
Sistemi Operativi

Lez. 17/18/19
Il bootstrap

Copyright

•  Il materiale presentato nelle prossime lezioni
è basato sul sistema operativo JOS
sviluppato come attività di laboratorio
nell’ambito del corso “ 6.828 Operating
System Engineering” erogato dal MIT

•  http://pdos.csail.mit.edu/6.828/2012/index.html

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

2

File della distribuzione

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

3

bootstrap

•  Tutti calcolatori hanno lo stesso problema,
sanno solo eseguire le istruzioni contenute
nel programma in esecuzione

•  Ma all’accensione di un sistema, in memoria
non è presente alcun programma

•  Come facciamo a predisporre un calcolatore
ad eseguire programmi?

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

4

bootstrap

•  I calcolatori moderni fanno ricorso ad una
ROM in cui è memorizzato il codice iniziale
per avviare il caricamento del sistema
operativo, operazione nota con il termine boot
loading

•  Attualmente ci sono due categorie di boot
loader:
•  Basati di BIOS Basic Input/output System
•  Basati su EFI/UEFI [Unified] Extensbile Firmware Interface

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

5

BIOS

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

6

BIOS
•  The BIOS is software stored on a permanent memory

chip attached to the motherboard (firmware). The
modern chip used is refered to as an EEPROM -
Electrically Erasable Programmable Read Only
Memory

•  The four main software components of the BIOS
program code are:
•  the BIOS built in 16-bit device drivers for all standard

peripheral components
•  the BIOS CMOS Setup Utility
•  the POST - Power On Self Test
•  the BIOS Boot Strap Loader

•  Besides that BIOS built its own IDT table for
managing interrrupt from I/O devices

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

7

Drivers

•  The BIOS 16-bit device drivers present a
universal set of functions for accessing
standard devices built into any motherboard
regardless of how that hardware specifically
works

•  This is called the BIOS API - Application
Programmer's Interface which IBM published
so that anyone could write software that
would work on any PC

•  The BIOS functions are very limited and very
low level

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

8

CMOS Utility

•  The BIOS Setup Utility is a menu driven
program built into the BIOS code which allows
the user to inspect and modify the hardware
configuration settings held in the CMOS RAM

•  This section of the BIOS normally does not
execute during a routine start up

•  During the POST of the system you can enter
the BIOS CMOS Setup Utility by pressing the
correct key or combination of keys.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

9

CMOS Utility

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

10

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Bootstrap (Sw Developer Manual – Cap. 9)

•  The process begins when the power supply is switched on
•  The power supply performs a self-test:

•  When all voltages and current levels are acceptable (+5v, +3.0 through +6.0 is
generally considered acceptable), the supply indicates that the power is stable and
sends the "Power Good" signal to the motherboard.

•  The "Power Good" signal is received by the microprocessor timer chip, which controls
the reset line to the microprocessor. The time between turning on the switch to the
generation of the "Power Good" signal is usually between 0.1 and 0.5 seconds.

•  In the absence of the "Power Good" signal, the timer chip continuously resets the
microprocessor, which prevents the system from running under bad or unstable power
conditions

•  The microprocessor timer chip receives the "Power Good" signal:
•  After the power supply is switched on, the microprocessor timer chip generates a reset

signal to the processor (the same as if you held the reset button down for a while on
your case) until it receives the "Power Good" signal from the power supply.

•  Following power-up or an assertion of the RESET# pin, each processor on the system
bus performs a hardware initialization (known as a hardware reset) and an optional
built-in self-test (BIST)

11

Bootstrap

•  Table 9-1 shows the state of the flags and other registers following
power-up for the Pentium 4, Intel Xeon, P6 family (including Intel
processors with CPUID Display Family signature of 06H), and Pentium
processors. The state of control register CR0 is 60000010H (see Figure
9-1). This places the processor in real-address mode with paging
disabled.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

12

Bootstrap

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

13

Memory map

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

14

First instruction executed (8088)

•  The first instruction that is fetched and executed following a hardware
reset is located at physical address 0xFFFF0. This address is 16 bytes
below the processor’s uppermost 20-bit physical address. The EPROM
containing the software initialization code must be located at this
address

•  The processor is initialized to this starting address as follows: during a
hardware reset, the segment selector in the CS register is loaded with
0xF000 and EIP to 0xFFF0 . The starting address is thus formed by
using these two addresses (see slide 22)

•  This is the address where the first BIOS instruction is stored

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

15

POST
•  The POST code starts by scanning for offboard

BIOS'es and if it finds any it will immediately pass
control to them.

•  After control returns to the POST it will test all of the
immediate chipset members that are in direct contact
with the CPU and upon which it depends such as the
Dynamic RAM controller which organizes RAM banks
and controls the refresh of the RAM memory cells
and the relocatable address demultiplexing.

•  Another close and important chip is the expansion
bus controller. The POST proceeds on to test the
peripheral devices attached to the expansion buses

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

16

Boot loader
•  So if all of the devices respond properly then the system has

successfully passed the POST and then the POST will issue a
single beep from the system speaker

•  Then the POST code will jump to the next embedded program
component of the BIOS code: the BIOS Boot Strap Loader code

•  Loading the OS (Operating System):The BIOS will attempt
booting using the boot sequence determined by the CMOS
settings, and examine the MBR (Master Boot Record) of the
bootable disk.

•  The MBR is the information in the first sector (512 bytes) of any
hard disk or diskette that identifies how and where an operating
system is located so that it can be loaded into the RAM
(booted).

