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Order picking

1. Introduction

Order picking is an elementary warehousing function dealing with the retrieval of stock keeping units (SKUs) from their
storage locations in order to satisfy a given demand defined by picking orders. Typically, order picking is a labor-intensive
task, which is both time-critical and cost-intensive. Therefore, it is not astounding that optimizing picking operations by
computerized solution procedures has received (and is still receiving) plenty of attention among practitioners and academic
researchers alike (e.g., see the latest survey papers on warehouse operations by de Koster et al. [5]; Gu et al. [10]). In this
context, we consider the deterministic product location problem (also known as the slotting problem), which is defined as
follows:

Consider a given set P = {1, ..., n} of SKUs to be assigned to a given set of storage locations S = {sq, ..., s,} arranged
in racks of a given layout, so that each product receives exactly one storage location. Once SKUs are assigned they need
to be picked according to a given set O containing m picking orders, where each order o € O consists of a subset of SKUs
to be retrieved (e.g., all items ordered by a specific customer). Order picking is organized according to the pick-by-order
policy (also denoted as discrete order picking), so that all SKUs of an order are jointly picked during a single tour of a picker.
Capacity constraints are considered to be a non-issue, so that exactly m tours occur. A tour starts and ends in the depot (or
input-output point) and consists of an ordered set of locations where the products of the respective order are stored. We
restrict our view on warehouse layouts having only a single front-end cross-aisle, i.e., for reaching another storage aisle, so
that pickers enter and leave storage aisles over the same entrance point at the front (also denoted as the “out and back”
approach or the “return policy”). Note that our (front-end) cross-aisle should not be confound with a middle aisle crossing
the storage area in order to introduce additional flexibility for the pickers changing storage aisles. We abstain from the latter
type of (middle) cross-aisle, so that we restrict ourselves to what is also denoted as the one-block layout. Both assumptions,
the one-block layout plus the “out and back” policy, make the integrated picker routing problem trivial to solve, i.e., only the
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Fig. 1. Investigated layouts for the storage location problem (PLP) ((a)-(c) top view and (d) side view).

farthest picking location per order and aisle has to be determined. Within this setting, our product location problem (PLP)
aims to assign products to storage locations, so that the total walking distance over all given picking orders is minimized.

This paper investigates the computational complexity of the PLP in different warehouse layouts and presents suited
solution procedures. Specifically, we investigate the most basic PLP-layout (depicted in Fig. 1(a)) consisting of a single
straight rack and a front end depot. For this building block we prove NP-hardness in the strong sense and present exact
and heuristic optimization procedures. Then, we show how these basic results can be applied for proving computational
complexity for other layouts, i.e., layouts (b)-(d) in Fig. 1, and how the solution procedures can successfully be applied for
repeatedly solving subproblems in real-world order picking settings.

The remainder of the paper is structured as follows. Section 2 provides a literature review on related research. Then,
Section 3 investigates layout (a) where a single rack faces a front end depot. For this basic PLP, a complexity analysis is
provided and exact and heuristic solution procedures are introduced, which are tested in a comprehensive computational
study. The complexity results are then applied for proving NP-hardness of more complex layouts, i.e., layouts (b)-(d), within
Section 4. Furthermore, we investigate a typical real-world setting for order picking and show our basic PLP being an
important subproblem (Section 5). Section 6 investigates the robustness of PLP solutions if incomplete or erroneous order
information is available and, finally, Section 7 concludes the paper.

2. Literature review

Numerous studies on optimizing warehouse operations in general and on product location and picker routing in
particular exist. Instead of trying to summarize this vast body of literature we refer to the excellent survey papers published
on these topics over the past years, e.g., [5,9,19,10]. To emphasize the importance of simultaneously planning product
locations and picker routes, we only make one exception. In a recent case study at a distribution center for alcoholic
beverages in Québec (Canada), Renaud and Ruiz [ 18] calculate an impressive reduction rate of 27% on the total picking effort
when unifying both problems. With regard to the information availability, i.e., the question whether reliable information on
(short term) picking orders exist when solving the (long term) product location problem, three cases can be distinguished:

o Whenever the composition of orders considerably varies over time, e.g., induced by highly volatile customer demands,
orders are hardly predictable and no reliable order information is available. In this case, only product specific information
is on hand, so that, for instance, the famous cube-per-order index (see [ 12]) can be applied for assigning storage positions
to SKUs.

e In a more stable environment, reliable product correlations defining the probability of a product pair being jointly ordered
may be obtained from historical data (see [7,3]). These correlations allow for a grouping of product families, so that
similar SKUs are located in the same region of the storage area and travel distance during operational order picking can
be reduced.

e This paper assumes a given deterministic order set. Clearly, this assumption seems unrealistic for volatile environments
faced by most distribution centers serving demands of final customers. However, a given order set may be a valid
approximation of reality in intermediate warehouses, where, for instance, recurrent orders for parts consumed by
cyclically produced production lots in a low-variety make-to-stock supply chain are picked. Even in a truly stochastic
environment the deterministic problem can contribute to the overall solution, e.g., in a scenario-based approach.
Furthermore, solving the PLP with a deterministic order set can deliver benchmark solutions for the former two cases, in
order to quantify the value of information from a theoretical point of view.

To the best of the authors’ knowledge there exists only the study of Van Oudheusden and Zhu [20], who also treat a
product location problem for a given set of recurrent orders. They briefly mention the basic PLP resulting from layout (a)
in Fig. 1 as an interesting subproblem and present a very basic myopic procedure. A complexity analysis and exact solution
procedures for our PLP are not provided. Instead, they focus a more complex layout with a two-dimensional rack and a front
end depot (layout (d) in Fig. 1) applied in a man-aboard automated storage and retrieval system. They presuppose given
routes for each order predetermined by some traveling salesman procedure, so that the routing problem is excluded, and
provide a heuristic solution procedure for the product location problem. Up to now, the complexity status of this PLP has
been unknown. In Section 4.3 we finally prove the PLP for layout (d) being strongly NP-hard.

