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A set of N jobs has to be processed on a single machine. Jobs have the same basic processing time, but the actual
processing time of each job grows linearly with its starting time. A (possibly) different rate of growth is associated with
each job. We show that the optimal sequence to minimize flow time is V-shaped: Jobs are arranged in descending order
of growth rate if they are placed before the minimal growth rate job, and in ascending order if placed after it. Efficient
(0(V log N)) asymptotically optimal heuristics are developed. Their average performance is shown to be extremely good:
The average relative error over a set of 20-job problems is on the order of 1075,

Browne and Yechiali (1990) introduced a sched-
uling problem in which the processing times of
the jobs are not constant over time. N jobs have to be
processed on a single machine to minimize the
makespan. Job i is characterized by: i) a “basic” pro-
cessing time p,, the length of time required to com-
plete the job if it were scheduled first, i.e., at ¢ = 0,
and ii) a parameter o, that, jointly with p,, determines
the job’s (actual) processing time at ¢t > 0. o, can be
interpreted as the growth rate of the processing time
of job i. Assuming linear deterioration, i.e., the pro-
cessing time of the job increases linearly with its
starting time ¢, the actual processing time is p, + a,1.
Browne and Yechiali found that the optimal index
policy to minimize the makespan is to schedule jobs
in an increasing order of p,/«,, the ratio of the basic
processing time to the growth rate.

In this context, it is natural to investigate the prop-
erties of optimal policies under alternative measures
of performance. The objective function studied in this
paper is of minimizing flow time. We deal with a
special case: basic processing times are assumed to be
equal for all jobs (p, = p for all /). We show that the
optimal policy for this case has a unique form which
reduces significantly the computational effort of the
optimization process. For large-sized problems (in
which many jobs have to be scheduled), extremely
good heuristics are developed.

The motivation for analyzing this case arises not
only from the intrinsic interest in it per se, but also
because it serves as a good approximation to the
general case (distinct p,’s) when the number of jobs is
large. This follows from the fact that as NV increases,
the starting time of many jobs is large and p, becomes
negligible. (For large ¢ p, + ot ~ a,t. Therefore, when

N — o and all processing times are positive, the actual
processing time of infinitely many jobs is not affected
by the basic processing time.)

Deterioration in processing time may occur when
the machine is losing efficiency while processing a
batch of jobs. At 1 = 0 the machine is assumed to be
at maximal efficiency. The efficiency loss is reflected
in the fact that a job which is processed later in time
has a longer processing time.

Other applications are in the area of scheduling
maintenance or cleaning assignments. In many real-
life situations, a delay in maintenance or cleaning
implies an additional effort (= time) to accomplish
it. Fixed increasing rates of this effort, i.e., “linear
deterioration,” is a simplifying but reasonable as-
sumption. Clearly, the increasing rate of different
jobs (e.g., at different locations) may be significantly
different.

The main result of this study is that the optimal
policy has a V-shape: Jobs are arranged in descending
order of growth rates if they are placed before the
minimal growth rate job, but in ascending order if
placed after it. This property enables us to get exact
solutions for problems of relatively large size. In ad-
dition, simple and efficient heuristics (O(N log N )) are
developed. Our computational experiments show that
these heuristics provide outstanding results. The
average relative error in our set of experiments
(20-job problems) was of the order 107°. As the
number of jobs increases, this error decreases to zero
(asymptotic optimality).

Two generalizations have also been studied: sched-
uling deteriorating jobs with unequal basic processing
times (p, # p, for i # j), and scheduling deteriorating
Jobs with unequal weights (to minimize the sum of
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weighted completion times). The V-shaped property
does not generalize to any of these cases.

V-shaped optimal policies are quite rare in the
scheduling literature. Eilon and Chowdhury (1977)
were the first to prove that a V-shaped policy is
optimal (for the waiting time variance minimization
problem). They verified an earlier conjecture of
Merten and Muller (1972) and Schrage (1975). In
the last decade, several other problems were shown
to be optimized by a V-shaped sequence. Most of
these fall in the category of minimization of the sum
of deviations about a common due date. Kanet
(1981), Sundaraghavan and Ahmed (1984), Bagchi,
Sullivan and Chang (1986), and Hall (1987) studied
the minimization of absolute deviations about a com-
mon due date. Panwalker, Smith and Seidmann
(1982), Emmons (1987), and Bagchi, Chang and
Sullivan (1987) studied the asymmetric version (dif-
ferent earliness and tardiness penalties) of this prob-
lem. Bagchi, Sullivan and Chang (1987) showed an
optimal V-shaped sequence for the minimization of
the sum of squared deviations about a common due
date, an equivalent problem to variance minimiza-
tion. Hall and Posner (1991) studied the problem of
weighted earliness and tardiness (job dependent pen-
alties). “Restriction versions” of some of these prob-
lems (i.e., when the due date is early enough to affect
the scheduling decision), were also studied, and the
V-shaped property was shown to preserve. For a com-
plete list of studies see the survey of Baker and Scudder
(1990). In all these examples, the V-shaped property
(the LPT-SPT structure is a necessary condition for
optimality. An example of a different type is the
SEPT-LEPT policy (shortest expected processing
time, longest expected processing time), to minimize
the expected makespan in stochastic flow-shops
(Pinedo 1982). In contrast to the former cases, here
V-shape is also sufficient for optimality (all SEPT-
LEPT policies result in the same expected makespan
and all are optimal).