•  When the BIOS finds a bootable floppy or hard disk, it loads the
512-byte boot sector into memory at physical addresses 0x7c00
through 0x7dff

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

17

Bootloading & MBR

•  Picture is made more complex by hard disk partitioning
•  First sector of a hard disk is a master boot record (MBR)
•  Specifies up to four partitions of the hard disk, each with

its own format and use
•  e.g. each partition could be used for a different operating system
•  An operating system might also need multiple partitions, e.g.

Linux filesystem partition vs. Linux swap partition
•  Issue: MBR doesn’t correspond to a specific operating

system; the disk may contain multiple OSes!
•  A partition containing an operating system often specifies

its own bootloader in the first sector of the partition
•  MBR must kick off the next bootloader in the process...

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

18

MBR e bootloading

•  MBR loader must load a partition bootloader...
•  Must do it in such a way that the partition bootloader

doesn’t know it wasn’t loaded directly by the BIOS
•  MBR loader must emulate the BIOS bootloading mechanism

•  MBR loaders use a mechanism called chain loading
•  MBR loads the next bootloader into address 0x7C00,

then jumps to that address and begins running it
•  Of course, the MBR loader was loaded at 0x7C00...

•  Must first copy itself to another location, then jump there
before carrying on next tasks

•  Chain loaders often copy themselves to address 0x0600

Corso: Sistemi Operativi
© Danilo Bruschi

19 A.A. 2014/2015

EFI

•  Intel plans to replace the (very) old BIOS
system with a new set of programs

•  The new system is called EFI (Extensible
Firmware Interface) and is in itself a complete
little operating system

•  It has a graphical user interface. Where the
old BIOS is written in the Assempler
language, the new EFI is written in C, making
it more easy accessable

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

20

BOOT LOADER (QEMU 8088)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

21

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Memory layout
•  The first PCs, based on the 16-bit Intel 8088 processor, were

only capable of addressing 1MB of physical memory. The
physical address space of an early PC would therefore start at
0x00000 but end at 0xFFFFF

•  The 640KB area marked "Low Memory" was the only random-
access memory (RAM)

•  The 384KB area from 0xA0000 through 0xFFFFF was reserved
by the hardware for special uses such as video display buffers
and firmware held in non-volatile memory. The most important
part of this reserved area is the Basic Input/Output System
(BIOS), which occupies the 64KB region from 0xF0000 through
0xFFFFF.

22

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Memory layout

23

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Memory layout

•  When Intel finally "broke the one megabyte barrier"
with the 80286 and 80386 processors, which
supported 16MB and 4GB physical address spaces
respectively, the PC architects nevertheless
preserved the original layout for the low 1MB of
physical address space in order to ensure backward
compatibility with existing software.

•  Modern PCs therefore have a "hole" in physical
memory from 0x000A0000 to 0x00100000, dividing
RAM into "low" or "conventional memory" (the first
640KB) and "extended memory" (everything else).

24

Real mode

•  The processor is in real mode, in which it simulates
an Intel 8088

•  In real mode there are eight 16-bit general-purpose
registers, but the processor sends 20 bits of address
to memory

•  The segment registers %cs, %ds, %es, and %ss
provide the additional bits necessary to generate 20-
bit memory addresses from 16-bit registers

•  Such addresses were indicated by CS:IP
•  How does a segmented address CS:IP turn into a

physical address?

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

25

Real mode address translation

•  In real mode address translation works according to
the formula:
•  physical address = 16 * segment + offset

•  On 8088 processor reset CS is set to 0xf000 and IP
to 0xfff0, thus the physical address referenced is:
•  16 * 0xf000 + 0xfff0 =
•  0xf0000 + 0xfff0 = 0xffff0

•  And the first instruction to be executed is:
•  [f000:fff0] 0xffff0: ljmp $0xf000,$0xe05b

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

26

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

BIOS
•  When the BIOS runs, it sets up an interrupt descriptor table and

initializes various devices such as the VGA display.
•  After initializing the PCI bus and all the important devices the

BIOS knows about, it searches for a bootable device such as a
floppy, hard drive, or CD-ROM. Eventually, when it finds a
bootable disk, the BIOS reads the boot loader from the disk and
transfers control to it

•  If the disk is bootable, the first sector is called the boot sector,
since this is where the boot loader code resides. When the
BIOS finds a bootable floppy or hard disk, it loads the 512-byte
boot sector into memory at physical addresses 0x7c00 through
0x7dff, and then uses a jmp instruction to set the CS:IP
to 0000:7c00, passing control to the boot loader. Like the BIOS
load address, these addresses are fairly arbitrary - but they are
fixed and standardized for PCs.