With regard to its mathematical structure our basic PLP bears some similarities to the single-row equidistant facility
layout problem (e.g., [14,15]), where facilities (e.g., are to be assigned to locations (equally spaced along a straight line)),
so that the sum of product flows between facilities weighted with the distances of their assigned locations is minimized.
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Fig. 2. Single rack with a front end depot.

One potential application for this problem is, for instance, the location of machines along some straight material handling
device in a flexible manufacturing system (see [14]). However, due to diverging evaluation schemes of a given assignment,
the results are not transferable between both problems.

3. Single rack with front end depot

3.1. Problem description and complexity analysis

In this section we treat the PLP in its very basic form and assume that all storage locations are arranged in a single rack
along a straight line with the depot being located at the front end of the rack (see Fig. 2). Without loss of generality, we
assume storage locations being numbered from 1 to n according to increasing distance from the depot (denoted as D within
Fig. 2), which is located at position zero. Furthermore, we presuppose equidistant storage positions, so that we only need to
count the number of storage positions passed during a picking tour. In this basic problem setting the routing subproblem is
trivial, because the tour length per order is directly determined by the way to and from the one SKU assigned to the storage
location farthest from the depot. Thus, the overall walking distance for a given assignment of products to storage locations
amounts to: Z = Y, 2 - MaXie,{s(i)}, where s(i) denotes the storage location SKU i is assigned to.

Layouts with a single rack are often chosen in forward areas, where fast-moving items are stored in easy-to-access racks,
e.g., gravity flow racks, concentrated in a compact area (e.g., see [2]). Alternatively, this setting may occur as a subproblem
in a more complex warehouse, e.g., consisting of multiple racks arranged at right angles along a picking belt (see Section 5).

Theorem 1. The PLP with a single rack and a front end depot is NP-hard in the strong sense.

The following transformation is from the linear arrangement problem (LAP), which is well-known to be NP-hard in the
strong sense (see [8]).

LAP: Given a graph G = (V, E) and a positive integer K. Is there a one-to-one-functionf : V — {1,2,...,|V|}, ie,a
numbering of nodes V with integer values from 1 to |V|, such that
> @) —f)| <K? (1)
(u,v)eE

Proof. Within our transformation of LAP to PLP we introduce a product and a storage location for each node, so thatn = |V/|.
The integer value f (1) assigned to a node u within LAP corresponds to the storage location s(i) assigned to SKU i within PLP.
Given the maximum degree §(G) of the LAP graph, we introduce §(G) orders for each node u € V: First, an order {u, v} is
generated for each adjacent node v, so that for each edge (u, v) € E two orders {u, v} and {v, u} are generated. Then, for
each node having a degree less than § (G) we extend the order set by additional single-item-orders {u} until § (G) orders per
node are generated. In total, §(G) - |V| single- and two-item-orders are introduced. The question we ask is whether we can
find a solution for PLP with objective value Z < 2K + §(G) - |V| - (V]| + 1).

The §(G) orders associated with each SKU u are either single-item-orders, which require a walking distance of 2s(u),
or two-item-orders. Each order {u, v} of the latter kind always exists twice, because in the name of each edge (u, v) two
identical orders are introduced, i.e., one when generating the §(G) orders for node u and the other when generating orders
for v. The travel required for any of these order pairs is twice the distance to and from the SKU stored farther from the
depot. If s(u) < s(v) this amounts to a distance of 4s(v). This distance can be split into the way 2s(v) to and from the back
SKU plus the way 2s(u) to and from the front item plus the distance 2(s(v) — s(u)) between both positions. If we assign
the former two distances 2s(v) and 2s(u) to items v and u, respectively, then it becomes obvious that each storage position
i =1,...,nis to be visited exactly §(G) times. Thus, we have an inevitable distance, i.e., independent of the assignment
of SKUs to storage locations, of 25(G) - W The remaining distance 2(s(v) — s(u)) within PLP, which is dependent of
the chosen storage locations for SKUs, exactly equals the difference in the node numbers assigned to each edge within LAP
multiplied with constant 2, so that both problems are directly transferable from each other and the theorem holds. O

Example. For a more intuitive understanding consider the LAP instance given in Fig. 3(a) and its belonging optimal linear
ordering (b) with an objective value of K = 5. The orders to be generated in PLP are depicted in (c). The inevitable walking
distance amounts to §(G) - |[V| - ([V|+ 1) = 3-4.5 = 60 and in the corresponding optimal solution of PLP (d) the total
objective value amounts to Z = 70.

Note that the special case of our basic PLP with |o|] = 1Vo € O is solvable to optimality in O(nlogn) by successively
assigning storage positions to SKUs ordered in descending order according to their total demand (see Algorithm 1 in
Section 3.3).
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Fig. 3. Example for the transformation of LAP to PLP.
3.2, An exact dynamic programming procedure

For determining optimal solutions we introduce a dynamic programming (DP) procedure, which resembles the
traditional DP scheme for sequencing problems as defined by Held and Karp [11]. The decision process of the DP is subdivided
inton+1 stages, where each stagei = 1, ..., nrepresents a storage location (plus a virtual start stage 0). Any stage i contains
a set of states, where each state represents a possible subset Q C P, |Q| = i, of SKUs assigned up to storage position i. The
optimum schedule for subset Q is found according to the recursive equations

h*(Q) = I,Peé] {@\{pH +f®.Q\{phH} (2)
with h* (@) = 0. Here, the objective value of the optimal storage locations for products Q \ {p} is added to the contribution
f(p,Q \ {p}) of assigning SKU p to storage location i and having product set Q \ {p} assigned to previous storage locations
1,...,i—1,where f(p, Q) is calculated according to

fG,Q=2-(QI+1)-lo€0:0\Q = B}

The overall objective is to find optimal solution value h*(P) for the set of all SKUs being assigned. We can determine
h*(P) by a stage-wise forward recursion using (2). Finally, when the final stage is reached and optimal solution value h*(P)
is determined, a simple backward recursion can be applied to determine the optimal assignment.

There are 2" states and n - 2"~ ! transitions to be evaluated. Each transition requires the inspection of all m orders, which
in the worst case contain all n products. Thus, the computational complexity of DP amounts to O(m - n? - 2"), so that (in line
with the previous complexity result) there is an exponential increase of runtime in the number of storage locations n.

