
The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

1 of 9 4/30/2006 9:56 AM

The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software

The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software
By Herb Sutter

The biggest sea change in software development since the OO revolution is knocking at the door, and
its name is Concurrency.

This article appeared in Dr. Dobb's Journal, 30(3), March 2005. A much briefer version under the title
"The Concurrency Revolution" appeared in C/C++ Users Journal, 23(2), February 2005.

Your free lunch will soon be over. What can you do about it? What are you doing about it?

The major processor manufacturers and architectures, from Intel and AMD to Sparc and PowerPC,
have run out of room with most of their traditional approaches to boosting CPU performance. Instead
of driving clock speeds and straight-line instruction throughput ever higher, they are instead turning en
masse to hyperthreading and multicore architectures. Both of these features are already available on
chips today; in particular, multicore is available on current PowerPC and Sparc IV processors, and is
coming in 2005 from Intel and AMD. Indeed, the big theme of the 2004 In-Stat/MDR Fall Processor
Forum was multicore devices, as many companies showed new or updated multicore processors.
Looking back, it’s not much of a stretch to call 2004 the year of multicore.

And that puts us at a fundamental turning point in software development, at least for the next few years
and for applications targeting general-purpose desktop computers and low-end servers (which happens
to account for the vast bulk of the dollar value of software sold today). In this article, I’ll describe the
changing face of hardware, why it suddenly does matter to software, and how specifically the
concurrency revolution matters to you and is going to change the way you will likely be writing software
in the future.

Arguably, the free lunch has already been over for a year or two, only we’re just now noticing.

The Free Performance Lunch
There’s an interesting phenomenon that’s known as “Andy giveth, and Bill taketh away.” No matter how
fast processors get, software consistently finds new ways to eat up the extra speed. Make a CPU ten
times as fast, and software will usually find ten times as much to do (or, in some cases, will feel at
liberty to do it ten times less efficiently). Most classes of applications have enjoyed free and regular
performance gains for several decades, even without releasing new versions or doing anything special,
because the CPU manufacturers (primarily) and memory and disk manufacturers (secondarily) have
reliably enabled ever-newer and ever-faster mainstream systems. Clock speed isn’t the only measure
of performance, or even necessarily a good one, but it’s an instructive one: We’re used to seeing
500MHz CPUs give way to 1GHz CPUs give way to 2GHz CPUs, and so on. Today we’re in the 3GHz
range on mainstream computers.

The key question is: When will it end? After all, Moore’s Law predicts exponential growth, and clearly
exponential growth can’t continue forever before we reach hard physical limits; light isn’t getting any
faster. The growth must eventually slow down and even end. (Caveat: Yes, Moore’s Law applies

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

2 of 9 4/30/2006 9:56 AM

Chip designers are under
so much pressure to

deliver ever-faster CPUs
that they’ll risk changing

the meaning of your
program, and possibly

break it, in order to make
it run faster

principally to transistor densities, but the same kind of exponential growth has occurred in related
areas such as clock speeds. There’s even faster growth in other spaces, most notably the data storage
explosion, but that important trend belongs in a different article.)

If you’re a software developer, chances are that you have already been riding the “free lunch” wave of
desktop computer performance. Is your application’s performance borderline for some local
operations? “Not to worry,” the conventional (if suspect) wisdom goes; “tomorrow’s processors will
have even more throughput, and anyway today’s applications are increasingly throttled by factors other
than CPU throughput and memory speed (e.g., they’re often I/O-bound, network-bound,
database-bound).” Right?

Right enough, in the past. But dead wrong for the foreseeable future.

The good news is that processors are going to continue to become more powerful. The bad news is
that, at least in the short term, the growth will come mostly in directions that do not take most current
applications along for their customary free ride.

Over the past 30 years, CPU designers have achieved performance gains in three main areas, the first
two of which focus on straight-line execution flow:

clock speed

execution optimization

cache

Increasing clock speed is about getting more cycles. Running the CPU faster more or less directly
means doing the same work faster.