27

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Boot Loader

•  BEGIN

1.  enables address line 20;

2.  switches the processor from real mode to 32-bit

protected mode, in this mode software can access all
the memory above 1MB in the processor's physical
address space, the boot loader does not enable the
paging hardware, only segmentation;

3.  reads the kernel from the hard disk by directly

accessing the IDE disk device registers via the x86's
special I/O instructions;

•  END

28

ENABLE A20 ADDRESS LINE

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

29

A20 enable

•  A virtual segment:offset can yield a 21-bit
physical address, but the Intel 8088 could
only address 20 bits of memory, so it
discarded the top bit: 0xffff0+0xffff = 0x10ffef,
but virtual address 0xffff:0xffff on the 8088
referred to physical address 0x0ffef

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

30

A20 enable

•  Some early software relied on the hardware
ignoring the 21st address bit, so during
bootup, the BIOS enables the A20 line to test
the memory

•  After the memory test, the BIOS disables the
A20 line to retain compatability with older
processors. Because of this, by default, the
A20 line is disabled for our operating system

•  so the operating system has to find out how to
enable it, and that may be nontrivial since the
details depend on the chipset used

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

31

A20 enabling

•  The traditional method for A20 line enabling is
to directly probe the keyboard controller

•  The reason for this is that Intel's 8042
keyboard controller had a spare pin which
they decided to route the A20 line through

•  If the second bit of the keyboard controller’s
output port is low, the 21st physical address
bit is always cleared; if high, the 21st bit acts
normally

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

32

8042
•  The 8042 contains the following registers:

•  A one-byte input buffer - contains byte read from keyboard;
read-only

•  A one-byte output buffer - contains byte to-be-written to
keyboard; write-only

•  A one-byte status register - 8 status flags; read-only
•  A one-byte control register - 7 control flags; read/write

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

33

The kbd controller

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

34

A20 enable

•  The output port (or output buffer) of the
keyboard controller has a number of
functions.
•  Bit 0 is used to reset the CPU (go to real mode) - a

reset happens when bit 0 is 0
•  Bit 1 is used to control A20 - it is enabled when bit

1 is equal to 1, disabled when bit 1 is equal to 0

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

35

Writing to output port

•  In order to write to output port:
1.  A “Write output port” command i.e. 0xD1 has to

be sent to the controller, this means that 0xD1
has to be “out” to port 0x64 (send a command),

2.  The data to be inserted in the output port has be
be written on port 0x60

•  Before executing the above mentioned
commands, a cycle for verifying whether the
kyboard is ready has to be performed

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

36

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot.s

 # Enable A20:
 # For backwards compatibility with the earliest PCs, physical
 # address line 20 is tied low, so that addresses higher than
 # 1MB wrap around to zero by default. This code undoes this.
seta20.1:
 inb $0x64,%al # Wait for not busy
 testb $0x2,%al
 jnz seta20.1

 movb $0xd1,%al # 0xd1 -> port 0x64
 outb %al,$0x64

seta20.2:
 inb $0x64,%al # Wait for not busy
 testb $0x2,%al
 jnz seta20.2

 movb $0xdf,%al # 0xdf -> port 0x60
 outb %al,$0x60

37

ENABLE PROT. MODE
(SEGMENTED ONLY)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

38

SW inizialization for protected mode

•  The processor is placed in real-address mode following a
hardware reset. At this point in the initialization process, some
basic data structures and code modules must be loaded into
physical memory to support further initialization of the processor

•  Before the processor can be switched to protected mode, the
software initialization code must load a minimum number of
protected mode data structures and code modules into memory
to support reliable operation of the processor in protected mode

•  Initially we will just enable segmented protected mode, the data
structures to be initialized in such a case represent a minimal
subset of those related to paged protected mode

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

39

SW inizialization for protected mode

•  These data structures are:
•  IDT
•  GDT
•  TSS
•  (Optional) An LDT
•  If paging is to be used, at least one page directory and one

page table
•  A code segment that contains the code to be executed when

the processor switches to protected mode
•  One or more code modules that contain the necessary

interrupt and exception handlers

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

40

Registers initialization

•  Software initialization code must also initialize
the following system registers before the
processor can be switched to protected
mode:
•  The GDTR.
•  (Optional.) The IDTR. This register can also be initialized

immediately after switching to protected mode, prior to
enabling interrupts.

•  Control registers CR1 through CR4.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

41

Layout descrittore segmento (8 byte)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

42

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

GDT Definition (boot.s)

Bootstrap GDT
.p2align 2 # force 4 byte alignment

gdt:

 SEG_NULL # null seg
 SEG(STA_X|STA_R, 0x0, 0xffffffff) # code seg

 SEG(STA_W, 0x0, 0xffffffff) # data seg

gdtdesc:

 .word 0x17 # sizeof(gdt) - 1

 .long gdt # address gdt

43

GDT initialization
/* !
 * Macros to build GDT entries in assembly. !
 */ !
#define SEG_NULL \ !

.word 0, 0; \ !

.byte 0, 0, 0, 0 !
#define SEG(type,base,lim) \ !

.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \ !

.byte (((base) >> 16) & 0xff), (0x90 | (type)), \ !
(0xC0 | (((lim) >> 28) & 0xf)), (((base) >> 24) & 0xff) !

!
// Application segment type bits

#define STA_X 0x8 // Executable segment

#define STA_W 0x2 // Writeable (non-executable segments)

#define STA_R 0x2 // Readable (executable segments)

#define STA_A 0x1 // Accessed

A.A. 2014/2015 Corso: Sistemi Operativi

© Danilo Bruschi

44

Segment Descriptors

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

45

Enabling protected mode: Cr0

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

46

Enabling protected mode

•  Enabling protected mode does not
immediately change how the processor
translates logical to physical addresses

•  it is only when one loads a new value into a
segment register that the processor reads the
GDT and changes its internal segmentation
settings

•  One cannot directly modify %cs, so instead
the code executes an ljmp (far jump)
instruction, which allows a code segment
selector to be specified

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

47

Enabling protected mode

•  The ljump continues execution so sets %cs to
refer to the code descriptor entry in gdt

•  That descriptor describes a 32-bit code
segment, so the processor switches into 32-
bit mode

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

48

Setting a stack

•  The boot loader needs to call a C procedure for
loading the kernel, before executing C code however
it has to set up a stack in an unused region of
memory

•  The memory from 0xa0000 to 0x100000 is typically
littered with device memory regions, and the kernel
expects to be placed at 0x100000

•  The boot loader itself is at 0x7c00 through 0x7d00
•  The boot loader chooses 0x7c00 (known in this file as

$start) as the top of the stack; the stack will grow
down from there, toward 0x0000, away from the boot
loader

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

49

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot.s
#include <inc/mmu.h>

Start the CPU: switch to 32-bit protected mode, jump into C.
The BIOS loads this code from the first sector of the hard disk into
memory at physical address 0x7c00 and starts executing in real mode
with %cs=0 %ip=7c00.