The paper is organized as follows. In Section 1 we
provide the formulation of the problem. The V-shape
and some other properties of the optimal policy are
proven in Section 2. Section 3 examines the impact
of these properties on the reduction of the computa-
tional effort. Two examples are given. Heuristics are
developed in Section 4 and the results of their empir-
ical evaluation are presented in Section 5.

1. FORMULATION

Our basic assumption is that all basic processing times
are equal. Without affecting the optimal policy we

may assume that they are all equal to one unit of time:
p=1,i=1,...,N.Jobs are, therefore, characterized
only by their growth rates «,. The actual processing
time of job 7 is 1 + «,¢, where ¢ is the current time.
The following formulation was introduced (for the
makespan case) by Browne and Yechiali. Let IT denote
the set of all N! permutations of the set {1,2, ..., N};
7 € II denotes an arbitrary permutation. Denote by
7o the permutation (1, 2, ..., N). Let Y, be the actual
processing time of the ith job of the sequence .
Then

Y1=1

and

=1

Y=1+a Y i=2...,N

=1
The completion time of the ith job is:

1 1 k—1
S=Y Y= 2<1+a;\ D x) i=1,...,N
A=1 =1

k=1

It is easy to verify that

S(iva3y)=% 0 ava

=1 h=1 j=h+1
i=1,...,N

Therefore, the total flow-time is given by:
N

F(m)=F =Y S,
=1

i

=2 Z I[I I+ a).

=1 k=1 j=h+1

2. PROPERTIES OF THE OPTIMAL SEQUENCE

A trivial property of the optimal sequence is as follows.

Proposition 1 (scheduling the first job). Let k = arg
maxfa, i = 1, ..., N}. Then k is the first job in the
optimal sequence.

Proof. The processing time of the first scheduled job
is 1 + aqyt = 1 (¢ = 0). a does not affect the flow
time and therefore, independently of the rest of the
sequence, it is always better to first schedule the job
with the largest growth rate.

Given this result, we are left with the problem of
scheduling the remaining N — 1 jobs. For ecase
of exposition define the set of jobs 4 = S\{k},
where S is the original complete set and k is defined
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in Proposition 1. Denote N — 1 by M and renumber
the jobs of set 4 to have indices from ! to M. Denote
1+ abya,j=1,..., M Then the problem is stated
as follows.

Given the set 4 = {a;, @, ..., au}, a, = 1, j =
I, ..., M, find the sequence (a,,, @2, ..., Qun)
to minimize

i

glr) = Z Z ﬁ agy-

=1 k=1 j=k

Note that for a given sequence, the original flow time
F is larger than the value of g by the constant V. That
follows because the first job’s processing time is always
1 and it is included in the completion times of all
N jobs. The function g refers only to the set A and
does not include this fixed quantity.

The remainder of this section deals with sched-
uling the jobs of the set 4 and the properties of the
function g.

Propesition 2 (symmetry). For any sequence « let =
be the reversed sequence. Then g(x) = g(%).

Proof. For conveniencelet = w,=(1,2,..., M).
&) = a
+ a,a, + a>

+ ai@as + axax + as

+ a,aa; ... -+ ...+ Ay,
+ aaa; ... Ap—1 Ay + ... + Ari—1 Ay + Ay
&(7o) = ay

+ Aplag + Ay

+ aydn -, ot o+
+ avay-, ... aa, + ...+ aa, + a,
and the above expressions are equal.

An immediate implication of Proposition 2 is that
the optimal solution is not unique. From the sym-
metry property of the function g (which is defined on
the set 4), if the sequence (1, 2, ..., N) is optimal,
then so is the sequence (1, N, N— 1, ..., 2).

Lemma 1. Let | = arg min,c, {a,}. Then, within the

set A, [ is scheduled neither first nor last in the optimal
sequence.

Proof. Consider any sequence with job / placed first.
For convenience let

mo=(0,23, ..., M.

w2 18 the schedule obtained by interchanging the first
two jobs:

m=(2,13,..., M)
Then,

M A
g(m) — glm) = (@ — a) Z II a.
A=3 =3
Since a; < a, the above expression is nonpositive
and therefore - is a better policy. From the symmetry
of the function g (Proposition 1), job / cannot be
scheduled last as well.

Recall that we are dealing with scheduling jobs
within the set 4. Thus, job / can be scheduled neither
second nor last in the optimal (complete) sequence.

Lemma 2. Let a,_\, a,, a,., be three consecutive num-
bers in a sequence. If a, > a,_, and a, > a,., the
sequence is not optimal.

Proof. We show that an interchange between 4,_, and
a, or between a, and a,., reduces the value of g. Let

to=(1,2, ..., i=1, 0141, .. .. M
m=(1,2,...,i=2,i,i—-1,i+1,..., M)
m=02,...,i-Li+1L,Li+2 ...,M)
=2 ;-2
g(m)—g(ro)=(a,—a,_1) z II,\a/
A=l )=

ta—a) Y MTa )

A=i+1 j=i1+1

=1

_al)z Haj

A=1 j=h

g(m2) — g(mo) = (a4

M A
+ (al - aH—l) Z H aj' (2)
h=1+42 j=1+2
We show that (1) and (2) cannot both be positive.
Let

=2
X = Z I1 a
A=1 j=h
Ar A
Y=Y 1l a.

h=1+2 j=1+2

Copyright © 2001 All Rights Reserved



982 / MOSHEIOV

Then both terms are simplified:
M =(a,—-a- )X+ (@-,—a)a.(Y+1)
2)=a_ (X + ¥a+ —a)+(a—-a.)Y.
If both expressions are positive then,
X>a.,(Y+ 1),
Y>a_ (X + 1),

which is a contradiction since g, = 1,i=1,..., M.
Therefore either =, or =, are better policies than .