Optimizing execution flow is about doing more work per cycle. Today’s CPUs sport some more
powerful instructions, and they perform optimizations that range from the pedestrian to the exotic,
including pipelining, branch prediction, executing multiple instructions in the same clock cycle(s), and
even reordering the instruction stream for out-of-order execution. These techniques are all designed to
make the instructions flow better and/or execute faster, and to squeeze the most work out of each
clock cycle by reducing latency and maximizing the work accomplished per clock cycle.

Brief aside on instruction reordering and memory models:
Note that some of what I just called “optimizations” are
actually far more than optimizations, in that they can change
the meaning of programs and cause visible effects that can
break reasonable programmer expectations. This is
significant. CPU designers are generally sane and
well-adjusted folks who normally wouldn’t hurt a fly, and
wouldn’t think of hurting your code… normally. But in recent
years they have been willing to pursue aggressive
optimizations just to wring yet more speed out of each cycle,
even knowing full well that these aggressive rearrangements
could endanger the semantics of your code. Is this Mr. Hyde
making an appearance? Not at all. That willingness is simply
a clear indicator of the extreme pressure the chip designers

face to deliver ever-faster CPUs; they’re under so much pressure that they’ll risk changing the meaning
of your program, and possibly break it, in order to make it run faster. Two noteworthy examples in this
respect are write reordering and read reordering: Allowing a processor to reorder write operations has
consequences that are so surprising, and break so many programmer expectations, that the feature
generally has to be turned off because it’s too difficult for programmers to reason correctly about the
meaning of their programs in the presence of arbitrary write reordering. Reordering read operations
can also yield surprising visible effects, but that is more commonly left enabled anyway because it isn’t
quite as hard on programmers, and the demands for performance cause designers of operating
systems and operating environments to compromise and choose models that place a greater burden
on programmers because that is viewed as a lesser evil than giving up the optimization opportunities.

Finally, increasing the size of on-chip cache is about staying away from RAM. Main memory continues
to be so much slower than the CPU that it makes sense to put the data closer to the processor—and
you can’t get much closer than being right on the die. On-die cache sizes have soared, and today most
major chip vendors will sell you CPUs that have 2MB and more of on-board L2 cache. (Of these three

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

3 of 9 4/30/2006 9:56 AM

Figure 1: Intel CPU Introductions (sources: Intel, Wikipedia)

major historical approaches to boosting CPU performance, increasing cache is the only one that will
continue in the near term. I’ll talk a little more about the importance of cache later on.)

Okay. So what does this mean?

A fundamentally important thing to recognize about this list is that all of these areas are
concurrency-agnostic. Speedups in any of these areas will directly lead to speedups in sequential
(nonparallel, single-threaded, single-process) applications, as well as applications that do make use of
concurrency. That’s important, because the vast majority of today’s applications are single-threaded,
for good reasons that I’ll get into further below.

Of course, compilers have had to keep up; sometimes you need to recompile your application, and
target a specific minimum level of CPU, in order to benefit from new instructions (e.g., MMX, SSE) and
some new CPU features and characteristics. But, by and large, even old applications have always run
significantly faster—even without being recompiled to take advantage of all the new instructions and
features offered by the latest CPUs.

That world was a nice place to be. Unfortunately, it has already disappeared.

Obstacles, and Why You Don’t Have 10GHz Today
CPU performance growth as
we have known it hit a wall two
years ago. Most people have
only recently started to notice.

You can get similar graphs for
other chips, but I’m going to
use Intel data here. Figure 1
graphs the history of Intel chip
introductions by clock speed
and number of transistors. The
number of transistors continues
to climb, at least for now. Clock
speed, however, is a different
story.

Around the beginning of 2003,
you’ll note a disturbing sharp
turn in the previous trend
toward ever-faster CPU clock
speeds. I’ve added lines to
show the limit trends in
maximum clock speed; instead
of continuing on the previous
path, as indicated by the thin
dotted line, there is a sharp
flattening. It has become
harder and harder to exploit
higher clock speeds due to not
just one but several physical
issues, notably heat (too much
of it and too hard to dissipate),
power consumption (too high),
and current leakage problems.