.set PROT_MODE_CSEG, 0x8 # kernel code segment selector
.set PROT_MODE_DSEG, 0x10 # kernel data segment selector
.set CR0_PE_ON, 0x1 # protected mode enable flag

.globl start
start:
 .code16 # Assemble for 16-bit mode
 cli # Disable interrupts
 cld # String operations increment
 # Set up the important data segment registers (DS, ES, SS).
 xorw %ax,%ax # Segment number zero
 movw %ax,%ds # -> Data Segment
 movw %ax,%es # -> Extra Segment
 movw %ax,%ss # -> Stack Segment

50

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot.s

 # Enable A20:
 # For backwards compatibility with the earliest PCs, physical
 # address line 20 is tied low, so that addresses higher than
 # 1MB wrap around to zero by default. This code undoes this.
seta20.1:
 inb $0x64,%al # Wait for not busy
 testb $0x2,%al
 jnz seta20.1

 movb $0xd1,%al # 0xd1 -> port 0x64
 outb %al,$0x64

seta20.2:
 inb $0x64,%al # Wait for not busy
 testb $0x2,%al
 jnz seta20.2

 movb $0xdf,%al # 0xdf -> port 0x60
 outb %al,$0x60

51

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot.s
 # Switch from real to protected mode, using a

bootstrap GDT
 # and segment translation that makes virtual addresses
 # identical to their physical addresses, so that the
 # effective memory map does not change during the

switch.

 lgdt gdtdesc
 movl %cr0, %eax
 orl $CR0_PE_ON, %eax
 movl %eax, %cr0

 # Jump to next instruction, but in 32-bit code seg
 # Switches processor into 32-bit mode.

 ljmp $PROT_MODE_CSEG, $protcseg

52

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot.s
 .code32 # Assemble for 32-bit mode
protcseg:
 # Set up the protected-mode data segment registers

 movw $PROT_MODE_DSEG, %ax # Our data segment selector
 movw %ax, %ds # -> DS: Data Segment
 movw %ax, %es # -> ES: Extra Segment
 movw %ax, %fs # -> FS
 movw %ax, %gs # -> GS
 movw %ax, %ss # -> SS: Stack Segment

 # Set up the stack pointer and call into C.
 movl $start, %esp
 call bootmain

 # If bootmain returns (it shouldn't), loop.
spin:
 jmp spin

53

READING THE KERNEL FROM
HD

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

54

boot/main

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

55

#define SECTSIZE 512
#define ELFHDR ((struct Elf *) 0x10000)// scratch space

void bootmain(void)
{
 struct Proghdr *ph, *eph;

 // read 1st page off disk
 readseg((uint32_t) ELFHDR, SECTSIZE*8, 0);

 // is this a valid ELF?
 if (ELFHDR->e_magic != ELF_MAGIC)
 goto bad;

IDE Disk (integrated drive electronic)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

56

LBA mode

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

57

With LBA, the entire drive appears as one giant array of 512 byte
Sectors. To access any sector, you just use one 28 bit unsigned
integer to specify which one you want. The numbering is zero
based, so to read the MBR, you specify 0.
The code uses a 32 bit parameter, with the upper 4 bits ignored.
Together these registers will define a
32 bit address which point to the data block you wish to
read/write.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

IDE DISK

58

Status Register

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

59

bit 0 : error bit. If this bit is set then an error has
 occurred while executing the latest command. The error
 status itself is to be found in the error register.
bit 1 : index pulse. Each revolution of the disk this bit is
 pulsed to '1' once. I have never looked at this bit, I
 do not even know if that really happens.
bit 2 : ECC bit. if this bit is set then an ECC correction on
 the data was executed. I ignore this bit.
bit 3 : DRQ bit. If this bit is set then the disk either wants
 data (disk write) or has data for you (disk read).
bit 4 : SKC bit. Indicates that a seek has been executed with
 success.
bit 5 : WFT bit. indicates a write error has happened. I do
 not know what to do with this bit here and now. I've
 never seen it go active.
bit 6 : RDY bit. indicates that the disk has finished its
 power-up. Wait for this bit to be active before doing
 anything (except reset) with the disk.
bit 7 : BSY bit. This bit is set when the disk is doing
 something for you. You have to wait for this bit to
 clear before you can start giving orders to the disk.

IDE USAGE

1.  Before doing anything with a device you have to wait till it indicates that it
is ready (RDY bit in the status register)

2.  Next you load the parameters of a command into the appropriate registers.
For read/write commands that comes down to writing the cylinder/head/
sector numbers into the registers.

3.  You issue a read or write command.

4.  You wait till the device signals that it is ready for data transfer (DRQ in the

status register).