Theorem 1. (V-shape). The optimal sequence has a
V-shape, i.e., jobs are arranged in descending order if
they are placed before the job with the smallest a, but
in ascending order if placed afier it.

Proof. It is straightforward from the previous two
lemmas.

To show the next property we need the following
definition: a sequence is perfectly symmetric V-shaped
if it is V-shaped and a, = ay-+1, i =1, ..., M. In
terms of the original set of growth rates {a;, as, ...,
ax}, perfectly symmetric V-shaped means o, = an—.+2,
i=2,..., N. Note that the first scheduled job does
not have a corresponding job with equal growth rate.
For example, given the set {ao, o, a1, a2, a2, a3, a3},
where ayp = a; = a» = 3, the sequence (0, 1, 2, 3, 3,
2, 1) is perfectly symmetric V-shaped. Given the set
{og, a1, ay, o, s, a3}, the sequence (0, 1, 2, 3,2, 1)
is perfectly symmetric V-shaped. On the other hand,
given the set {a, a;, @, @2, a3, as}, the sequence
(1,2, 3, 3, 2, 1) is not perfectly symmetric according
to our definition.

Proposition 3. (perfectly symmetric V-shape). If a
perfectly symmetric V-shaped sequence can be con-
structed from the set of jobs, then it is optimal.

Proof. The proof is given in the Appendix.

To summarize, the optimal sequence has the follow-
ing properties:

1. it has a V-shape;

2. the first job has the largest value of a;

3. the flow time function is symmetric for the set of
jobs placed second through last.

We also show that a perfectly symmetric V-shaped
sequence is always optimal.

3. COMPLEXITY REDUCTION

The V-shaped property of the optimal sequence re-
duces significantly the computational effort needed to
obtain an exact solution to the problem. The number
of V-shaped sequences of length N is equivalent to the
total number of subsets of the set {1, 2, ..., N}. Any
subset can be transformed into a V-shaped sequence
(and vice versa) by arranging the numbers of the subset
in descending order and adding the numbers of the
complement subset in ascending order. Therefore,
instead of checking all N! permutations, only an effort
of 0(2") is needed.

In our case, even further reductions are possible.
Recall that the job with the largest growth rate is
scheduled first. The V-shape and the flow time sym-
metry of the remaining N — 1 job set implies that
there exists an optimal sequence in which the job with
the second largest « is scheduled last. (Another opti-
mal sequence contains this job in the second place.)
Assuming that it is placed last (as we did in our
experiments), the job with the third largest « must be
scheduled second or next to last. The V-shape of the
remaining N ~ 1 job set also implies that the job with
the lowest value of o cannot be scheduled second. It
is easy to verify that the total number of sequences
that are candidates for optimality is, in fact, 2¥7° — 1.

Our experiments show that even this magnitude
does not reflect the real effort: As the following two
examples indicate, some sequences having all the
above properties are never optimal.

Example 1: A 5-Job Sequence

For convenience, assume that oy = a2 2 a3 2 o =
as. By Proposition 1, job 1 is scheduled first. By
Proposition 2 and Theorem 1 there is an optimal
sequence in which job 2 is scheduled last. Job 3 must
be scheduled second or next to last. By Theorem 1,
job 5 cannot be scheduled second. Therefore, the
V-shaped relevant sequences (2°2 — 1 = 3) are:

m=(1,3,4,52)
m=1(1,3,542)
7 =(1,4,5,3,2)
F(my) = F(m>)
=(1 + as)(1 + as) + (1 + as)(1 + a2)
— (1 + a)(l + as) = (1 + au)l + )

= (a3 — ax)(as — as) < 0
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F(m2) — F(m3)
= (1 + )l + a2) + (1 + as)(1 + aa)
— (1 + a1l +a) = (I + as)(1 + a3)l + a3)
=(as—a))[l +ar+ (1 + as)(1 + )] < 0.

Therefore, policy =, = (1, 3, 4, 5, 2) is optimal for any
5-job problem.

Example 2: A 6-Job Sequence

Assume that @, 2 a; = a3 2 @4 = as = as. The number
of possible optimal sequences is 2¢° — 1 = 7. The
candidates are:

m=(1,3,4,5,6,2)
m=(1,3,4,6,5,2)
T =(1,3,5,6,4,2)
m=(1,4,5,6,3,2)
ws = (1,5,6,4,3,2)
e ={(1,4,6,5,3,2)
7 =(1,3,6,5,4,2)
F(m) = F(m7)
=1+ o)l + )+ (1 + a)] + ar)
+ (1 + a3)(1 + a1 + as)
+ (1 + as)(1 + a)(l + a2)
= [(1 + as)(1 + ag) + (1 + o)l + a3)
+ (I + a3)(1 + ag)(l + as)
+ (1 + as)(1 + a)(1 + )]
= (a4 — ag)as — a2 )(2 + as) < 0.
In a similar way we can show that:
F(re) = F(ms) < 0
F(zy) — F(ms) < 0
F(m) — F(m) < 0
Fm) — F(m) <0

Therefore, for a 6-job problem either =, = (1, 3, 4, 5,
6,2)orm;=(1, 3, 4,6, 5, 2) is optimal.