Quick: What’s the clock speed on the CPU(s) in your current workstation? Are you running at 10GHz?
On Intel chips, we reached 2GHz a long time ago (August 2001), and according to CPU trends before
2003, now in early 2005 we should have the first 10GHz Pentium-family chips. A quick look around
shows that, well, actually, we don’t. What’s more, such chips are not even on the horizon—we have no
good idea at all about when we might see them appear.

Well, then, what about 4GHz? We’re at 3.4GHz already—surely 4GHz can’t be far away? Alas, even
4GHz seems to be remote indeed. In mid-2004, as you probably know, Intel first delayed its planned

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

4 of 9 4/30/2006 9:56 AM

Myths and Realities: 2 x
3GHz < 6 GHz
So a dual-core CPU that combines two
3GHz cores practically offers 6GHz of
processing power. Right?

Wrong. Even having two threads running on
two physical processors doesn’t mean
getting two times the performance. Similarly,
most multi-threaded applications won’t run
twice as fast on a dual-core box. They
should run faster than on a single-core CPU;
the performance gain just isn’t linear, that’s
all.

Why not? First, there is coordination
overhead between the cores to ensure
cache coherency (a consistent view of
cache, and of main memory) and to perform
other handshaking. Today, a two- or
four-processor machine isn’t really two or
four times as fast as a single CPU even for
multi-threaded applications. The problem
remains essentially the same even when the
CPUs in question sit on the same die.

Second, unless the two cores are running
different processes, or different threads of a
single process that are well-written to run
independently and almost never wait for
each other, they won’t be well utilized.
(Despite this, I will speculate that today’s
single-threaded applications as actually used
in the field could actually see a performance

introduction of a 4GHz chip until 2005, and then in fall 2004 it officially abandoned its 4GHz plans
entirely. As of this writing, Intel is planning to ramp up a little further to 3.73GHz in early 2005 (already
included in Figure 1 as the upper-right-most dot), but the clock race really is over, at least for now;
Intel’s and most processor vendors’ future lies elsewhere as chip companies aggressively pursue the
same new multicore directions.

We’ll probably see 4GHz CPUs in our mainstream desktop machines someday, but it won’t be in 2005.
Sure, Intel has samples of their chips running at even higher speeds in the lab—but only by heroic
efforts, such as attaching hideously impractical quantities of cooling equipment. You won’t have that
kind of cooling hardware in your office any day soon, let alone on your lap while computing on the
plane.

TANSTAAFL: Moore’s Law and the Next Generation(s)

“There ain’t no such thing as a free lunch.” —R. A. Heinlein, The Moon Is a Harsh
Mistress

Does this mean Moore’s Law is over? Interestingly, the answer in general seems to be no. Of course,
like all exponential progressions, Moore’s Law must end someday, but it does not seem to be in danger
for a few more years yet. Despite the wall that chip engineers have hit in juicing up raw clock cycles,
transistor counts continue to explode and it seems CPUs will continue to follow Moore’s Law-like
throughput gains for some years to come.

The key difference, which is the heart of this
article, is that the performance gains are going to
be accomplished in fundamentally different ways
for at least the next couple of processor
generations. And most current applications will no
longer benefit from the free ride without significant
redesign.

For the near-term future, meaning for the next few
years, the performance gains in new chips will be
fueled by three main approaches, only one of
which is the same as in the past. The near-term
future performance growth drivers are:

hyperthreading

multicore

cache

Hyperthreading is about running two or more
threads in parallel inside a single CPU.
Hyperthreaded CPUs are already available today,
and they do allow some instructions to run in
parallel. A limiting factor, however, is that although
a hyper-threaded CPU has some extra hardware
including extra registers, it still has just one cache,
one integer math unit, one FPU, and in general just
one each of most basic CPU features.
Hyperthreading is sometimes cited as offering a
5% to 15% performance boost for reasonably
well-written multi-threaded applications, or even as
much as 40% under ideal conditions for carefully
written multi-threaded applications. That’s good,
but it’s hardly double, and it doesn’t help
single-threaded applications.

