
Sistemi Operativi 

Lez. 14 
Elementi del linguaggio Assembler 



Registri General purpose 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

2 



A.A. 2013/2014 

Accesso ai registri 

•  EAX, EBX, ECX, e EDX sono registri a 32-bit  
•  È possibile però accedere a soli 16-bit e 8-bit 
•  I  16-bit meno significativi di EAX sono denotati con AX 
•  AX è ulteriormente suddiviso 

•  AL = 8 bit meno significativi 
•  AH = 8 bit più significativi 
 

•  ESI, EDI, EBP, ESP: si può solo accedere ai 16 bit meno 
significativi 

Sistemi Operativi © 
Danilo Bruschi  

3 



Data Sizes 

•  Three main data sizes 
•  Byte (b): 1 byte 
•  Word (w): 2 bytes 
•  Long (l): 4 bytes 
 

•  Separate assembly-language instructions 
•  E.g., addb, addw, and addl 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

4 



Declaring variables 
•  .byte 

•  Bytes take up one storage location for each number. They are limited to 
•  numbers between 0 and 255. 

•  .word 
•  Ints (which differ from the int instruction) take up two storage locations for 

each number. These are limitted to numbers between 0 and 65535.9 

•  .long 
•  Longs take up four storage locations. This is the same amount of space the 

registers use, which is why they are used in this program. They can hold 
numbers between 0 and 4294967295. 

•  .ascii 
•  The .ascii directive is to enter in characters into memory. Characters each 

take up one storage location (they are converted into bytes internally). So, if 
you gave the directive .ascii "Hello there\0", the assembler would reserve 
12 storage locations (bytes). 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

5 



Little endian 

•  Intel is a little endian architecture 
•  Least significant byte of multi-byte entity is stored at 

lowest memory address 
•  “Little end goes first” 
•  Es.: l’intero 9 di un dato di 4 byte è così memorizzato 

A.A. 2013/2014 

00001001 
00000000 
00000000 
00000000 

0x1000 
0x1001 
0x1002 
0x1003 

Sistemi Operativi © 
Danilo Bruschi  

6 



Big endian 

•  Some other systems use big endian  
•  Most significant byte of multi-byte entity is stored at 

lowest memory address 
•  “Big end goes first” 
•  Es.: l’intero 9 all’indirizzo 1000 
 

A.A. 2013/2014 

00000000 
00000000 
00000000 
00001001 

0x1000 
0x1001 
0x1002 
0x1003 

Sistemi Operativi © 
Danilo Bruschi  

7 



Esempio 

A.A. 2013/2014 

int main(void) {!
!
int i=0x003377ff, j;!
!
unsigned char *p = (unsigned char *) &i;!
!
for (j=0; j<4; j++)!
!

!printf("Byte %d: %x\n", j, p[j]);!
!
}!

OUTPUT Little endian: ? OUTPUT Big endian: ? 

Sistemi Operativi © 
Danilo Bruschi  

8 



IA32 Instruction Format 

•  General format: 
•  [prefix] opcode operands 

•  Prefix used only in String Functions 
•  Operands represent the direction of operands 

•  Single operand instruction:   opcode src!
•  Two operand instruction :     opcode src dest!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

9 



Loading and Storing Data 

•  Data can be stored in: 
•  Registers 
•  Variables 

•  Variables are stored in memory 
•  Registers are “special” memory locations directly 

accessible by the processor 
•  The processor can only manipulate data inside 

registers 
•  The instruction to load from and store to memory, is 
mov src,dest!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

10 



General purpose registers 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

11 



Accessing data 

•  Processors have many ways to access data known 
as “addressing modes” 

 
•  Register addressing: simply moves data in or out of a 

register 
•  Example:  movl %edx, %ecx!
•  Copy value in register EDX into register ECX  
•  Choice of register(s) embedded in the instruction 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

12 



Immediate Addressing 

•  Immediate mode is used to load direct values into 
registers. For example, if you wanted to load the 
number 12 into %eax, you would simply do the 
following: 

movl $12, %eax!
 