4. HEURISTICS

Although major reductions can be achieved as de-
scribed above, the V-shaped property does not reduce

the computational effort to be less than exponential
with the number of jobs. Heuristics are the main tool
for solving problems containing a large number of
jobs.

Two heuristics are proposed. In the first, we create
a V-shaped sequence with the same number of jobs
in both sides of the minimum. The idea of the second
heuristic is to get a V-shaped sequence with an
(approximately) equal sum of growth rates in both
sides of the minimum.

Define “section 1” to be the set of jobs placed before
the job with minimal growth rate and “section 2” to
be the set of jobs placed after it.

Heuristic 1

Step 1. Arrange the jobs in descending order of
growth rates. Call this the descending sequence (DS).

Step 2. Assign the first job of DS to be scheduled
first, the second job of DS to be scheduled last, the
third job of DS to be scheduled second, and the fourth
Jjob of DS to be scheduled next to last. Continue by
adding jobs alternately to each section (add to the first
available place in section 1 and to the last available
place in section 2).

Heuristic 2

Step 1. Arrange the jobs in descending order of
growth rates (DS).

Step 2. Assign the first job of DS to be scheduled
first, the second job of DS to be scheduled last, and
the third job of DS to be scheduled next to last. Let
SUMI1 be the current sum of growth rates in section 1
and SUM2 to be the current sum of growth rates in
section 2. Continue by adding at each step the next
job of DS to section 1 (in the first available place)
if SUM1 < SUM2 and to section 2 (in the last available
place) if SUM2 < SUM1.

Running Time. Both heuristics are efficient (O(V log
N)) and easy to implement.

Asymptotic Optimality. Both heuristics are asymptot-
ically optimal under the assumption that all «,’s are
Li.d. random variables. Denote by =* the optimal
sequence and by =, and =, the sequences created by
heuristics 1 and 2, respectively. Let II, C =, be the set
of all V-shaped sequences. For any = € II, we define
a “measure of closeness to a perfectly symmetric V'™
c(m) = llelixn | ey = av—reny ]

For a given set of jobs § we define c*(s) = min,ey,
¢(m), i.e., the minimal value of ¢ that can be achieved
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by any V-shaped sequence = constructed from the
set .S,

First we claim that limy_. ¢*(s) = 0 as. (As N
increases it is always possible to find a “more sym-
metric V-shaped” sequence.) In order to show this, let
Sl = {a}, a%, ey (X}v/z} and S2 = {0{%, Ol%, ey (Xlzv/zl
be two sets of i.i.d. random variables (assume that N
is even) and let a(, and a{, be the jth order statistics
of S' and S?, respectively. In any realistic case « has
a distribution of finite support. Thus, it is clear that
limy_e. | al) — apy| =0as, 1 <j< N/2. Let S =
S' U S? and construct the V-shaped sequence

1 1 1
T = (a2, Cr2=115 - - s O

2 2 2
Q(1)y C2)y v oo o) )-

It follows that ¢*(s) —» 0 a.s. as N — o,
Next we claim:

lim ¢(m) =0 as., lim ¢(m) =0 as.

Now Now

In the above we showed, in fact, that as N —
one can divide the set S into two sets S' and S” of
size N/2 each, such that |a{, — aiy| — 0 as;
aly €S, aly€ S% j=1, ..., N/2. Note that ay
and «}, appear as consecutive numbers in the sorted

set obtained after Step 1 of both heuristics. By Step 2
of Heuristic 1 these jobs will indeed be “assigned” to
different sections. Assigning them to different sections
also minimizes the difference between the “current
sums of growth rates” of the sections. Thus (asymp-
totically) Heuristic 2 results in the same policy. There-
fore as N — oo, ¢(m;) — 0 and ¢(m2) — 0 a.s.

Proposition 3 states that if a perfectly symmetric
V-shaped sequence can be achieved, it is optimal,
ie., if ¢(x) = 0 for some = € II,, then = = =*
Asymptotic optimality is a straightforward result of
the above two claims and Proposition 3.

5. COMPUTATIONAL EXPERIMENTS

Four sets of problems are examined: 10-job problems
(Table I), 20-job problems (Table II), 100-job prob-
lems (Table III) and 250-job problems (Table IV). In
the first two sets the optimal and the heuristic solu-
tions are obtained. In the last two sets only the heuris-
tic solutions are presented and the purpose is to ex-
amine their “asymptotic” behavior. Each set consists
of 25 problems. All growth rates are randomly gener-
ated from a uniform distribution (a, ~ U(0, 1)).
Denote by F* the optimal flow time and by H, and