5.  Feed the device data (for write) or get the data from the device (for read).

In case of a write you could wait for the operation to complete and read the
status register to find out what has become of your data.

6.  Finish!!

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

60

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

61

Continuous Polling
(Controllo Programma)

IDE commands
1XH recalibrate the disk. NB: 1XH means that the lower

 nibble of the command byte is a don't care. All

 commands 10H..1FH will result in a recalibrate

 disk command being executed. This command has no

 parameters. You simply write the command code to

 the command register and wait for ready status to

 become active again.

20H Read sector with retry. NB: 21H = read sector

 without retry. For this command you have to load

 the complete circus of cylinder/head/sector

 first. When the command completes (DRQ goes

 active) you can read 256 words (16-bits) from the

 disk's data register.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

62

IDE commands

30H Write sector (with retry; 31H = without retry).

 Here too you have to load cylinder/head/sector.

 Then wait for DRQ to become active. Feed the disk

 256 words of data in the data register. Next the

 disk starts writing. When BSY goes not active you

 can read the status from the status register.

7XH Seek. This normally does nothing on modern IDE

 drives. Modern drives do not position the head if

 you do not command a read or write.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

63

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

IDE controller ready?

•  To wait for the drive to signal that it's ready:

while ((inb(0x1F7) & 0xC0) != 0x40)

64

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

waitdisk ()

void
waitdisk(void)
{
 // wait for disk ready
 while ((inb(0x1F7) & 0xC0) != 0x40)
 /* do nothing */;

}

65

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

IDE Read Sector

•  To read a sector using LBA28:
•  Send a NULL byte to port 0x1F1: outb(0x1F1, 0x00);
•  Send a sector count to port 0x1F2: outb(0x1F2, 0x01);
•  Send the low 8 bits of the block address to port 0x1F3: outb(0x1F3,

(unsigned char)addr);
•  Send the next 8 bits of the block address to port 0x1F4: outb(0x1F4,

(unsigned char)(addr >> 8);
•  Send the next 8 bits of the block address to port 0x1F5: outb(0x1F5,

(unsigned char)(addr >> 16);
•  Send the drive indicator, some magic bits, and highest 4 bits of the block

address to port 0x1F6: outb(0x1F6, (addr >> 24) | 0xE0));
•  Send the command (0x20) to port 0x1F7: outb(0x1F7,0x20);

66

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

readsect()

void
readsect(void *dst, uint32_t offset)
{

 // wait for disk to be ready
 waitdisk();

 outb(0x1F2, 1); // count = 1
 outb(0x1F3, offset);
 outb(0x1F4, offset >> 8);
 outb(0x1F5, offset >> 16);
 outb(0x1F6, (offset >> 24) | 0xE0);
 outb(0x1F7, 0x20); // cmd 0x20 - read sectors

 // wait for disk to be ready
 waitdisk();

 // read a sector
 insl(0x1F0, dst, SECTSIZE/4);

}

67

readseg

// Read 'count' bytes at 'offset' from kernel into physical
address pa !
// Might copy more than asked!
void!
readseg(uint32_t pa, uint32_t count, uint32_t offset) !
{ !

uint32_t end_pa; !
end_pa = pa + count; !
// round down to sector boundary!
pa &= ~(SECTSIZE - 1); !
// translate from bytes to sectors, and kernel starts at
// sector 1!
offset = (offset / SECTSIZE) + 1; !
!

A.A. 2014/2015 Corso: Sistemi Operativi

© Danilo Bruschi

68

readseg

// If this is too slow, we could read lots of sectors at a tim!
// We'd write more to memory than asked, but it doesn't matter !
// we load in increasing order. !

while (pa < end_pa) { !
// Since we haven't enabled paging yet and we're using!
// an identity segment mapping (see boot.S), we can!
// use physical addresses directly. This won't be the!
// case once JOS enables the MMU.!
readsect((uint8_t*) pa, offset); !
pa += SECTSIZE; !
offset++; !

} !
} !

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

69

ELF (EXECUTABLE AND
LINKABLE FORMAT)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

70

.elf

•  It is a common standard file format for
executables, object code, shared libraries,
and core dumps

•  First published in the System V Application
Binary Interface specification,and later in the
Tool Interface Standard, it was quickly
accepted among different vendors of Unix
systems

•  In 1999 it was chosen as the standard binary
file format for Unix and Unix-like systems on
x86 by the 86open project

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

71

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

.elf

•  An ELF binary starts with a fixed-length ELF header,
followed by a variable-length program header listing
each of the program sections to be loaded

•  The ELF format specifies two "views" of an ELF file --
one is used for linking and the other is used for
execution. This affords significant flexibility for
systems designers

•  We talk about sections in object code waiting to be
linked into an executable. One or more sections map
to a segment in the executable.