Multicore is about running two or more actual
CPUs on one chip. Some chips, including Sparc
and PowerPC, have multicore versions available

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

5 of 9 4/30/2006 9:56 AM

boost for most users by going to a dual-core
chip, not because the extra core is actually
doing anything useful, but because it is
running the adware and spyware that infest
many users’ systems and are otherwise
slowing down the single CPU that user has
today. I leave it up to you to decide whether
adding a CPU to run your spyware is the
best solution to that problem.)

If you’re running a single-threaded
application, then the application can only
make use of one core. There should be
some speedup as the operating system and
the application can run on separate cores,
but typically the OS isn’t going to be maxing
out the CPU anyway so one of the cores will
be mostly idle. (Again, the spyware can
share the OS’s core most of the time.)

already. The initial Intel and AMD designs, both
due in 2005, vary in their level of integration but
are functionally similar. AMD’s seems to have
some initial performance design advantages, such
as better integration of support functions on the
same die, whereas Intel’s initial entry basically just
glues together two Xeons on a single die. The
performance gains should initially be about the
same as having a true dual-CPU system (only the
system will be cheaper because the motherboard
doesn’t have to have two sockets and associated
“glue” chippery), which means something less than
double the speed even in the ideal case, and just
like today it will boost reasonably well-written
multi-threaded applications. Not single-threaded
ones.

Finally, on-die cache sizes can be expected to
continue to grow, at least in the near term. Of these
three areas, only this one will broadly benefit most
existing applications. The continuing growth in
on-die cache sizes is an incredibly important and
highly applicable benefit for many applications,
simply because space is speed. Accessing main memory is expensive, and you really don’t want to
touch RAM if you can help it. On today’s systems, a cache miss that goes out to main memory often
costs 10 to 50 times as much getting the information from the cache; this, incidentally, continues to
surprise people because we all think of memory as fast, and it is fast compared to disks and networks,
but not compared to on-board cache which runs at faster speeds. If an application’s working set fits into
cache, we’re golden, and if it doesn’t, we’re not. That is why increased cache sizes will save some
existing applications and breathe life into them for a few more years without requiring significant
redesign: As existing applications manipulate more and more data, and as they are incrementally
updated to include more code for new features, performance-sensitive operations need to continue to
fit into cache. As the Depression-era old-timers will be quick to remind you, “Cache is king.”

(Aside: Here’s an anecdote to demonstrate “space is speed” that recently hit my compiler team. The
compiler uses the same source base for the 32-bit and 64-bit compilers; the code is just compiled as
either a 32-bit process or a 64-bit one. The 64-bit compiler gained a great deal of baseline
performance by running on a 64-bit CPU, principally because the 64-bit CPU had many more registers
to work with and had other code performance features. All well and good. But what about data? Going
to 64 bits didn’t change the size of most of the data in memory, except that of course pointers in
particular were now twice the size they were before. As it happens, our compiler uses pointers much
more heavily in its internal data structures than most other kinds of applications ever would. Because
pointers were now 8 bytes instead of 4 bytes, a pure data size increase, we saw a significant increase
in the 64-bit compiler’s working set. That bigger working set caused a performance penalty that almost
exactly offset the code execution performance increase we’d gained from going to the faster processor
with more registers. As of this writing, the 64-bit compiler runs at the same speed as the 32-bit
compiler, even though the source base is the same for both and the 64-bit processor offers better raw
processing throughput. Space is speed.)

But cache is it. Hyperthreading and multicore CPUs will have nearly no impact on most current
applications.

So what does this change in the hardware mean for the way we write software? By now you’ve
probably noticed the basic answer, so let’s consider it and its consequences.

What This Means For Software: The Next Revolution
In the 1990s, we learned to grok objects. The revolution in mainstream software development from
structured programming to object-oriented programming was the greatest such change in the past 20
years, and arguably in the past 30 years. There have been other changes, including the most recent
(and genuinely interesting) naissance of web services, but nothing that most of us have seen during

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

6 of 9 4/30/2006 9:56 AM

Concurrency is the next
major revolution in how

we write software

our careers has been as fundamental and as far-reaching a change in the way we write software as the
object revolution.

Until now.