Table I
10-Job Problems
Problem

No. F* H1 H2 H]/F* Hz/F* H]/Hz
1 268.587 268.760 268.587 1.000644 1.000000 1.000644
2 313.481 313.942 313.487 1.001471 1.000019 1.001451
3 378.138 378.807 378.300 1.001769 1.000428 1.001340
4 161.826 162.480 161.940 1.004041 1.000704 1.003335
5 186.287 186.569 186.287 1.001514 1.000000 1.001514
6 191.941 192.198 191.941 1.001339 1.000000 1.001339
7 226.458 226.671 226.458 1.000941 1.000000 1.000941
8 160.131 160.568 160.706 1.002729 1.003591 0.999141
9 134.483 134.809 134.724 1.002424 1.001792 1.000631
10 136.806 136.907 136.806 1.000738 1.000000 1.000738
11 490.284 490.817 490.373 1.001087 1.000182 1.000905
12 148.260 148.825 148.366 1.003811 1.000715 1.003094
13 234.264 234.493 234.264 1.000978 1.000000 1.000978
14 184.670 184.830 184.670 1.000866 1.000000 1.000866
15 292.814 293.180 292.814 1.001250 1.000000 1.001250
16 142.815 142.932 142.819 1.000819 1.000028 1.000791
17 183.042 183.129 183.042 1.000475 1.000000 1.000475
18 234.867 235.171 234.867 1.001294 1.000000 1.001294
19 160.595 160.940 160.595 1.002148 1.000000 1.002148
20 134.993 135.262 135.014 1.001993 1.000156 1.001837
21 325.623 326.291 325.623 1.002051 1.000000 1.002051
22 277.566 277.896 277.566 1.001189 1.000000 1.001189
23 142.049 142.710 142.087 1.004653 1.000268 1.004385
24 195.601 195.651 195.601 1.000256 1.000000 1.000256
25 189.002 189.203 189.002 1.001063 1.000000 1.001063

SSRGS O i
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Table 11
20-Job Problems
Problem
No. F* H] H’_: Hl/F* HZ/F* HI/HZ
1 8493.8359 8506.3555 8493.9883 1.001474 1.000018 1.001456
2 12418.3359 12435.8281 12418.7031 1.001409 1.000030 1.001379
3 7182.7305 7197.2188 7182.9297 1.002017 1.000028 1.001989
4 5733.3203 5736.9336 5733.5352 1.000630 1.000037 1.000593
5 5689.8555 5692.4141 5689.9375 1.000450 1.000014 1.000435
6 10242.9766 10250.4727 10243.0352 1.000732 1.000006 1.000726
7 4070.6589 4081.6199 4071.4775 1.002693 1.000201 1.002491
8 4074.2898 4090.9885 4074.3806 1.004099 1.000022 1.004076
9 2888.0208 2893.7456 2888.0315 1.001982 1.000004 1.001979
10 52976.3750 53002.9840 52976.5469 1.000502 1.000003 1.000499
11 4840.1914 4847.1875 4840.5820 1.001445 1.000081 1.001365
12 8573.3750 8584.4141 8573.3750 1.001288 1.000000 1.001288
13 6823.7383 6832.9023 6824.1133 1.001343 1.000055 1.001288
14 13981.1602 13999.8633 13981.2461 1.001338 1.000006 1.001332
15 7552.9688 7563.1445 7553.1758 1.001347 1.000027 1.001320
16 7871.9609 7882.0742 7872.2227 1.001285 1.000033 1.001251
17 6564.5781 6573.8672 6565.0000 1.001415 1.000064 1.001351
18 5396.6914 5411.7734 5396.7266 1.002795 1.000007 1.002788
19 5029.6406 5033.6055 5029.6406 1.000788 1.000000 1.000788
20 20945.2930 20953.5117 20945.6484 1.000392 1.000017 1.000375
21 7858.6523 7874.2930 7859.4766 1.001990 1.000105 1.001885
22 3916.0310 3919.1714 3916.1714 1.000802 1.000036 1.000766
23 14939.1367 14957.8008 14940.7656 1.001249 1.000109 1.001140
24 10252.4336 10268.3086 10252.4492 1.001548 1.000002 1.001547
25 5825.1445 5834.4648 5825.2266 1.001600 1.000014 1.001586
H, the results of Heuristic 1 and Heuristic 2, respec- Table II1
tively. We use the measures H,/F* and H,/F* to 100-Job Problems
evaluate the performance of the heuristics and H,/H, Problem
to compare them. No. H, H, H\/H,
(All runs were done on IBM 4341. The average 1 1.744097E + 18 1.744085E + 18  1.0000069
CPU time needed to get the exact solution of a 20-job § igigg;ig + 1; ‘11‘0233965 +17 10000150
problem was 219 seconds. The average CPU time 4 143 419651 }7 1‘33 412;'5: }.7/ }'8388?2;
needed to heuristically solve a 250-job problem was 5 5.246065E + 17 5.246037E + 17 1.0000054
0.3 second.) 6 4.363240E + 17 4.363174E + 17 1.0000151
Our basic goal in these experiments is to test the ; ?g?}ggggg + ig 5-65865054' 16 1.0000076
average performance of the heuristics by measuring ) N 1.575634F + 16 1.0000136
. . 9 2.509319E + 16 2.509291E + 16 1.0000113
the relative error on different sets of problems. Other 10 2.628011E + 17 2.627961E + 17 1.0000191
issues of interest are: a comparison between the heu- 11 3.076352E + 17 3.076289E + 17  1.0000206
ristics, and their degree of accuracy as the number of 12 2.806704E + 16 2.806607E + 16 1.0000349
jobs increases. Table V summarizes the average values i ‘31 ;“ﬁggggg + 1_7/ é -‘;fg;?gg + }; 1-88885?(3’
: . . + . + :
of the perforrr.lance measu'res n all our expenment.s. s 1.774278E + 18 1.774267E + 18 1.0000062
An immediate conclusion from Table V (10-job 16 4.399426E + 17 4.399398E + 17 1.0000064
and 20-job sets) is that both heuristics perform out- 17 5.463203E + 16 5.463132E + 16 1.0000130
standingly. The average relative error of the first heu- } g ;?;5 é zgg + 12 ;-?;ggg;"i + lg 1-880013‘31
L. h ' . ) . + 1 . E+1 1.00000
ristic 1s lesls than 0.2% l? t;lmh Setsgfhpmt.’le.ms. The 20 5.350885E+ 17 5.350851E+ 17 1.0000064
average relative error of the second heuristic is less 21 4052247E + 17 4.052187E + 17 1.0000149
than 0.04% in the 10-job problems and less than 22 1.638351E+ 16 1.638286E + 16 1.0000393
0.004% (an order of 107°) in the 20-job problems. 23 3.558640E + 17 3.558580E + 17 1.0000170
Recall that the effort needed to reach these results is 24 8976674E + 16 8.976420E + 16 1.0000283
25 8.086475E + 17 8.086382E + 17 1.0000116