72

.elf

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

73

Elf Header

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

74

#define ELF_MAGIC 0x464C457FU /* "\x.ELF" in little */

struct Elf {

 uint32_t e_magic; // must equal ELF_MAGIC
 uint8_t e_elf[12];
 uint16_t e_type;
 uint16_t e_machine;
 uint32_t e_version;
 uint32_t e_entry;
 uint32_t e_phoff;
 uint32_t e_shoff;
 uint32_t e_flags;
 uint16_t e_ehsize;
 uint16_t e_phentsize;
 uint16_t e_phnum;
 uint16_t e_shentsize;
 uint16_t e_shnum;
 uint16_t e_shstrndx;

};

Header: campi importanti

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

75

e_entry This member gives the virtual address to which the system first
 transfers control, thus starting the process. If the file has no
 associated entry point, this member holds zero.

e_phoff This member holds the program header table’s file offset in bytes. If
 the file has no program header table, this member holds zero.

e_shoff This member holds the section header table’s file offset in bytes. If
 the file has no section header table, this member holds zero.

e_flags This member holds processor-specific flags associated with the file. Flag
 names takethe form EF_machine _flag. See ‘‘Machine Information’’ for
 flag definitions.

e_ehsize This member holds the ELF header’s size in bytes.
e_phentsize This member holds the size in bytes of one entry in the file’s

 program header table; all entries are the same size.
e_phnum This member holds the number of entries in the program header table. Thus

 the product of e_phentsize and e_phnum gives the table’s size in
 bytes. If a file has no program header table, e_phnum holds the value
 zero.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

.elf

76

Program Header

•  The ELF header actually points to another group of
headers called the program headers

•  These headers describe to the operating system
anything that might be required for it to load the
binary into memory and execute it

•  Segments are described by program headers, but so
are some other things required to get the executable
running

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

77

ELF header and Program header

•  ELF header definition contains fields
e_phoff, e_phnum and e_phentsize;
these are simply the offset in the file where
the program headers start, how many
program headers there are and how big each
program header is

•  With these three information you can easily
find and read the program headers

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

78

Proghdr

struct Proghdr { !
uint32_t p_type; !
uint32_t p_offset; !
uint32_t p_va; !
uint32_t p_pa; !
uint32_t p_filesz; !
uint32_t p_memsz; !
uint32_t p_flags; !
uint32_t p_align; !

};
A.A. 2014/2015 Corso: Sistemi Operativi

© Danilo Bruschi

79

Which segments

•  The C definitions for these ELF headers are in inc/
elf.h. The program segments we're interested in are:
•  .text: the program's executable instructions
•  .rodata: read-only data, such as ASCII string constants

produced by the C compiler. (We will not bother setting up
the hardware to prohibit writing, however.)

•  .data: The data section holds the program's initialized data,
such as global variables declared with initializers like int x =
5;.

•  .bss

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

80

.elf

•  When the linker computes the memory layout of a
program, it reserves space for uninitialized global
variables, such as int x; in a section
called .bss that immediately follows .data in memory.

•  C requires that "uninitialized" global variables start
with a value of zero. Thus there is no need to store
contents for .bss in the ELF binary; instead, the linker
records just the address and size of the .bss section.
The loader or the program itself must arrange to zero
the .bss section.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

81

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

82

elf

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

83

.elf

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

84

elf

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

85

elf

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

86

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Link vs load address

•  Take particular note of the "VMA" (or link address) and the
"LMA" (or load address) of the .text section. The load address of
a section is the memory address at which that section should be
loaded into memory.

•  In the ELF object, this is stored in the ph->p_pa field (in this
case, it really is a physical address, though the ELF
specification is vague on the actual meaning of this field).

•  The link address of a section is the memory address from which
the section expects to execute. The linker encodes the link
address in the binary in various ways, such as when the code
needs the address of a global variable, with the result that a
binary usually won't work if it is executing from an address that it
is not linked for

87

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

Kernel LA

•  Operating system kernels often like to be linked and run at very
high virtual address, such as 0xf0100000, in order to leave the lower
part of the processor's virtual address space for user programs to use

•  Many machines don't have any physical memory at address
0xf0100000, so we can't count on being able to store the kernel there.
Instead, we will use the processor's memory management hardware to
map virtual address 0xf0100000 (the link address at which the kernel
code expects to run) to physical address 0x00100000 (where the boot
loader loaded the kernel into physical memory)

•  This way, although the kernel's virtual address is high enough to leave
plenty of address space for user processes, it will be loaded in physical
memory at the 1MB point in the PC's RAM, just above the BIOS ROM

88

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot/main

#include <inc/x86.h>
#include <inc/elf.h>

/***
 * This a dirt simple boot loader, whose sole job is to boot
 * an ELF kernel image from the first IDE hard disk.
 *
 * DISK LAYOUT
 * * This program(boot.S and main.c) is the bootloader. It should
 * be stored in the first sector of the disk.
 *
 * * The 2nd sector onward holds the kernel image.
 *
 * * The kernel image must be in ELF format.

89

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot/main

 * BOOT UP STEPS
 * * when the CPU boots it loads the BIOS into memory and executes it
 *
 * * the BIOS intializes devices, sets of the interrupt routines, and
 * reads the first sector of the boot device(e.g., hard-drive)
 * into memory and jumps to it.
 *
 * * Assuming this boot loader is stored in the first sector of the
 * hard-drive, this code takes over...
 *
 * * control starts in boot.S -- which sets up protected mode,
 * and a stack so C code then run, then calls bootmain()
 *
 * * bootmain() in this file takes over, reads in the kernel and jumps to it.
 **/

90

boot/main

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

91

#define SECTSIZE 512
#define ELFHDR ((struct Elf *) 0x10000) // scratch space

void bootmain(void)
{

 struct Proghdr *ph, *eph;

 // read 1st page off disk
 readseg((uint32_t) ELFHDR, SECTSIZE*8, 0);

 // is this a valid ELF?
 if (ELFHDR->e_magic != ELF_MAGIC)
 goto bad;

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

boot/main
// load each program segment (ignores ph flags)

 ph = (struct Proghdr *) ((uint8_t *) ELFHDR + ELFHDR->e_phoff);

 eph = ph + ELFHDR->e_phnum;

 for (; ph < eph; ph++)
 // p_pa is the load address of this segment (as well
 // as the physical address)

 readseg(ph->p_pa, ph->p_memsz, ph->p_offset);

 // call the entry point from the ELF header
 // note: does not return!

