

if (!(e = env_free_list)) !
return -E_NO_FREE_ENV; !

// Allocate and set up the page directory for this environment. !

if ((r = env_setup_vm(e)) < 0) !
return r; !

// Generate an env_id for this environment. !
e->env_id = generation | (e - envs); !

// Set the basic status variables. !

e->env_parent_id = parent_id; !
e->env_type = ENV_TYPE_USER; !

e->env_status = ENV_RUNNABLE; !
e->env_runs = 0;

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

49

Stato processi

•  ENV_FREE
•  ENV_RUNNABLE (READY)
•  ENV_RUNNING
•  ENV_NOT_RUNNABLE (WAITING)
•  ENV_DYING (Zombie)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

50

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

51

Context Switch

•  Salva lo stato del processore sul PCB del
processo in esecuzione

•  Modifica lo stato del suddetto PCB in - ready,
blocked, ecc.

•  Seleziona dalla tabella dei processi un altro
processo per l’esecuzione

•  Ripristina con le informazioni contenute nel
PCB del nuovo processo lo stato del
processore e le strutture per la gestione della
memoria

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

52

Creazione di un processo via syscall

•  La system call fork() crea una copia del processo chiamante
•  Al termine dell’esecuzione di una fork() da parte di un

processo A saranno in esecuzione due processi: il processo
A e il processo da lui generato (figlio)

•  Il processo figlio eredita dal padre una copia esatta del
codice, stack, file descriptor, heap, variabili globali, e
program counter

•  Il figlio riceve un nuovo pid, time, signals, file locks, …

•  fork() restituisce
•  -1in caso di errore
•  0 al processo figlio
•  il PID del figlio al processo padre

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

53

Esempio

#include <stdio.h>
#include <unistd.h>

int main(void) {
 pid_t x;
 x = fork();
 if (x == 0)
 printf(“In child: fork() returned %ld\n”, (long) x);
 else
 printf(“In parent: fork() returned %ld\n", (long) x);
}

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

54

Creazione di processi

•  I processi padre generano i processi figli che a
loro volta generano altri processi in questo
modo si crea una gerarchia di processi
•  UNIX: process group

•  Windows non possiede nozioni di gerarchia di
processi
•  Tutti i processi sono uguali

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

55

Copyright ©: Nahrstedt, Angrave, Abdelzaher

55

Esempi

pid_t childpid = 0;
for (i=1;i<n;i++)
 if (fork() != 0) kill;

pid_t childpid = 0;
for (i=1;i<n;i++)
 if (fork() == 0) kill;

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

56

Copyright ©: Nahrstedt, Angrave, Abdelzaher

56

Esempi

Child Child Parent

Parent

Child Child … …

pid_t childpid = 0;
for (i=1;i<n;i++)
 if (fork() != 0) kill;

pid_t childpid = 0;
for (i=1;i<n;i++)
 if (fork() = 0) kill;

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

57

Terminazione di un processo

•  Normale (volontaria)
•  Al termine della procedura main()
•  exit(0)

•  Per errore (volontaria)
•  exit(2) o abort()

•  Errore imprevisto (involontaria)
•  Divisione per 0, seg fault, exceeded resources

•  Killed (involontaria)
•  Signal: kill(procID)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

58

Operazioni di terminazione

•  Quando un processo termina:
•  I file aperti vengono chiusi
•  I file Tmp sono cancellati
•  Le risorse dei processi figli sono deallocate

•  File descriptor, memoria, semafori, ecc.

•  Il processo padre viene notificato via signal
•  Lo stato di terminazione (Exit status) è disponibile

al genitore attraverso la syscall wait()

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

59
59

System call: wait(), waitpid()

•  wait() il genitore si sospende in
attesa che qualche processo
figlio termini

•  wait() il pid e un codice di
ritorno sono restituiti al
genitore

•  waitpid() il genitore si mette in
attesa della terminazione di un
determinato figlio

errno Cause

ECHILD
Caller has no
unwaited-for
children

EINTR
Function was
interrupted by
signal

EINVAL
Options parameter
of waitpid was
invalid

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

60

Esempio

#include <errno.h>
#include <sys/wait.h>

pid_t childpid;

childpid = wait(NULL);
if (childpid != -1)
 printf(“waited for child with pid %ld\n”,

childpid);

What’s a Zombie Process?

•  When a process dies on Linux, it isn’t all removed from memory
immediately — its process descriptor stays in memory (the
process descriptor only takes a tiny amount of memory).

•  The process’s status becomes EXIT_ZOMBIE and the
process’s parent is notified that its child process has died with
the SIGCHLD signal.

•  The parent process is then supposed to execute the wait()
system call to read the dead process’s exit status and other
information. After wait() is called, the zombie process is
completely removed from memory.

•  This normally happens very quickly, so you won’t see zombie
processes accumulating on your system. However, if a parent
process isn’t programmed properly and never calls wait(), its
zombie children will stick around in memory until they’re cleaned
up.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

61