Starting today, the performance lunch isn’t free any more. Sure, there will continue to be generally
applicable performance gains that everyone can pick up, thanks mainly to cache size improvements.
But if you want your application to benefit from the continued exponential throughput advances in new
processors, it will need to be a well-written concurrent (usually multithreaded) application. And that’s
easier said than done, because not all problems are inherently parallelizable and because concurrent
programming is hard.

I can hear the howls of protest: “Concurrency? That’s not news! People are already writing concurrent
applications.” That’s true. Of a small fraction of developers.

Remember that people have been doing object-oriented programming since at least the days of
Simula in the late 1960s. But OO didn’t become a revolution, and dominant in the mainstream, until
the 1990s. Why then? The reason the revolution happened was primarily that our industry was driven
by requirements to write larger and larger systems that solved larger and larger problems and exploited
the greater and greater CPU and storage resources that were becoming available. OOP’s strengths in
abstraction and dependency management made it a necessity for achieving large-scale software
development that is economical, reliable, and repeatable.

Similarly, we’ve been doing concurrent programming since
those same dark ages, writing coroutines and monitors and
similar jazzy stuff. And for the past decade or so we’ve
witnessed incrementally more and more programmers writing
concurrent (multi-threaded, multi-process) systems. But an
actual revolution marked by a major turning point toward
concurrency has been slow to materialize. Today the vast

majority of applications are single-threaded, and for good reasons that I’ll summarize in the next
section.

By the way, on the matter of hype: People have always been quick to announce “the next software
development revolution,” usually about their own brand-new technology. Don’t believe it. New
technologies are often genuinely interesting and sometimes beneficial, but the biggest revolutions in
the way we write software generally come from technologies that have already been around for some
years and have already experienced gradual growth before they transition to explosive growth. This is
necessary: You can only base a software development revolution on a technology that’s mature
enough to build on (including having solid vendor and tool support), and it generally takes any new
software technology at least seven years before it’s solid enough to be broadly usable without
performance cliffs and other gotchas. As a result, true software development revolutions like OO
happen around technologies that have already been undergoing refinement for years, often decades.
Even in Hollywood, most genuine “overnight successes” have really been performing for many years
before their big break.

Concurrency is the next major revolution in how we write software. Different experts still have different
opinions on whether it will be bigger than OO, but that kind of conversation is best left to pundits. For
technologists, the interesting thing is that concurrency is of the same order as OO both in the
(expected) scale of the revolution and in the complexity and learning curve of the technology.

Benefits and Costs of Concurrency
There are two major reasons for which concurrency, especially multithreading, is already used in
mainstream software. The first is to logically separate naturally independent control flows; for example,
in a database replication server I designed it was natural to put each replication session on its own
thread, because each session worked completely independently of any others that might be active (as
long as they weren’t working on the same database row). The second and less common reason to write
concurrent code in the past has been for performance, either to scalably take advantage of multiple
physical CPUs or to easily take advantage of latency in other parts of the application; in my database
replication server, this factor applied as well and the separate threads were able to scale well on
multiple CPUs as our server handled more and more concurrent replication sessions with many other
servers.

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

7 of 9 4/30/2006 9:56 AM

The vast majority of
programmers today don’t
grok concurrency, just as

the vast majority of
programmers 15 years ago

didn’t yet grok objects

There are, however, real costs to concurrency. Some of the obvious costs are actually relatively
unimportant. For example, yes, locks can be expensive to acquire, but when used judiciously and
properly you gain much more from the concurrent execution than you lose on the synchronization, if
you can find a sensible way to parallelize the operation and minimize or eliminate shared state.

Perhaps the second-greatest cost of concurrency is that not all applications are amenable to
parallelization. I’ll say more about this later on.

Probably the greatest cost of concurrency is that concurrency really is hard: The programming model,
meaning the model in the programmer’s head that he needs to reason reliably about his program, is
much harder than it is for sequential control flow.