only O(N log N).
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Table IV
250-Job Problems
Problem

No. H, H, H,/H,
i 3.66738922E + 42 3.66737858E + 42 1.0000029
2 2.35548133E + 43 2.35546857E + 43 1.0000054
3 3.54127042E + 39 3.54127886E + 39 0.9999976
4 5.74418833E + 42 5.74417637E + 42 1.0000021
5 2.94696652E + 43 2.94694951E + 43 1.0000058
6 3.73392905E + 43 3.73393117E + 43 0.999999%4
7 1.71474218E + 44 1.71473453E + 44 1.0000045
8 8.43270714E + 41 8.43269136E + 41 1.0000019
9 4.65947847E + 42 4.65947050E + 42 1.0000017
10 1.16940744E + 41 1.16939498E + 41 1.0000107
11 5.95996723E + 42 5.95995793E + 42 1.0000016
12 8.80868593E + 40 8.80861947E + 40 1.0000075
13 8.77137865E + 41 8.77137533E + 41 1.0000004
14 1.44872160E + 43 1.44871775E + 43 1.0000027
15 3.09001312E + 41 3.09000648E + 41 1.0000022
16 6.56958283E + 43 6.56951477E + 43 1.0000104
17 8.16661377E + 40 8.16664440E + 40 0.9999962
18 5.43962621E + 40 5.43964802E + 40 0.9999960
19 2.02031274E + 41 2.02030609E + 41 1.0000033
20 5.45890832E + 40 5.45891507E + 40 0.9999988
21 5.75005089E + 41 5.75003179E + 41 1.0000033
22 8.96783127E + 43 8.96779937E + 43 1.0000036
23 3.27846110E + 43 3.27845684E + 43 1.0000013
24 1.06140068E + 42 1.06139886E + 42 1.0000017
25 6.83926724E + 44 6.83928425E + 44 0.9999975

Table V
Average Values
10-Job 20-Job 100-Job 250-Job
H\/F* 1001661 1.001465 — —
Hy/F* 1000315 1.000037 — —
H,/H, 1001346 1.001428 1.0000149 1.00000233

Table V shows that Heuristic 2 performs slightly
better than Heuristic 1. The average relative difference
between the heuristics on the 10-job and the 20-job
sets is less than 0.2%. Heuristic 1 performs better only
in 7 out of the 100 problems (problem 8 in Table I,
problems 3, 6, 17, 18, 20 and 25 in Table IV).

Heuristic 2 also performs better in terms of its rate
of convergence. As seen in Table IV, the improvement
in the average relative error as the number of jobs
increases from 10 to 20 is higher for Heuristic 2. For
large sized problems, however, the average relative
difference between the heuristics decreases signifi-
cantly: it is less than 0.002% for the 100-job set and
less than 0.0003% for the 250-job set. In these large
sized problems the shape of both heuristic sequences
is almost a perfectly symmetric V and therefore they
are very close to the optimal solution.

Figure 1, 2, 3 and 4 demonstrate graphically all
the above. Figure 1 shows the solution of Heuristic 1
for a 24-job problem against the optimal solution.
Figure 2 shows the solution of Heuristic 2 for the same
problem.

The data for the problem are: o, = 0.49, o, = 0.24,
a3 =0.09, oy = 0.10, a5 = 0.75, as = 0.52, a; = 0.83,
ag = 0.36, ag = 0.42, ajp = 0.24, a;, = 048, a), =
0.50, a;3 = 0.13, a5 = 0.71, a5 = 0.43, a;s = 0.96,
o7 = 035, o)y = 066, g = 022, Aoy = 051, an) =
0.65, az, = 0.48, as3 = 0.47, apq = 0.82.

The results are:

F* = 26932426
H, = 26945.517
H, = 26932.485
H,/F* = 1.0004860
H,/F* = 1.0000022
H,/H, = 1.0004838.

These figures again indicate that Heuristic 2 performs
slightly better than Heuristic 1.

Figures 3 and 4 illustrate the second heuristic’s
solution to problem 1 of Table III and to problem 1
of Table 1V, respectively. (It is clear from the values
of H,/H, in the tables that the solutions of Heuristic
1 are very similar.) Notice how the shape of the
solution approaches a perfectly symmetric V as the
number of jobs increases.