•  Notice that to indicate immediate mode, we used a 
dollar sign in front of the number. If we did not, it 
would be direct addressing mode, in which case the 
value located at memory location 12 would be loaded 
into %eax rather than the number 12 itself 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

13 



Direct Addressing 

•  Load or store from a particular memory location 
•  Memory address is embedded in the instruction 
•  Instruction reads from or writes to that address 

•  movl 2000, %ecx!
•  Four-byte variable located at address 2000 
•  Read the four bytes value contained at location 2000 
•  Load the value into the ECX register 

•  Can use a label for (human) readability 
•  E.g.  movl  i,%eax 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

14 



Indirect Addressing 

•  Load or store from a previously-computed address 
•  Register with the address is an operand in the instruction 
•  Instruction reads from or writes to that address 

•  Example: movl (%eax), %ecx!
•  EAX register stores a 32-bit address (e.g., 2000) 
•  Read long-word variable stored at that address 
•  Load the value into the ECX register 

•  Dynamically allocated data referenced by a pointer 
•  The “(%eax)” essentially dereferences a pointer 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

15 



Base pointer addressing 

•  Load or store with an offset from a base address 
•  Register storing the base address 
•  Fixed offset also embedded in the instruction 
•  Instruction computes the address and does access 

•  Example: movl 8(%eax), %ecx!
•  EAX register stores a 32-bit base address (e.g., 2000) 
•  Offset of 8 is added to compute address (e.g., 2008) 
•  Read long-word variable stored at that address 
•  Load the value into the ECX register 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

16 



Indexed Addressing Example 

A.A. 2013/2014 

int a[20];!
…!
int i, sum=0;!
for (i=0; i<20; i++)!

!sum += a[i];!

!movl $0, %eax!
!movl $0, %ebx!

sumloop:!
!movl a(,%eax,4), %ecx!
!addl %ecx, %ebx!
!incl %eax!
!cmpl $19, %eax!
!jle sumloop!

eax = ?? 
ebx = ?? 
ecx = ?? 

Sistemi Operativi © 
Danilo Bruschi  

17 



Summary 

•  Immediate addressing: data stored in the instruction itself 
•  movl $10, %ecx!

•  Register addressing: data stored in a register 
•  movl %eax, %ecx!

•  Direct addressing: address stored in instruction 
•  movl foo, %ecx!

•  Indirect addressing: address stored in a register 
•  movl (%eax), %ecx!

•  Base pointer addressing: includes an offset as well 
•  movl 4(%eax), %ecx!

•  Indexed addressing: instruction contains base address, and 
specifies an index register and a multiplier (1, 2, 4, or 8) 
•  movl 2000(,%eax,1), %ecx!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

18 



Arithmetic Instructions 

•  Simple instructions 
•  add{b,w,l} source, dest   dest = source + dest 
•  sub{b,w,l} source, dest   dest = dest – source 
•  inc{b,w,l} dest        dest = dest + 1 
•  dec{b,w,l} dest     dest = dest – 1 
•  cmp{b,w,l} source1, source2  source2 – source1 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

19 



Mul/Div 

•  Multiply 
•  mul (unsigned) or imul (signed)!

•  Performs signed multiplication and stores the result in the 
second operand. If the second operand is left out, it is assumed 
to be %eax, and the full result is stored in the double-word 
%edx:%eax 

•  Divide 
•  div (unsigned) or idiv (signed)!

•  Divides the contents of the double-word contained in the 
combined %edx:%eax registers by the value in the register or 
memory location specified. The %eax register contains the 
resulting quotient, and the %edx register contains the resulting 
remainder 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

20 



Bitwise logic instructions 

•  Simple instructions 
•  and{b,w,l} source, dest  dest = source & dest 
•  or{b,w,l} source, dest  dest = source | dest 
•  xor{b,w,l} source, dest  dest = source ^ dest 
•  not{b,w,l} dest   dest = ~dest 
•  sal{b,w,l} source, dest !dest = dest << source 
•  sar{b,w,l} source, dest  dest = dest >> source 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

21 



Control Flow 

•  We obtain contro flow using two instructions: 
cmpl $0, %eax!
je !end_loop!