Example (Cont.). The DP graph and four bold faced shortest paths with length Z = 70 representing all optimal assignments
are depicted in Fig. 4. For instance, the lowermost path via D, CD and BCD represents the assignment s(A) = 4, s(B) =
3,s(C) =2,and s(D) = 1.

Fig. 4. DP graph for our example.

3.3. Extensions of DP and heuristic solution procedures

First, we show how to extend the DP approach presented in the previous section with upper and lower bounds to a
bounded dynamic programming (BDP) approach. Then, we introduce two straightforward greedy heuristics.

DP can be extended to a BDP approach by additionally computing state specific lower bounds LB(Q) on the remaining path
length to the target state. Furthermore, a global upper bound UB can be determined upfront by some heuristic procedure.
Specifically, within our BDP heuristic G2 described in subsequent paragraphs is applied. Whenever LB(Q) plus the shortest
path to the current state Q is equal to or exceeds upper bound UB, the respective state can be fathomed as it cannot be part
of a solution with a better objective value than the incumbent solution. In the following it is shown how to determine a
simple lower bound argument for any state.

This bound is based on the relaxation of the consistent assignment of SKUs among all orders, so that for each order
separately the number u of yet unassigned products is assumed to be assigned to the next u storage locations and lower
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bound LB(Q) for a state defined by set Q of products assigned to the first |Q| = i stages amounts to:
B(Q) =2i-[{o€0:0\Q#M|+2-) lo\Ql. (3)

0e0
Bound computation requires an effort of O(nm) per state and preliminary tests revealed that LB is not tight enough to
fathom states of earlier stages. Thus, bound computation is only applied at stages larger than g

Example (Cont.). For our example of Fig. 3, consider a state with Q = {A, B} assigned to the first two storage locations and
h*(Q) = 12. The lower bound for this state amounts to LB(Q) = 52, so that the state could be fathomed if UB < 64, which,
however, is not possible since the optimal solution value amounts to Z = 70.

The first simple greedy heuristic resembles the approach often applied in real-world applications, which is to relax the
joint occurrences of products in orders and to successively assign SKUs to storage locations by sorting SKUs according to
their total demand. This policy denoted as G1 is formalized by Algorithm 1.

Algorithm 1: Greedy heuristic G1

1 Initialization: Order the set of SKUs by their total demand in descending order resulting in vector w = mq, ..., Tn;
2 fors=1tondo
3 L assign SKU 75 to storage location s;

4 return assignment ;

Due to the sorting operation the runtime complexity of G1is O(n log n). Calculating the associated objective value requires
the identification of the each order’s maximum storage position and, thus, requires O(mn).

Example (Cont.). Our example instance introduced in Fig. 3 results in the assignment of s(A) = 4, s(B) = 1, s(C) = 2, and
s(D) = 3 and an objective value of Z = 74.

The second greedy heuristic denoted as G2 assigns product locations from a backward direction according to decreasing
occurrences in the set of active orders, where the set of active orders is continuously updated by deleting those orders where
the most recently added item has already been located. The procedure is formalized by Algorithm 2.

Algorithm 2: Greedy heuristic G2

1 Initialize the current set of active orders Q = O;
2 fors =1tondo
3 L count the number of occurrences of each SKU in Q and assign SKU p’ not yet assigned and having least occurrences to positions’ =n —s+ 1;

4 reduce the set of active orders by all those orders in which p’ occurs;

5 return assignment ;

The runtime complexity of G2 is O(mn?).

Example (Cont.). For our example the resulting assignment is s(A) = 4,s(B) = 3,s(C) = 2, and s(D) = 1, so that the
optimal objective value of Z = 70 is reached.

3.4. Computational study

For evaluating the performance of our solution procedures, we first elaborate on instance generation. Our instance
generator receives the following initial input data: the number n of SKUs (and storage location), and the number m of orders.
All values assigned to both parameters are combined in a full-factorial design and per combination of parameters instance
generation is repeated R times. Each single instance for a given parameter setting is generated by, first, randomly drawing
(with equal distribution) the number |o| of SKUs contained in an order o from the interval [1; n] and, then, randomly drawing
|o| unique products. Note that the solution procedures described above have been implemented in C#.NET and run on a
2.1 GHz PC, with 2 GB of memory.

First, we investigate the solution performance for instances where BDP is able to determine optimal solution values.
Therefore, our instance generator is initialized with parameter values n € {4, 8, 12, 16}, m € {10, 20, 30, 40}, and R = 50,
so that in total 800 data instances are generated. Table 1 lists the solution time (CPU time in seconds) of BDP as well as the
number of optimal solutions (#opt) gained, and the average and maximum relative gap (avg gap and max gap in percent)
from the optimum for the heuristic procedures G1 and G2 in dependency of the parameters n and m. As a further benchmark
we implemented a straightforward simulated annealing approach. The solution vector directly stores the assignment of SKUs
to locations and we apply swap moves, i.e., two randomly drawn storage positions exchange their products, to generate
neighboring solutions. A detailed description of this procedure denoted as SA is given in the Appendix.

With regard to the solution time the results confirm the exponential (linear) increase of BDP’s runtime in n (m). For G1,
G2, and SAP solution time is barely measurable for these small instances. Even with n = 1000 SKUs and m = 4000 orders the
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Table 1
Computational performance for a single rack and a front end depot (small instances).
n m BDP G1 G2 SAP
CPUtime  #opt avggap maxgap #opt avggap maxgap #opt avggap max gap
10 <0.01 34 1.6 129 49 0.1 3.6 50 0.0 0.0
4 20 <0.01 20 2.0 10.3 46 0.2 34 50 0.0 0.0
30 <0.01 26 1.0 7.8 46 0.2 33 50 0.0 0.0
40 <0.01 20 13 5.8 42 0.3 33 50 0.0 0.0
10 0.01 1 7.6 17.7 28 14 8.3 50 0.0 0.0
3 20 0.01 2 49 16.7 32 0.7 5.8 50 0.0 0.0
30 0.02 1 3.6 8.8 32 0.6 5.0 50 0.0 0.0
40 0.02 2 2.9 8.6 27 0.5 45 49 0.0 04
10 0.36 0 112 338 13 3.1 15.4 33 0.4 2.5
12 20 0.54 0 6.9 124 11 13 52 17 0.6 2.0
30 0.68 0 55 10.5 8 1.2 3.8 7 0.6 1.7
40 0.80 0 55 104 15 0.8 4.0 1 0.6 13
10 74 0 14.1 25.7 10 35 19.0 2 19 438
16 20 112 0 10.1 159 6 2.6 7.5 0 2.2 3.7
30 132 0 7.2 14.0 1 1.7 55 0 21 3.6
40 133 0 6.1 10.7 3 13 4.2 0 1.8 33