Interestingly enough, we find that in many prob-
lems, a large number of jobs are scheduled differently

0.9
0.8 4
0.7
0.8
0.8 -

0.4 -

GROWTH--RATE

0.3

0.2 4

0.1

Figure 1. A 24-job problem (4 signs = heuristic solu-
tion H; solid line = optimal solution).
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£ oe-
% 0.5 - * .
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0.3
0.2 5

0.1 -

Figure 2. A 24-job problem (+ signs = heuristic solu-
tion H>; solid line = optimal solution).

0.9
0.8
0.7 -
0.6 -
0.8

0.4 -1

QROWTH-RATL

0.2

Figure 3. A 100-job problem (the solution of
Heuristic 2).

by the optimal policy than by the heuristics. However,
the resulting flow time of the heuristics is still ex-
tremely close to the optimal. For example, in the
problem described in Figure 1, 10 out of 24 jobs are
scheduled differently by the heuristic. The relative
error is still less than 0.05%. Note, in addition, that
¢(n*) = ¢(w,) = 0.13 for this example, which means
that the optimal and the heuristic sequences are equiv-
alent in terms of closeness to a perfect V according to
our measure. This shows that the “convergence” pro-
cess of the heuristics solutions to a perfect V (and
therefore to the optimal flow time), is faster than the
convergence to the actual optimal sequence. It also
verifies that the optimal solution is robust to changes
in scheduling which maintain its general V-shape.
Thus, any sequence that has a roughly symmetric
V-shape guarantees very low flow time.

APPENDIX

Proof for Proposition 3
Consider the following set of growth rates:

{ao, Cp, Oy 02y 02y o vy O, agts

2 2=, .. = .

We will show that (0, 1,2, ..., k— 1Lk k—-1,...,
2, 1) is the optimal sequence. (The total number of
jobs in this case is 2k + 1. The proof for the even
number of jobs case is similar; the optimal sequence
is,1,2,...,k—Lkk—=1,...,2,1))

In terms of the function g, the above is equivalent
to the following: Given a set 4 = {a;, a1, @, a2, . . .,
a., ai}, we have to show that the minimizer of g is the
sequence

m=(1,2,...,k—= 1Lk kk—=1,...,2,1)

(Recall that «, does not appear explicitly in g, and
a=14+a,i=1...k)

Since only V-shaped sequences are candidates for
optimality it is enough to show that =, is the best
within this set. Notice that any V-shaped sequence
based on the set A which is not perfectly symmetric,
must contain at least one “step,” i.e., two adjacent
Jjobs with identical growth rate.

Let

m=(1,2,...,i—-LiLi+1,....,k—-1,
kkok—=1,...,i+1L,i—1,..., 1)

We will show that g(=,) = g(mo).
(We assume for simplicity of exposition that =,

0.8 J

0.7 4

GROWTH—RATT

0.4 -

Figure 4. A 250-job problem (the solution of
Heuristic 2).
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contains a single step. Similar algebra is needed for included in the block:
the case of several steps.)
aaa...aX+aa...aX+ ... +X
glmo) = a, + X, 1.
aaas ... aXa-, + aa; ... _
+a,a2+az 14243 i =1 2U3 a,Ad;—,

+ ... Aa, .
+a1a:a:+ aax + a; + Xa,-,

+aiaxas. .. Q-1 Al Qi1 . . . Q24
+ aiaas ... aXa-1G-2... 4

+ aras. .. Qi Qi Qie—y . . . A2 Q4
+ aas ... aXa\Q-2 ... 4

tetmata +...+ Xa_a-...a.
g(m)=a
+aa+a; Similar terms with Y =a,@,+1 . . . Q- Qe Qp— - . . Q141
replacing X appear in ,. Since X = Y these two blocks
are equivalent.
Denote the total value of all common terms by Z.
The remaining terms of g(m,) are included in two

+a,aa;+ axas+ as

blocks:
+a1a2(13...a,+aza3...a,+a3...a,+...+a,
+a,1a:0. .. 4,0, + a:03. .. 4,4, g(m) —Z =B+ B,
+a5...aa,+...taa+a where

B =aa.,+aaa.,+...+aqa...aa0+. +
‘+aa...aa... G G@Qe-1...8410-...024 a1 G+2 + 4 1Q,441 G142

+a...aa,... Q- QA Qr-1. .. Ge1G—1 .. .axa, +...+aa...aa+0+2 +

+ ...+ aa + a,.

First we identify identical terms in g(xo) and g(=).

Observe that the following block appears in both 7 PSR Pl N/ TRV 1/ R R /
expressions: +...+aa...aq+ ... ac+
a, +
aa + a +
ad. ... Qi di—y ... iy
a,draz + axas + as +
+ a,_1a,d,+1 ... GQrQroy ... Qg + ...
+aid ... 41 .. Qi Q-1 ... Q.

+aaas...a+adas. . a+...va-a+a.
B:=aa-, +aa-,a_

Note that this expressionis g(ai, @z, . . - , ). Similarly,

the block g(a,—., -2, ..., @) appears in both ex- +...+aa-,...a +
pressions. In addition, g(@.+, @2, ..., @, Gk,
Q-1, ..., a)appearsin g(mo), and g(a,, d+1, - - ., Ak,
Ak, Qr—1, - - - » Q,+1) @ppears in g(mr;). By the symmetry
of g (property 2) these expressions are equal. Other
equal terms are the ones in 7, that contain the product
X=a1Q2 ... Ay Grdidi- . . . @, These terms are

a,+1a,4,- + a+1a,4,-14,-2

+ ...+ anaa-...a +

- Copvright © 2004 AlLRIghis Pasanuad
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a ... a4+ a, ... aa,.,4,.,

+...+a...aa-,...a +

A2 o ApAn Qg1 ... Q4,2
+ Az .. Qi ... Q4,-10,->
+ ...+ Q.. Q- ... QA ... 4.