 ((void (*)(void)) (ELFHDR->e-entry))();

}

92

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

// Read 'count' bytes at 'offset' from kernel into physical address 'pa'.
// Might copy more than asked

void readseg(uint32_t pa, uint32_t count, uint32_t offset)
{ uint32_t end_pa;

end_pa = pa + count;

// round down to sector boundary
pa &= ~(SECTSIZE - 1);

// translate from bytes to sectors, and kernel starts at sector 1
offset = (offset / SECTSIZE) + 1;

// If this is too slow, we could read lots of sectors at a time.
// We'd write more to memory than asked, but it doesn't matter
// we load in increasing order.
while (pa < end_pa) {
// Since we haven't enabled paging yet and we're using
// an identity segment mapping (see boot.S), we can
// use physical addresses directly. This won't be the
// case once JOS enables the MMU.
readsect((uint8_t*) pa, offset);
pa += SECTSIZE;
offset++;

 }
}

93

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

readsect()

void
readsect(void *dst, uint32_t offset)
{

 // wait for disk to be ready
 waitdisk();

 outb(0x1F2, 1); // count = 1
 outb(0x1F3, offset);
 outb(0x1F4, offset >> 8);
 outb(0x1F5, offset >> 16);
 outb(0x1F6, (offset >> 24) | 0xE0);
 outb(0x1F7, 0x20); // cmd 0x20 - read sectors

 // wait for disk to be ready
 waitdisk();

 // read a sector: insl repeat SECTSIZE/4 times the imput of 4 bytes

 insl(0x1F0, dst, SECTSIZE/4);

}
94

IL KERNEL

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

95

Kernel

###!
The kernel (this code) is linked at address ~(KERNBASE + 1 Meg), !
but the bootloader loads it at address ~1 Meg. !
!
RELOC(x) maps a symbol x from its link address to its actual!
location in physical memory (its load address). !
###!
!
#define RELOC(x) ((x) – KERNBASE)!
!
.text!
!
.align 4 !
.globl _start !
!
_start = RELOC(entry)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

96

Kernel (.code)
.globl entry !
entry: !

movw $0x1234,0x472 # warm boot!
movl $(RELOC(entry_pgdir)), %eax!
movl %eax, %cr3 !
Turn on paging. !
movl %cr0, %eax!
orl $(CR0_PE|CR0_PG|CR0_WP), %eax!
movl %eax, %cr0 !
Now paging is enabled, but we're still running at a low EIP!
(why is this okay?). Jump up above KERNBASE before entering C code!
mov $relocated, %eax!
jmp *%eax!

relocated: !
 movl $0x0,%ebp # nuke frame pointer!

movl $(bootstacktop),%esp!
call i386_init !

spin: !
jmp spin !

A.A. 2014/2015 Corso: Sistemi Operativi

© Danilo Bruschi

97

Kernel (.data)

!
.data!
###!
boot stack!
###!

!
.p2align PGSHIFT # force page alignment!
.globl bootstack!

bootstack: !
.space KSTKSIZE !
.globl bootstacktop !

bootstacktop: !

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

98

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

VM
•  For now, we'll just map the first 4MB of physical memory by using the

hand-written, statically-initialized page directory and page table in kern/
entrypgdir.c.

•  Up until kern/entry.S sets the CR0_PG flag, memory references are
treated as physical addresses (strictly speaking, they're linear
addresses, but boot/boot.S set up an identity mapping from linear
addresses to physical addresses and we're never going to change
that).

•  Once CR0_PG is set, memory references are virtual addresses that get
translated by the virtual memory hardware to physical
addresses. entry_pgdir translates virtual addresses in the range
0xf0000000 through 0xf0400000 to physical addresses 0x00000000
through 0x00400000, as well as virtual addresses 0x00000000 through
0x00400000 to physical addresses 0x00000000 through 0x00400000.

•  Any virtual address that is not in one of these two ranges will cause a
hardware exception

99

entrypgdir.c

// The entry.S page directory maps the first 4MB of physical memory
// starting at virtual address KERNBASE (that is, it maps virtual

// addresses [KERNBASE, KERNBASE+4MB) to physical addresses [0, 4MB)).

// We choose 4MB because that's how much we can map with one page

// table and it's enough to get us through early boot.

// We also map

// virtual addresses [0, 4MB) to physical addresses [0, 4MB); this

// region is critical for a few instructions in entry.S and then we

// never use it again.

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

100

First Paging structure

•  We must build the VM data structures that will
enable the following mapping among virtual
addresses and physical addresses:

[0xf0000000, 0xf0400000) à [0x00000000, 0x00400000)

[0x0000000, 0x00400000) à [0x00000000, 0x00400000)

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

101

I386- addressing mechanism

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

102

Page Directory entry

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

103

Page table entry

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

104

Some constants

#define PTSIZE (PGSIZE*NPTENTRIES) // bytes mapped by a page directory entry

#define PTSHIFT 22 // log2(PTSIZE)

#define PTXSHIFT 12 // offset of PTX in a linear address

#define PDXSHIFT 22 // offset of PDX in a linear address

// Page table/directory entry flags.