Everybody who learns concurrency thinks they understand it, ends up finding mysterious races they
thought weren’t possible, and discovers that they didn’t actually understand it yet after all. As the
developer learns to reason about concurrency, they find that usually those races can be caught by
reasonable in-house testing, and they reach a new plateau of knowledge and comfort. What usually
doesn’t get caught in testing, however, except in shops that understand why and how to do real stress
testing, is those latent concurrency bugs that surface only on true multiprocessor systems, where the
threads aren’t just being switched around on a single processor but where they really do execute truly
simultaneously and thus expose new classes of errors. This is the next jolt for people who thought that
surely now they know how to write concurrent code: I’ve come across many teams whose application
worked fine even under heavy and extended stress testing, and ran perfectly at many customer sites,
until the day that a customer actually had a real multiprocessor machine and then deeply mysterious
races and corruptions started to manifest intermittently. In the context of today’s CPU landscape, then,
redesigning your application to run multithreaded on a multicore machine is a little like learning to
swim by jumping into the deep end—going straight to the least forgiving, truly parallel environment that
is most likely to expose the things you got wrong. Even when you have a team that can reliably write
safe concurrent code, there are other pitfalls; for example, concurrent code that is completely safe but
isn’t any faster than it was on a single-core machine, typically because the threads aren’t independent
enough and share a dependency on a single resource which re-serializes the program’s execution. This
stuff gets pretty subtle.

Just as it is a leap for a structured programmer to learn OO
(what’s an object? what’s a virtual function? how should I use
inheritance? and beyond the “whats” and “hows,” why are the
correct design practices actually correct?), it’s a leap of about
the same magnitude for a sequential programmer to learn
concurrency (what’s a race? what’s a deadlock? how can it
come up, and how do I avoid it? what constructs actually
serialize the program that I thought was parallel? how is the
message queue my friend? and beyond the “whats” and
“hows,” why are the correct design practices actually
correct?).

The vast majority of programmers today don’t grok concurrency, just as the vast majority of
programmers 15 years ago didn’t yet grok objects. But the concurrent programming model is learnable,
particularly if we stick to message- and lock-based programming, and once grokked it isn’t that much
harder than OO and hopefully can become just as natural. Just be ready and allow for the investment
in training and time, for you and for your team.

(I deliberately limit the above to message- and lock-based concurrent programming models. There is
also lock-free programming, supported most directly at the language level in Java 5 and in at least one
popular C++ compiler. But concurrent lock-free programming is known to be very much harder for
programmers to understand and reason about than even concurrent lock-based programming. Most of
the time, only systems and library writers should have to understand lock-free programming, although
virtually everybody should be able to take advantage of the lock-free systems and libraries those
people produce. Frankly, even lock-based programming is hazardous.)

What It Means For Us
Okay, back to what it means for us.

1. The clear primary consequence we’ve already covered is that applications will increasingly need to

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

8 of 9 4/30/2006 9:56 AM

Applications will
increasingly need to be

concurrent if they want to
fully exploit continuing

exponential CPU
throughput gains

Efficiency and
performance optimization

will get more, not less,
important

be concurrent if they want to fully exploit CPU throughput gains that have now started becoming
available and will continue to materialize over the next several years. For example, Intel is talking
about someday producing 100-core chips; a single-threaded application can exploit at most 1/100 of
such a chip’s potential throughput. “Oh, performance doesn’t matter so much, computers just keep
getting faster” has always been a naïve statement to be viewed with suspicion, and for the near future
it will almost always be simply wrong.

Now, not all applications (or, more precisely, important
operations of an application) are amenable to parallelization.
True, some problems, such as compilation, are almost ideally
parallelizable. But others aren’t; the usual counterexample
here is that just because it takes one woman nine months to
produce a baby doesn’t imply that nine women could produce
one baby in one month. You’ve probably come across that
analogy before. But did you notice the problem with leaving
the analogy at that? Here’s the trick question to ask the next
person who uses it on you: Can you conclude from this that
the Human Baby Problem is inherently not amenable to
parallelization? Usually people relating this analogy err in
quickly concluding that it demonstrates an inherently
nonparallel problem, but that’s actually not necessarily correct
at all. It is indeed an inherently nonparallel problem if the goal
is to produce one child. It is actually an ideally parallelizable
problem if the goal is to produce many children! Knowing the
real goals can make all the difference. This basic

goal-oriented principle is something to keep in mind when considering whether and how to parallelize
your software.