solution times of G1 and G2 do not exceed a single CPU second. With regard to the solution quality G2 outperforms G1. Over
all instances, G2 produces an average relative gap from the optimum of only 1.2%, whereas G1 shows an average gap of 5.7%.
However, this finding holds not true for any single instance. In eight instances G1 finds an even better solution than G2. Both
procedures profit from an increasing number m of orders, because for m = 10 (except for n = 4) the gap of both heuristics
is the highest. Among all heuristics SAP performs best for the small instances. It produces an average gap of only 0.6%.

Additionally, we test our heuristics with larger instances, which cannot be solved to optimality by BDP. The data generator
is initialized with parameter values n € {20, 30, 40, 50}, m € {200, 300, 400, 500}, and R = 50, so that an additional 800
large instances are generated. In neither instance G1 and G2 require more than 0.02 CPU seconds, whereas SA? requires
up to 15 CPU seconds (n = 50 and m = 500) and 7 CPU seconds on average. With regard to the solution quality, now, G2
performs best. In 792 of 800 (99%) instances G2 delivers the best solution value and in relation to the best solution found per
instance the average gap over all instances for G1, G2, and SAP amounts to 2.7%, 0.002%, and 1.7%, respectively. Obviously,
the simple meta-heuristic SAP suffers from the extended solution space. Thus, it can be concluded that G2 is a very simple
heuristic, which is able to deliver high-quality solutions in negligible time, and, thus, seems well suited for solving the PLP.

The aforementioned tests have exclusively been concerned with computational performance. However, the comparison
of G1 and G2 can also be attributed significantly from the warehousing perspective. Recall that G1 represents a typical
real-world approach, which is to neglect the joint occurrences of products. Thus, if indeed deterministic order information
would be available in a business setting, which is, however, not applied, e.g., due to missing problem awareness, then the
gap between both heuristics can be interpreted as the value of order information. The following test series is dedicated to
exploring this value.

Typically, the Pareto principle can be observed in many real-world warehouses (e.g.,[16,5]), i.e., 80% of the picking effort
is caused by only 20% most popular SKUs (fast-moving items). To model this special distribution of picking effort our data
generator is adapted as follows. The number of products and orders is invariably set ton = 100 and m = 200. The additional
parameters p and q are introduced, which denote the fraction of most popular items and the fraction of picking effort they
cause, respectively. Both parameters are varied as follows: p € {0.1,0.2,0.3, 0.4,0.5} and ¢ = {0.5, 0.6, 0.7, 0.8, 0.9}.
For any combination of the Pareto values p and q instance generation is repeated R = 50 times and any single instance is
generated as follows: First, the number f of fast-moving items is set to f = [p - n]. Then, for each order its order size is
determined by drawing an equally distributed integer number from interval [1; f]. Finally, for each order position we draw
an equally distributed random number from interval [0; 1]. If this random number is less (larger) than g we add a unique
fast-moving (slow-moving) item to the respective order.

The results of this test series are summarized by Fig. 5, where the average gap (
the Pareto values p and q.
These results suggest the following conclusions with regard to the value of applying order information:

Z(G1)—Z(G2)

) ) is depicted in dependency of

o Whenever there are just a few fast-moving items producing almost the complete picking effort, gathering order
information (G2) is only moderately superior to merely applying product specific information (G1). E.g., for p = 0.1
and g = 0.9 the average gap is only 3.7%. A look on the resulting storage plans for this parameter setting reveals that
SKUs of both categories are never mixed, i.e., fast-moving items reside in the front and slow-moving items are assigned to
the back of the rack. Clearly, relocating a slow-moving item to the front next to an often jointly ordered fast-mover would
induce the placement of another fast-moving item in a less desirable location. Given this bisection, utile relocations due to
order information can only occur within each group. However, the group of fast-moving items is small (p = 0.1), so that
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Fig. 5. Average gap between G1 and G2 for varying Pareto values.

there is hardly any flexibility for relocations. On the other hand, ample flexibility within the large group of slow-moving
items does not considerably reduce the picking effort, because these items are so rarely ordered (q = 0.9).

e A distinct advantage of order information requires either more flexibility in an enlarged fast-moving section, i.e., for
p = 0.5 and g = 0.9 the average gap is 5.1%, or a higher order frequency for slow-moving items, i.e., for p = 0.1 and
q = 0.5 the average gap amounts to 8.5%. Among both cases the latter shows even more advantageous, because better
storage plans in the back area of the rack among slow-moving items directly reduce picking effort, whereas relocations
in the front area are insignificant for all those orders additionally containing some slow-moving item, so that the fast-
movers section needs to be completely passed anyway.

e Ifthevaluesp = 0.5 and g = 0.5 are applied all SKUs are equally likely part of each order and the average gap amounts to
5.9%. On the one hand, this dissolves the bisection of items, so that flexibility of relocations over the complete rack exist.
On the other hand, the effect of these relocations are not that distinct, because putting one item to the front requires the

relocation of another item to the back, which is, however, (nearly equally likely) part of some other orders with, then,
enlarged picking effort.

Note that these gains of applying order information constitute merely upper bounds on the actual reduction of picking
effort. Typically, order information are not available with certainty, but bound to forecast errors. A further investigation of
this coherence is provided in Section 6.

4. Complexity results for other layouts

In this section, we apply the complexity result of our basic PLP described in the previous section for proving NP-hardness
of PLPs occurring in other warehouse layouts. Specifically, we consider the PLP with a single rack and a central depot located
in the middle of the rack (Section 4.1), the PLP with two parallel racks along a single aisle and a front end depot (Section 4.2),
and the PLP with a single two-dimensional rack and a front end depot (Section 4.3).