The remaining terms of g(w,) are included in two
corresponding blocks:

glm)—Z=B+ B;

where

Bi=aa+a-aa+...+aa...a_aa +
a,a,a,.4, + a_,4,4,a,.,

+...+taqa...aqqaa.4 +

a,a,a., ...+ a-,.4,a,d,.4, ... 4
+...taar...4.,44,Q.4; ... A +
aaq,a, ... QQrQr—1 ... A)+2
+ 414,444 ... GQiQi—1 ... Q2 + ...
+aa...a0..4aa.+ ... QA1 ... Q.
B =aa- + aua-1a,,
+...+taqaa-2...a +
Qi2Qi1Q-1 + Q21 0,210,-2
+ ...+ anaaa-,a-5...a +
Qe oo Q1@ Ak ... Qe Qi Q-3
+ ...+ a...ana-a_>...a +
[Z PSR 7 1/ TR/ P R / P Y/ )
+ a. .. @Ay ... Qe Q- Qs + ..
+ Ay .. Qi Qp .. a+1a-14,-2 ... 4.

We compare the blocks line by line:
B! - B

= (al - aH—l)(al +a.-.a + a,—»a,-.14,

+...aa...+a) (1)
+ (@ — a2 )@a + a-a,a,.,

+.. . taa...an) (2
+ (a, — a3 a1 Qr + A-10,0,4.10,45

+...+a1a2...a,+2) (3)

+ (a, — aA)(a,a,H v Qi

+ a-a,ay ... Ay
+...+aa...ak—1) k=1
+ (a, — a)aa+, ... a4y

+ Ay .. Gkt

+a1a2‘..a/\_1ak) (k_l+1)

+ (@ — G- )@ Qrz .. ek
+ a1 ad ... Aedy ..

+a1a2...akak) (k—l+2)

+(a, — i QA Qr - .. QGlx ... Qs

+ Q14,800 Qs2 .« oo GGy .. Qisd
+ ...t aa .. Gl ... Ay2). 2k — 20)
B,
= (@1 — ala-, +a_a._;
+...ta_a...a) (1Y
+ (a2 — ala a0 + a4 a4,
+...+ana-...a) 2
+ (ar — aXa_ Qx> ... QrrG,_,
+ Ao Gpey o Qi GG L
+ Q1 Gr-r o GGy @) (K= 1Y
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+(a ) —a)aq2Q43. . Qi . . Q1
N/ NCSRNN 1%/ PY ST/ SRV ML U
F A2 @iase s Al o Q1 Gy . ay) 2k —20)

Denote the expression in the second parenthesis of
line (j') by S;:

(1) =(a+1 — a)Si, QY ={(@2—a,)S, .. ..
Then it is easy to verify that

M+ Uy =(@-a)Sia-H+alz0
() + Q) =(a, — a2)[S2a, — 1) + aa..1]
0

=

k-0 +k—=1y
= (al - ak)[Sk—l(al - 1)

+ ad. ... ak_l] =0

Rk = 2iy + (2k = 2i)y
= (a, - al+1)[S2k—2I(al — 1)
+ a ;v

e Qi .. Q2] = 0.

Therefore
g(m) — g(m) = (B — B)) + (B: — B)) =0,

and the inequality is strict for any nontrivial set
{ai,...,a}{i.e., a>a., for somej). This completes
the proof.

+ 2

123 + 23 + B,

1234 + 234 +34 /| +|4 A

12345 + 2345 + 345 +|4s +

B(mo) =1 ha4ss 4 23455+ 3455 | +lass o+ +3

1234554 4+ 234554  + 34554 | +[d554  + +54  +4

12345543+ 2345543+ 345543  +|45543 |+ +543 443 + 3 As

123455432 + 23455432+ 3455432 + 455432 |4+[55432 + 5432 + 432 + 32 +%

1234554321 + 2345543le+ 34554321 + 4554321[+]554321 + 54321+ 4321 + 320]+[21 + |
|
Ay B,

12 + B

123 + + l

1233 + 233 +33 J| +]3 A}

| 12334 + 2334 + 334 +]34 +
SV =1 03345 423345+ 3345 | 4|35 445 & 13

1233455 + 233455 4+ 33455 | +[3455  + 455 455+ 5

12334554+ 2334554  + 334554 +|34554 |+ 4554 + 554 + 54 +4 Aj

123345542 + 23345542 + 3345542 + 345542 |+[45542 + 5542 + 542 + 42 +%

1233455421 + 233455421\ + 33455421 + 3455421|+[ 455421 + 5sa21f+ 5421 + 421]+|21 + 1
| /
Al B;

Figure 5. g(w;) and g(x,.
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Example. For a demonstration of the block decom-

position of g(m,) and g(m,) that was used in the proof

consider the following example with k = 5 and : = 3.
The sequences to be compared are:

7I'()=(1, 25 37 45 5’ 55 45 39 2* 1)
and
T = (15 2’ 39 35 47 53 5’ 49 25 1)

(For ease of exposition each q, is denoted by its index
i, e.g., the product asasas is denoted by 455.) See
Figure 5. We show that 4, = A{, A, = A3, A; = A},
As=Ai,and B + B, = B, + B..
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