2. Perhaps a less obvious consequence is that applications are likely to become increasingly
CPU-bound. Of course, not every application operation will be CPU-bound, and even those that will be
affected won’t become CPU-bound overnight if they aren’t already, but we seem to have reached the
end of the “applications are increasingly I/O-bound or network-bound or database-bound” trend,
because performance in those areas is still improving rapidly (gigabit WiFi, anyone?) while traditional
CPU performance-enhancing techniques have maxed out. Consider: We’re stopping in the 3GHz
range for now. Therefore single-threaded programs are likely not to get much faster any more for now
except for benefits from further cache size growth (which is the main good news). Other gains are
likely to be incremental and much smaller than we’ve been used to seeing in the past, for example as
chip designers find new ways to keep pipelines full and avoid stalls, which are areas where the
low-hanging fruit has already been harvested. The demand for new application features is unlikely to
abate, and even more so the demand to handle vastly growing quantities of application data is unlikely
to stop accelerating. As we continue to demand that programs do more, they will increasingly often find
that they run out of CPU to do it unless they can code for concurrency.

There are two ways to deal with this sea change toward concurrency. One is to redesign your
applications for concurrency, as above. The other is to be frugal, by writing code that is more efficient
and less wasteful. This leads to the third interesting consequence:

3. Efficiency and performance optimization will get more, not less, important. Those languages that
already lend themselves to heavy optimization will find new life; those that don’t will need to find ways
to compete and become more efficient and optimizable. Expect long-term increased demand for
performance-oriented languages and systems.

4. Finally, programming languages and systems will increasingly be forced to deal well with
concurrency. The Java language has included support for concurrency since its beginning, although
mistakes were made that later had to be corrected over several releases in order to do concurrent
programming more correctly and efficiently. The C++ language has long been used to write heavy-duty
multithreaded systems well, but it has no standardized support for concurrency at all (the ISO C++
standard doesn’t even mention threads, and does so intentionally), and so typically the concurrency is
of necessity accomplished by using nonportable platform-specific concurrency features and libraries.
(It’s also often incomplete; for example, static variables must be initialized only once, which typically
requires that the compiler wrap them with a lock, but many C++ implementations do not generate the
lock.) Finally, there are a few concurrency standards, including pthreads and OpenMP, and some of

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency... http://www.gotw.ca/publications/concurrency-ddj.htm

9 of 9 4/30/2006 9:56 AM

these support implicit as well as explicit parallelization. Having the compiler look at your
single-threaded program and automatically figure out how to parallelize it implicitly is fine and dandy,
but those automatic transformation tools are limited and don’t yield nearly the gains of explicit
concurrency control that you code yourself. The mainstream state of the art revolves around
lock-based programming, which is subtle and hazardous. We desperately need a higher-level
programming model for concurrency than languages offer today; I'll have more to say about that soon.

Conclusion
If you haven’t done so already, now is the time to take a hard look at the design of your application,
determine what operations are CPU-sensitive now or are likely to become so soon, and identify how
those places could benefit from concurrency. Now is also the time for you and your team to grok
concurrent programming’s requirements, pitfalls, styles, and idioms.

A few rare classes of applications are naturally parallelizable, but most aren’t. Even when you know
exactly where you’re CPU-bound, you may well find it difficult to figure out how to parallelize those
operations; all the most reason to start thinking about it now. Implicitly parallelizing compilers can help
a little, but don’t expect much; they can’t do nearly as good a job of parallelizing your sequential
program as you could do by turning it into an explicitly parallel and threaded version.

Thanks to continued cache growth and probably a few more incremental straight-line control flow
optimizations, the free lunch will continue a little while longer; but starting today the buffet will only be
serving that one entrée and that one dessert. The filet mignon of throughput gains is still on the menu,
but now it costs extra—extra development effort, extra code complexity, and extra testing effort. The
good news is that for many classes of applications the extra effort will be worthwhile, because
concurrency will let them fully exploit the continuing exponential gains in processor throughput.

Copyright © 2005 Herb Sutter