4.1. Single rack with central depot

The warehouse layout for an PLP with a single straight rack and a central depot being located near to the middle of the
rack is depicted in Fig. 6. Again, such a layout may, for instance, occur in a forward area for an efficient picking of fast-moving
items (e.g., see [2]). The walking distance per order for a given product assignment can simply be computed by adding the
distance to and from the left and right most SKU (provided that an order contains SKUs stored on both sides from the depot).
For a more formal description we subdivide the storage locations into subsets L and R located to the left and right of the depot

L 2 SRS SRS S

1 1 0,5 0,5 1 1

D

Fig. 6. Single rack with a central depot.
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respectively, where a storage position located directly on top of a depot, i.e., for odd number n of storage locations, can be
assigned to either set. Without loss of generality we assign such a central storage position to L. For our example of Fig. 6,
L = {1,2,3}and R = {4, 5, 6} holds. Furthermore, we introduce a distance vector d, which defines the distance d; from
the depot to each storage position s. Using this notation the total walking distance of a given storage location amounts to:
Z= Zoeo (2 - MaXico: s(iyer {dsi} + 2 - maxieo:s(i)eR{ds(i)})-

Theorem 2. The PLP with a single rack and a central depot is NP-hard in the strong sense.

Proof. We prove this theorem by a reduction from our previous PLP with a single rack and a front end depot. For a better
distinction we denote the PLP with a central and front end depot and their data with superscript ¢ and F, respectively. For the
nf SKUs and storage positions of PLP" we introduce three sets PS, PS, and P§ of SKUs in PLP®, where PS and P each consist
of nf SKUs. Set P§ contains two products, so that n® = 2nf + 2. We, then, transfer the m" orders of PLP* to the SKUs of P{
without altering the order original structure. Furthermore, we add ZF +m’ orders each consisting of all SKUs in P¢, where Z*
denotes the optimal objective value of the PLPF instance. Analogously to P¢, we extend the order set by another m” (original)
orders plus Zf + mF all-item orders referring to the SKUs of PS. Finally, for both items of P§ 2 - (ZF + mF) - (nf + 1) + 1
single-item orders are introduced. Jointly, all three order sets build the order set OC of PLP®. The question we ask is whether
we can find a solution for PLP with objective value Z€ < 8 - (ZF + mf) - (n" + 1) + 2.

Clearly, both items of P§ are to be assigned to the central storage positions closest to the depot, which causes a walking
distance of 4- (ZF +-mF)- (nf +1)4-2. Any other storage position would cause an objective value higher Z¢. This leaves exactly
nf storage positions to the left and to the right of the depot. Considering each of the ZF 4+ mF orders referring to the SKUs in
Plc and ch ,respectively, it is inevitable to assign all SKUs in Pf to storage positions to one side of the depot and all SKUs in PZC
to the other. Otherwise, the remaining walking distance of Z€ —[4- (ZF +mF) - (nf + 1) +2] = 4- ZF +mF) - (nf +1) would be
exceeded. After an assignment to the left and the right of the depot and the subtraction of the all-item orders, the remaining
distance of 2 - (ZF + mF) has to suffice for each of the m" orders referring to P]C and ch , respectively. The storage locations
of these SKUs can directly be transferred from the PLPF instance without outreaching the remaining objective value, so that
the existence of a solution of the PLPF instance implies the existence of a solution for the PLPF instance and vice versa, which
completes the proof. O

Note that our dynamic programming procedure for our basic PLP with a single rack and a front end depot can simply be
adapted to the central depot case. Again, the DP is subdivided into n stages, which are evaluated in a specific order. First,
starting from the left most storage position we iterate through the set L of “left” storage locations until reaching the central
position. Then, we iterate through set R starting with the right most position. The states in each stage must contain two sets
of SKUs assigned to the left and right part of the rack, respectively. As these adoptions are truly straightforward, we abstain
from a detailed description.

4.2. Single aisle with front end depot

In many real-world warehouses, the layout consists of multiple aisles each having parallel racks on both sides. We, now,
investigate the case of one straight aisle and a front end depot (see Fig. 7). We presuppose that any two storage positions
of both racks directly opposing each other have identical distance to (and from) the depot, whereas the distance between
both of them is zero. Thus, we assume narrow aisles. For computing the walking distance per order and a given storage
assignment we merely have to determine the distance to and from the farthest storage position irrespective of its rack side.

2|14 |(6)|8|10(12

Fig. 7. Single aisle with front end depot.

Theorem 3. The PLP with one aisle, parallel racks on both sides, and a front end depot (denoted as PLP?) is NP-hard in the strong
sense.

Proof. Again, we prove the theorem by a transformation from the PLP with a single rack and a front end depot (PLP"). For
eachSKUi = 1, ..., n" of PLP" we introduce two SKUs (and, thus, storage positions) i; and i, within PLPA. The order set is
generated as follows. First, for each SKUi = 1, ..., nf we introduce ZF orders with {iy, i,}. Additionally, we directly transfer
the order set of PLP" to the SKUs with index 1 within PLP*. The question we ask is whether we can find a solution for PLP*
with objective value Z4 < zF + zF . nf - (nf + 1).

Obviously, any of the n’ SKU pairs are to be assigned to storage positions directly opposite to each other, which causes a
walking distance of ZF - nf . (nf 4- 1) due to the ZF orders for any pair. Any other assignment would cause an objective value
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higher than Z2. Due to the orders that were directly transferred from the corresponding PLP" instance the ordering of the
pairs directly corresponds to the optimal product locations of the PLP" instance. Obviously, a feasible ordering exists if and
only if the PLP" instance is a YES-instance. O

Clearly, this proof can easily be extended to show computational complexity for other warehouse settings consisting of
multiple aisles. Note that this result is not trivial, because the picker routing subproblems in multi aisle settings are typically
special cases of the traveling salesman problem solvable in polynomial time (e.g., see [17,6]), so that NP-hardness for the
overall problem does not instantaneously follows from containing an NP-hard routing problem. Further note that solution
procedures for PLP" can directly be transferred to this layout. It only has to be ensured that the storage locations are ordered
according to increasing distance from the depot as is depicted in Fig. 7.