#define PTE_P 0x001 // Present

#define PTE_W 0x002 // Writeable

#define PTE_U 0x004 // User

#define PTE_PWT 0x008 // Write-Through

#define PTE_PCD 0x010 // Cache-Disable

#define PTE_A 0x020 // Accessed

#define PTE_D 0x040 // Dirty

#define PTE_PS 0x080 // Page Size

#define PTE_G 0x100 // Global

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

105

… and types

typedef uint32_t pte_t; !
typedef uint32_t pde_t; !
!
pte_t entry_pgtable[NPTENTRIES]; !
pde_t entry_pgdir[NPDENTRIES]; !
!

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

106

Page directory

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

107

// Page directories (and page tables), must start on a page boundary,
// hence the "__aligned__" attribute. Also, because of restrictions
// related to linking and static initializers, we use "x + PTE_P"
// here, rather than the more standard "x | PTE_P". Everywhere else
// you should use "|" to combine flags.

__attribute__((__aligned__(PGSIZE)))

pde_t entry_pgdir[NPDENTRIES] =
{

 // Map VA's [0, 4MB) to PA's [0, 4MB)
 [0] = ((uintptr_t)entry_pgtable - KERNBASE) + PTE_P,

 // Map VA's [KERNBASE, KERNBASE+4MB) to PA's [0, 4MB)
 [KERNBASE>>PDXSHIFT]
 = ((uintptr_t)entry_pgtable - KERNBASE) + PTE_P + PTE_W

};

Page table

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

108

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

kernel/entry.s
###

The kernel (this code) is linked at address ~(KERNBASE + 1 Meg),

but the bootloader loads it at address ~1 Meg.
#

RELOC(x) maps a symbol x from its link address to its actual

location in physical memory (its load address).

##

#define KERNBASE 0xF0000000

#define RELOC(x) ((x) - KERNBASE)
'_start' specifies the ELF entry point. Since we haven't set up
virtual memory when the bootloader enters this code, we need the
bootloader to jump to the *physical* address of the entry point.

.globl _start
_start = RELOC(entry)

.globl entry

entry:
movw $0x1234,0x472 # warm boot

 109

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

110

 # We haven't set up virtual memory yet, so we're running from
 # the physical address the boot loader loaded the kernel at: 1MB
 # (plus a few bytes). However, the C code is linked to run at
 # KERNBASE+1MB. Hence, we set up a trivial page directory that
 # translates virtual addresses [KERNBASE, KERNBASE+4MB) to
 # physical addresses [0, 4MB). This 4MB region will be suffice
 # until we set up our real page table in mem_init in lab 2.

 # Load the physical address of entry_pgdir into cr3. entry_pgdir
 # is defined in entrypgdir.c.
 movl $(RELOC(entry_pgdir)), %eax
 movl %eax, %cr3
 # Turn on paging
 movl %cr0, %eax
 orl $(CR0_PE|CR0_PG|CR0_WP), %eax
 movl %eax, %cr0

 # Now paging is enabled, but we're still running at a low EIP
 # (why is this okay?). Jump up above KERNBASE before entering
 # C code.
 mov $relocated, %eax
 jmp *%eax #after this jump paging starts working

relocated:

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

kern/entry.s

•  The processor is still executing instructions at low
addresses after paging is enabled, which works since
entrypgdir maps low addresses. If we had omitted
entry 0 from entrypgdir, the computer would have
crashed when trying to execute the instruction after
the one that enabled paging

•  The indirect jump is needed because the assembler
would generate a PC-relative direct jump, which
would execute the low-memory version of kernel

111

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

kern/entry.s

•  Now entry needs to transfer to the kernel’s C code, and run it in
high memory.

•  First it must make the stack pointer, %esp, point to a stack so
that C code will work. All symbols have high addresses,
including stack, so the stack will still be valid even when the low
mappings are removed. Finally entry jumps to kernel, which is
also a high address

•  entry cannot return, since there’s no return PC on the stack

112

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

kernel/entry.s
Clear the frame pointer register (EBP)
so that once we get into debugging C code,
stack backtraces will be terminated properly.

movl $0x0,%ebp # nuke frame pointer

Set the stack pointer
movl $(bootstacktop),%esp
now to C code
call i386_init

Should never get here, but in case we do, just spin.
spin: jmp spin

.data

boot stack

 .p2align PGSHIFT # force page alignment
 .globl bootstack

bootstack:
 .space KSTKSIZE
 .globl bootstacktop

bootstacktop:

113

kern/init.c
/* See COPYRIGHT for copyright information. */

#include <inc/stdio.h>

#include <inc/string.h>

#include <inc/assert.h>

#include <kern/monitor.h>

#include <kern/console.h>

#include <kern/pmap.h>

#include <kern/kclock.h>

#include <kern/env.h>

#include <kern/trap.h>

void

i386_init(void)

{

extern char edata[], end[];

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

114

kern/init.c
// Before doing anything else, complete the ELF loading process.

// Clear the uninitialized global data (BSS) section of our program.

// This ensures that all static/global variables start out zero.

memset(edata, 0, end - edata);

// Initialize the console.

// Can't call cprintf until after we do this!

cons_init();

cprintf("6828 decimal is %o octal!\n", 6828);

// Lab 2 memory management initialization functions

mem_init();

// Lab 3 user environment initialization functions

env_init();

trap_init();

A.A. 2014/2015 Corso: Sistemi Operativi
© Danilo Bruschi

115