•  The first one is the cmpl instruction which compares  
two values, and stores the result of the comparison in 
the status register EFLAGS. Notice that the 
comparison is to see if the second value is greater 
than the first 

•  The second one is the  flow control instruction JUMP 
which says to jump to the end_loop depending on the 
values stored in the status register and on the 
condition expressed!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

22 



Types of Jumps 

•  je: Jump if the values were equal 
•  jg: Jump if the second value was greater than the first 

value 
•  jge: Jump if the second value was greater than or 

equal to the first value 
•  jl: Jump if the second value was less than the first 

value 
•  jle: Jump if the second value was less than or equal 

to the first value 
•  jmp:Jump no matter what. This does not need to be 

preceeded by a comparison 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

23 



Exercise 

•  Write a program which compute in %ecx the sum of 
the first 1000 natural numbers 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

24 



Compiling & Linking 

•  To assembly the program type in the command 
as name.s -o name.o 

•  as is the command which runs the assembler, name.s is the 
source file, and –o name.o tells the assemble to put it’s output in 
the file name.o which is an object file. An object file is code that 
is in the machine’s language, but has not been completely put 
together.  

•  In most large programs, you will have several source files, and 
you will convert each one into an object file  

•  The linker is the program that is responsible for putting the 
object files together and adding information to it so that the 
kernel knows how to load and run it.  

•  To link the file, enter the command 
ld name.o -o name 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

25 



Executing 

•  You can run the executable prog by typing in the 
command 

./prog 
•  The ./ is used to tell the computer that the program 

isn’t in one of the normal program directories, but is 
the current directory instead 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

26 



Debugging 

•  In assembly language, even minor errors usually 
have results such as the whole program crashing with 
a segmentation fault error 

•  Therefore, to aid in determining the source of errors, 
you must use a source debugger 

•  The debugger we will be looking at is GDB - the GNU 
Debugger 

•  It can debug programs in multiple programming 
languages, including assembly language 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

27 



Debugging 

•  To run a program under gdb you need to have the 
assembler include debugging information in the 
executable. All you need to do to enable this is to add 
the --gstabs option to the as command. So, you 
would assemble it like this: 

as --gstabs name.s –o name.o!
•  Linking would be the same as normal 
•  Now, to run the program under the debugger, you 

would type in  
gdb name!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

28 



gdb 

GNU gdb Red Hat Linux (5.2.1-4)!
Copyright 2002 Free Software Foundation, Inc.!
GDB is free software, covered by the GNU General Public!
License, and you are welcome to change it and/or!
distribute copies of it under certain conditions. Type!
"show copying" to see the conditions. There is!
absolutely no warranty for GDB. Type "show warranty"!
for details.!
This GDB was configured as "i386-redhat-linux"...!
(gdb)!
!

•  At this point, the program is loaded, but is not running yet. The 
debugger is waiting your command. To run your program, just type in 
run.!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

29 



Some commands 

•  A breakpoint is a place in the source code that you 
have marked to indicate to the debugger that it 
should stop the program when it hits that point 

•  To set breakpoints you have to set them up before 
you run the program. Before issuing the run 
command, you can set up breakpoints using the 
break command 

•  For example, to break on line 27, issue the command 
break 27. Then, when the program crosses line 27, it 
will stop running, and print out the current line and 
instruction. 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

30 



Some commands 

•  To follow the flow of a program, keep on entering 
stepi (for "step instruction"), which will cause the 
computer to execute one instruction at a time 

•  To check the contents of register in GDB either use  
the command info register or print/ $eax to print 
register eax in hexadecimal, or do print/d  $eax to 
print it in decimal 

•  x/ addr: print the contents of memory address addr 
•  For other command see the help command 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

31 



Stack 

•  Many CPU’s have built-in support for a stack A stack is a Last-In First-
Out (LIFO) list  

•  The stack is an area of memory that is organized in this fashion. The 
PUSH instruction adds data to the stack and the POP instruction 
removes data 

•  The data removed is always the last data added 
•  The ESP register contains the address of the data that would be 

removed from the stack. This data is said to be at the top of the stack 
•  The processor references the SS register automatically for all stack 

operations. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE 
instructions all perform operations on the current stack. 

•  Data can only be added in double word units. That is, one can not push 
a single byte on the stack 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

32 



Stack 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

33 



PUSH 

•  The PUSH instruction inserts a double word on the 
stack by subtracting 4 from ESP and then stores the 
double word at [ESP] 

 
!