4.3. Two-dimensional rack with front end depot

Up to now, only the horizontal distance, i.e., the walking distance of pickers, has been considered. However, with
automated cranes (also denoted as storage and retrieval (S/R) machines) multiple shelves arranged on top of each other
become accessible. For instance, Van Oudheusden and Zhu [20] consider a person-on-board S/R machine serving a two-
dimensional rack with a front end depot (see Fig. 8). Typically, such an S/R machine is propelled with two independent
driving mechanisms, so that it is the maximum vertical and horizontal distance (Chebyshev distance or maximum metric),
which decides on the actual processing time. We assume that a rack is subdivided into p rows and g columns with horizontal
and vertical distances equal to 1. Without loss of generality we assume p < ¢. Van Oudheusden and Zhu [20] present a
heuristic solution procedure for solving the resulting PLP. Up to now, the complexity status of the problem has been unclear.
Theorem 4 will close this gap.

q
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Fig. 8. 2-dimensional rack with a front end depot.

Theorem 4. The PLP with a two-dimensional rack and a front end depot when operating with the maximum metric (denoted as
PLP?) is NP-hard in the strong sense, even if the number p of rows is fixed (p # 2).

Proof. Analogously to the previous complexity proofs the transformation is from the basic PLP with a single rack and a
front end depot (PLP). Since the basic idea of embedding PLP into a more complex layout is the same, we only sketch the
proof. Given a fixed p and an instance of PLPF with nf storage locations (SKUs) and m" orders we generate the following PLP?
instance:

e We introduce a rack with p rows and p + nf 4+ 1 columns, so that the number of storage locations (and SKUs) amounts
ton=p-(p+nf+1).

e Furthermore, we generate p+2 sets Ny = {nl, ny... np} sNi, N2, ..., Nyand Np4q of SKUs with [Ng| = p, [N1| = [N;| =
.-+ = |N,| = nf and |Np41| = p® Product set Ny is the counterpart of the PLPF products, so that all SKUs of PLP" are
directly transferred to N;.

e We introduce four order sets 01, O, O3, O4:
0q: For each SKU in le N;j we generate Z" single-item orders.

0,: For any two sets N;j, Ny € {Nl, N, ..., Np} we introduce ZF orders consisting of all SKUs in N; U N U
{ni € Nolj <i <k}

O3: Furthermore, for each SKU in N,; we introduce M = M; 4+ M, + M3 single-item orders, where:
Mi=ZF-p-nf-@p+nf+1),
Mo=2F[p- (o~ 1) o+ + 1)+ ¥ ].and
M; = zZF 4+ 2mF - p.

0.: Finally, we transfer all orders of PLPF to set N;.

The question we ask is whether we can find a solution with objective value Z? < 2M - p> — % + M.

Obviously, this transformation can be done in polynomial time. Due to the huge amount of single-item orders in O3 the
SKUs in N1 have to be assigned to the p? storage locations nearest to the depot, which causes a total order picking distance

of 2M - [p3 - %]. Any other assignment would worsen the objective value by at least 2M and, thus, exceed Z>.
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Fig.9. Assignment of SKUsinNo = {ny,...,m,}, N1, ..., Npy1 to storage locations.
The remaining SKUs in Ny, Ny, . .., N, have to be assigned to columnsp+1,p+2,...,p+ nf, p+nf +1insuch a manner

that the cumulated picking distance does not exceed M = M; + M, + Ms. A schematic representation of this assignment
pattern is depicted in Fig. 9 with all SKUs in Ny, N, . .., N, line by line being assigned to columnsp + 1,p+2,...,p+ nf,
all SKUs in Ny being assigned to column p 4+ nf 4 1, and the ordering in Ny corresponding to the ordering of Ny, N, . . ., Np.

Such an assignment yields a total picking distance of exactly M for the orders in Oy, exactly M, for the orders in O,, and
at least 2p - m® for the orders in O,4. Note that assigning N1, N3, . . ., Nytocolumnsp+1,p+2,...,p+ nf is mandatory,
because (due to 0; ) shifting any of these SKUs to column p + n* + 1 would worsen the objective value by 2ZF, which cannot
be compensated elsewhere. Thus, Ny has to be assigned to column p + nf 4 1. Further note that every order in O, requires
to move up to the last column p + nf + 1. Thus, it is necessary to pick an item in every single step on the way from column
p+ 1top + nf + 1, through column p + nf + 1 and back to p + 1. Otherwise, the objective value would be decreased by
at least ZF, which cannot be compensated elsewhere. If p > 3, the only way to ensure this consists in assigning the SKUs
of sets Ny, ..., Ny tocolumnsp+1,...,p + nf + 1 in such a way that every column contains exactly one item of each
set. Vice versa, each set (and especially N;) is distributed among all columns. Fig. 9 shows one possible assignment. Now it
becomes clear, that objective value ZZ can only be reached if and only if the total distance for picking order set O, consisting
of products N; does not surmount M3, which in turn is possible if and only if the answer for the corresponding PLP’ instance
isYES. O

5. Belt picking with multiple aisles

5.1. Problem description and decomposition approach

In this section, we consider a belt picking environment with multiple aisles, which is a widespread real-world warehouse
setting (see [4,21]). We show how our building block solution procedures for the basic layout consisting of a single aisle and
a front end depot (see Section 4.2) can readily be applied for solving elementary subproblems in more complex settings. The
layout consists of a central conveyor passing multiple aisles (each having two parallel storage racks on both sides serviced
by a separate logistics worker) and leading to a sorting and packing depot (see Fig. 10). In such a setting, either order bins
travel down the line, into which all SKUs of an order are unified after picking them from their respective storage locations
in the racks, or single SKUs are put on the belt and later on unified to orders in the depot (see [4]).

<> _
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Fig. 10. Warehouse layout for belt picking with multiple aisles.

The resulting PLP has to determine an assignment of i = 1, ..., n SKUs to storage locations, which are subdivided into
k=1,...,K sets Sy containing all storage locations of the respective aisle k. With regard to the picker routes it is assumed
that in each aisle a picker starts his/her tour at the conveyor belt, collects order positions while walking to the farthest SKU of
the current order being stored in his/her aisle, and returns for putting all collected SKUs on the belt. Clearly, if no SKU of the
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current order is stored in an aisle no picker tour is required here. Thus, the overall walking distance for a given assignment
amounts to:

- diy,  ifs(i) € Sy
S(1) s
Z=ZZZ"‘E§X{0,() else } “@
0€0 k=1

Under these assumptions, once an assignment of SKUs to aisles is predetermined, the PLP for belt picking (denoted
as PLP?) decomposes into K single aisle PLPs with a front end depot (see Section 4.2). For exploring the performance of
such a decomposition approach we implemented a straightforward simulated annealing heuristic, which assigns SKUs to
aisles and solves the resulting K PLP* subproblems with heuristic G2 described in Section 3.3. We compare the resulting
solution performance with the optimal results obtained with off-the-shelf solver Xpress and another simulated annealing
procedure, which does not follow a problem decomposition and directly assigns SKUs to their dedicated storage positions.
Both simulated annealing procedures and the MIP-model are briefly described in the Appendix.

5.2. Computational study

In order to evaluate the performance of the three aforementioned solution procedures the following instances were
generated. Different numbers of SKUs (n € {8, 12, 16}), orders (m € {0.5 - n, 0.75 - n, n}), and aisles K are combined in a
full-factorial design, where K is varied from K = 2to K = %, so that the number of products per aisle % is even. Thus, each
aisle contains at least four SKUs evenly spread over both racks. Orders of each single instance are generated as is described
in Section 3.4. For each parameter setting instance generation is repeated R = 100 times, so that in total 1500 instances
were obtained.

The results (averaged over all R = 100 repetitions and listed in Table 2) show that our decomposition approach SA” is
able to deliver near optimal solutions (with an average gap from the optimum) of less than one percent in reasonable time.
In comparison to its competitor, Xpress was not able to obtain optimal results for larger instances, e.g., with n = 20 SKUs,
within several hours, and SA shows higher deviations from the optimum. Thus, it can be concluded that our building block
solution procedures for the basic PLP can successfully be applied for solving subproblems in more complex (real-world)
warehouse settings.

Table 2
Computational performance for belt picking.
n m K Xpress saf SAP
CPU time avggap CPUtime avggap CPUtime
4 2 0.02 0.11 5.25 0.00 4.96
8 6 2 0.00 0.06 7.27 0.00 6.99
8 2 0.0 0.14 8.85 0.00 8.48
6 2 160 0.18 9.69 0.92 9.07
6 3 116 0.00 9.69 0.09 9.11
12 9 2 375 0.17 13.08 0.84 12.38
9 3 257 0.03 13.08 0.15 12.44
12 2 690 0.19 16.62 0.87 15.69
12 3 594 0.11 16.61 0.35 15.82
8 2 115 0.22 15.21 3.55 14.03
8 4 105 0.24 15.08 1.79 14.27
16 12 2 376 0.23 20.60 2.89 19.33
12 4 464 0.61 20.39 2.02 19.40
16 2 669 0.19 27.63 2.90 26.18
16 4 1176 0.81 27.43 2.51 26.45

6. On the robustness of the deterministic product location problem

In this section, we explore the robustness of PLP solutions when executed with incomplete or erroneous input data.
Clearly, a problem setting, where the actual order set is known with certainty early enough, so that storage locations can
be reorganized, for instance, over night and picked in a distance minimizing manner the next day, seems quite unrealistic.
Typically, the order set is merely an anticipated order set bound to forecast errors. To explore the impact of incomplete and
erroneous input data the following two additional experiments have been executed.

First, the influence of inaccurately anticipating an order set is explored. We generate an actual order set, i.e., the real order
set actually occurring during the planning horizon, and stepwise decrease the randomly drawn sample of orders, i.e., the
inaccurately forecasted order set, handed on to the PLP. We determine a storage location plan applying the forecasted order
set and evaluate this plan with the actual order set. This way the actual walking distance resulting from a plan determined
with incomplete order information and the gap to the best possible solution when solving PLP with the actual order set can
be computed. By stepwise reducing the subset of orders handed on to PLP the impact of more or less incompleteness on the
solution quality can be explored.
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Fig. 11. Impact of incomplete order sets on the performance of PLP.
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Fig. 12. Impact of erroneous order information on the performance of PLP.

Specifically, the experiment is designed as follows. We investigate the basic layout with a single rack and a front
end depot, so that our instance generator of Section 3.4 is applied with n = 50 and a varying number of orders (m €
50, 500, 1000, 1500, 2000). Each order in the resulting order set is a basic order for which a random number0 < rnd < 1is
drawn. These basic orders are, then, duplicated, so that their occurrences in a fixed total set of 2000 orders are proportional
to the ratios of their respective random numbers rnd compared with the total sum of these random numbers. For this actual
order set the respective (forecasted) order set handed on to the PLP is determined by randomly reducing the order set to
an increasing extend. The resulting storage plans are, then, evaluated with the actual order set, so that the actual walking
distance is computed. This actual walking distance is compared to the solution value of PLP executed with the actual order
set. The resulting gap averaged over all 100 repetitions per number of basic orders, i.e., m € 50, 500, 1000, 1500, 2000, is
denoted as avg. gap within Fig. 11. Note that all PLP instances are solved with our G2 heuristic, since the computational
study of Section 3.4 revealed near optimal solutions for G2.

In the first instance, the results summarized in Fig. 11 confirm our expectations: The less complete an order set with
which PLP is solved, the larger the gap to the solution value of the perfect forecast. The extent of the gap depends on the
number of basic orders. Having only a few basic orders, i.e., m = 50, a “wrong” location of an SKU caused by an incomplete
and unrepresentative subset of orders leads to a much higher gap than having many basic orders. In the former case, each
SKU is contained in only a few frequently occurring basic orders, so that the impact of a “wrong” storage location aggregates
over many orders. The dashed line in Fig. 11 depicts the result of our occurrence-based heuristic G1 executed with the actual
order set. This benchmark highlights the robustness of deterministic PLP with regard to incomplete data, because even fairly
small order samples lead to better results, than neglecting the joint occurrences of SKUs in orders by simply forecasting the
total number of occurrences per SKU.