•  The 80x86 also provides a PUSHA instruction that 
pushes the values of EAX, EBX, ECX, EDX, ESI, EDI 
and EBP registers (not in this order) 

 
 

pushl src !   à   !subl $4,%esp!
! ! ! ! !movl src,(%esp)!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

34 



POP 

•  The POP instruction reads the double word at [ESP] 
and then adds 4 to ESP 

•  The popa instruction, recovers the original values of 
the registers saved by the pusha!

A.A. 2013/2014 

!popl dest !   à   movl (%esp),dest!
! ! ! ! addl $4,%esp!

Sistemi Operativi © 
Danilo Bruschi  

35 



CALL/RET 

•  The 80x86 provides two instructions that use the 
stack to make calling subprograms quick and easy. 
The CALL instruction makes an unconditional jump to 
a subprogram and pushes the address of the next 
instruction on the stack. 

•  The RET instruction pops off an address and jumps 
to that address.  

•  When using these instructions, it is very important 
that one manage the stack correctly so that the right 
number is popped off by the RET instruction 

 
A.A. 2013/2014 Sistemi Operativi © 

Danilo Bruschi  
36 



Implementation of Call 

•  call  subprogram1 !
•  becomes:!

pushl  %eip!
jmp    subprogram1 !
!

!
!ESP   à!

A.A. 2013/2014 

Saved EIP!

Sistemi Operativi © 
Danilo Bruschi  

37 



Implementation of ret 

•  ret !
•  becomes:!

•  pop  %eip!
!

• ESP à!

A.A. 2013/2014 

Saved EIP!

Sistemi Operativi © 
Danilo Bruschi  

38 



Passing Parameters 

•  How does caller function pass parameters to callee 
function? 

•  Attempted solution: Pass parameters in registers 
•  Problem: Cannot handle nested function calls 
•  Also: How to pass parameters that are longer than 4 bytes? 

•  Caller pushes parameters before executing the call 
instruction 

•  Parameters are pushed in the reverse order 
•  Push the n-th parameter first 
•  Push 1° parameter last 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

39 



Parameters 

A.A. 2013/2014 

Parameter n!

Parameter …!

Parameter 1!ESP before à   
call 

Sistemi Operativi © 
Danilo Bruschi  

40 



Parameter 

A.A. 2013/2014 

Parameter n!

Parameter …!

Parameter 1!

Saved EIP!ESP after à   
call 

Callee addresses params  
relative to  ESP:  
Param 1 as 4(%esp) 

Sistemi Operativi © 
Danilo Bruschi  

41 



Parameter 

•  After returning to the caller, the caller pops the 
parameters from the stack 
!
… ! ! ! !sub:!
# Push parameters ! !…!
pushl $5 ! ! !movl 4(%esp),var1!
pushl $4 ! ! !movl 8(%esp),var2!
pushl $3 ! ! !movl 12(%esp), var3!
call sub ! ! !…!
# Pop parameters ! !ret!
addl $12, %esp!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

42 



%ebp 

•  As callee executes, ESP may change 
•   E.g., preparing to call another function 

•  It can be very error prone to use ESP when 
referencing parameters. To solve this problem, the 
80386 supplies another register to use: EBP. This 
register’s only purpose is to reference data on the 
stack 

•  Use EBP as fixed reference point to access params 
 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

43 



Using EBP (prolog) 

•  A subprogram before overwriting ebp first save the 
old value of EBP on the stack and then set EBP to be 
equal to ESP. This allows ESP to change as data is 
pushed or popped off the stack without modifying 
EBP 

  pushl %ebp!
! !movl !%esp, %ebp!
! !(sub !Local_bytes, %esp)!

•  Regardless of ESP, the subprogram can reference 
param 1 as 8(%ebp), param 2 as 12(%ebp), etc. 

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

44 



Using ebp (epilog) 

•  Before returning, callee must restore ESP and EBP to 
their old values executing the epilog 

 
movl %ebp, %esp!
popl %ebp!
ret!

A.A. 2013/2014 Sistemi Operativi © 
Danilo Bruschi  

45 



Enter/Leave 

•  The ENTER instruction performs the prologue code and the 
LEAVE performs the epilogue 

•  The ENTER instruction takes two immediate operands.  
•  For the C calling convention, the second operand is always 0. 

The first operand is the number bytes needed by local variables. 
The LEAVE instruction has no operands 

A.A. 2013/2014 Sistemi Operativi © Danilo Bruschi  46 