The second experiment does not treat incompleteness of data but erroneous order information. Analogously to the
first experiment, initially, the actual order sets are determined for n = 50 and a varying number of basic orders m €
50, 1000, 2000, which are then duplicated up to 2000 orders. In this experiment, all 2000 orders are handed on to PLP, but
with erroneous information with regard to the composition of each order. For this purpose, we successively alter randomly
drawn order positions by changing the drawn SKU to another one, not yet contained in the respective order. By successively
altering more and more order positions increasing forecast errors with regard to the composition of orders are emulated.
Fig. 12 depicts the average gap (avg. gap) over all 100 instances per parameter setting between the storage plans determined
by PLP (with heuristic G2) on the erroneous order set (and its corresponding objective function for the actual order set) and
the PLP objective value for the perfect forecast with the actual order set.

Again, our intuition is confirmed: With an increasing number of wrongly anticipated order positions the gap to the perfect
forecast widens. Just as well, due to the aggregation effect “wrong” storage locations for SKUs caused by falsely anticipated
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order sets turn out as being more severe for a reduced number of basic orders. Comparing the results with the benchmark,
i.e., heuristic G1 executed with the actual order set (dashed line), reveals that a considerable percentage of all order positions
needs to be altered before neglecting the SKUs’ joint order occurrences becomes the better strategy. Again, our deterministic
PLP turns out astonishingly robust against erroneous order information.

7. Conclusion

This paper treats the deterministic product location problem (PLP), where products (SKUs) are assigned to storage
locations and sequences of locations visited by a picker when retrieving SKUs according to an “out and back” policy are
determined. For a given order set, PLP aims to minimize the total order picking distance. Complexity proofs and suited
solution procedures for different warehouse layouts are provided and the robustness of PLP solutions when executed with
incomplete or erroneous order information is explored.

On the one hand, future research could develop suited exact and heuristic solution procedures for the PLP in a wide
variety of possible warehouse layouts. On the other hand, research on the value of order information should be intensified.
By evaluating the operational performance of product location plans determined either with order frequencies of isolated
SKUs, pair-wise product correlations, or complete order information for representative real-world warehouse layouts, these
gains of being better informed could be weighed against the investment cost for improving data availability. This way the
practitioner would receive valuable decision support on the right order information gathered and the suited solution method
applied for his/her warehouse setting.
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Appendix A. Simulated annealing procedures for belt picking with multiple aisles

For a better distinction we denote the simulated annealing (SA) procedure only assigning SKU to aisles, so that the
problem decomposes into K basic PLP? problems with a single aisle and a front end depot as SA?. Our alternative SA, which
directly determines the dedicated storage locations of all SKUs, is denoted as SAP. If both SA procedures are jointly described
we simple skip the superscript. Note that the latter procedure SA® is also applied within Section 3.4 with a single rack.

SA? and SAP operate on vectors 7 and 7P with elements 7 (i) for i = 1,...,n, which define the aisle k(i) and
the dedicated storage position s(i) each SKU i is assigned to, respectively. In order to obtain a neighboring solution both
procedures apply a simple swap move, where SA? (SAP) randomly draws two aisles (storage positions) interchanging two
SKUs. In both cases initial solutions are randomly determined. For a given assignment and SAP the corresponding objective
value ZP(;r) can simply be determined by applying Eq. (4). For SA? solution vector 77# only defines the SKU-aisle assignment,
so that K subproblems PLP* need to be solved by applying heuristic G2 of Section 3.3. For this purpose, each subproblem
consists only of the Ny storage positions belonging to aisle k, the set {i = 1, ..., n : #(i) = k} of SKUs assigned to k, and
areduced order set, where each actual order only contains those SKUs assigned to aisle k. By summarizing all K results the
total walking distance for the respective SKU-aisle assignment is determined.

Whether or not a neighboring solution 7’ obtained by a swap move is accepted is decided according to traditional
probability schemes [1]:

1, ifZ(n') <Z(m)
Prob(s’ replacing ) = exp (Z(ﬂ) - Z(ﬂ’)) otherwise (5)
C ’ ’

If accepted, the current solution 7 is replaced by 7’ as the starting point for further local search moves. Our SA is steered
by a simple static cooling schedule (see [13]). The initial value for control parameter C is calculated as Z (7 5''"), where 7 St
denotes a randomly determined storage location plan. Subsequently, this value C is continuously decreased in the course
of the procedure by multiplying it with factor 0.995 in each iteration. A total of 10,000 solutions is evaluated by each of
our SA-approaches and the solution with the minimum objective function value Z(sr) is returned. In our computational
study, we have only used control parameter values as described above. Note that preliminary studies have indicated that
this parameter setting outperforms other settings and has obtained promising results.

Appendix B. Mixed integer PLP-model for belt picking with multiple aisles

With the notation summarized in Table 3 the PLP in a belt picking environment can be formalized as a MIP-model by
objective function (6) and constraints (7)-(10):

K
PLP® : Minimize Z(X,Y) = > > 2 Yo 6)
0€0 k=1
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Table 3
Notation.

P Set of all SKUs (index i)

K Number of aisles (and pickers) (index k)

Sk Setof storage positions belonging to aisle k (index j)

0 Set of orders (index o)

G, Setof SKUs contained in order o

d;  Distance to and from storage position j from the depot

x;  Binary variable: 1, if SKU i is assigned to storage position j, 0 otherwise
Yok Continuous variable: walking distance in aisle k for picking order o

subject to
K
> Y xj=1 Viep ™)
k=1 jeSi
Y xj=1 Vk=1,....K: jeS, (8)
ieP
yokZdj~Xij YoeO;ieG, k=1,...,K; jeS 9)
xj€{0,1} VieP; k=1,...,K; j€S. (10)

Objective function (6) minimizes the total walking distance. Constraints (7) and (8) ensure a one-to-one mapping
between SKUs and storage positions and constraints (9) force variables y,. to the maximum distance d; of the storage
locations j € Sy being located in aisle k and assigned to an SKU i € G, belonging to current order o.
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