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The jointorderbatchingandpicker routingproblem(JOBPRP) is apromising approach tominimize theorder
picking travel distance in a picker-to-partswarehouse environment. In this paper,we show that the JOBPRP
can bemodelled as a clustered vehicle routing problem (CluVRP), a variant of the capacitated VRP in which
customers are grouped into clusters. To solve this cluster-basedmodel of the JOBPRP, we apply a two-level
variable neighborhood search (2level-VNS) metaheuristic, previously developed for the CluVRP, and study
which adaptations are required to perform efficiently in a warehouse environment. Additionally, we
evaluate if the Hausdorff distance used as an approximation for the clusters’ proximity in the CluVRP,
performs equally well when determining closeness between pick orders in a warehouse. We compare the
performance of the Hausdorff-based batching criterion to the cumulative minimal aisles visited-
criterion, known as a well-performing batching metric in rectangular warehouses with parallel aisles.
The 2level-VNS performs well compared to state-of-the-art algorithms specifically developed for the

order batching problem (OBP) in a single-block warehouse. A multi-start VNS remains slightly superior
to our approach. Concerning the Hausdorff distance, we conclude that in most experiments, the
minimum-aisles criterion retains a better fit in the warehouse context.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Order picking, the act of retrieving Stock Keeping Units (SKUs)
from storage locations to fulfil order requests, is the most costly
operation in warehouse management (Petersen and Schmenner,
1999). This is especially true for picker-to-parts systems where
the pickers walk through aisles, search and pick items, and bring
them to a depot for consolidation. With the advent of e-
commerce, a shift has occurred from unit-load (pallet) orders to
customer orders consisting of various SKUs in small quantities
(Van Gils et al., 2018), creating even more movement in the ware-
house. Certainly in those e-commerce environments, walking is by
far the most time consuming activity (De Koster et al., 2007) and
the minimisation of pickers’ travel distance is an objective pursued
in both academia and in practice.

The pickers’ travel distance is affected by tactical decisions such
as the layout of the warehouse (warehouse design), storage location
of the items (storage assignment) and assignment of pickers to
specific picking areas (zoning). The act of clustering customer
orders into batches (batching) and sequencing the picking of items
(routing), on the other hand, are considered main factors to influ-
ence the picking performance at operational level (Yu and De
Koster, 2009). Since B2C e-commerce orders are generally small,
pickers’ travel distances can be reduced by combining, i.e., batch-
ing, multiple orders in one pick tour instead of picking them sepa-
rately. This gives rise to two optimization problems, both pursuing
a minimisation of the total travel distance: how to combine orders
into batches, and how to sequence the pick operations for each
batch. Since large savings on the walking distance can be realised
by solving the batching and routing problem simultaneously
(Van Gils et al., 2018), we focus in this paper on the combined
problem, known as the joint order batching and picker routing
problem (JOBPRP).

Just as the picker routing problem (PRP) bears large similarities
with the travelling salesman problem (TSP), we observe that the
JOBPRP closely resembles the clustered VRP (CluVRP), a variant
of the capacitated VRP. The capacitated VRP aims to assign the
delivery packages of customers to vehicles of a specific capacity
such that the total travel distance of the vehicles is minimised. In
the CluVRP, introduced by Sevaux et al. (2008), customers are par-
titioned into clusters based on a predefined criterion (e.g., postal
code), with the additional constraint that customers belonging to
the same cluster need to be visited by the same vehicle. By
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replacing vehicles by batches, clusters by orders, and customers by
pick operations, the JOBPRP can be modelled as the CluVRP. This
structural overlap between vehicle routing and order picking was
highlighted early in the literature by Chisman (1975) who intro-
duces the idea of a clustered TSP (CTSP). Since then, further studies
on the cluster-based models are rather found within the VRP liter-
ature, apart from Löffler et al. (2018) who exploit the similarities
between the CTSP and the PRP to plan the routing in an AGV-
assisted order picking system.

In this paper, we model the JOBPRP as the CluVRP, and study the
two-level variable neighborhood search (2level-VNS) metaheuris-
tic, previously developed for the CluVRP by Defryn and Sörensen
(2017), as a solution method for the JOBPRP. This two-level
approach alternates between a VNS at the order level to assign
orders to batches, and a VNS at pick operation-level to construct
the routes. In the original algorithm, Defryn and Sörensen (2017)
utilize the Hausdorff distance at the cluster level (respectively,
order level) to determine how far two customer clusters (respec-
tively, orders) are located from each other, and consequently
decide which clusters are combined in one trip. The sequence of
customers (respectively, pick locations) in a trip is not optimized
until the second level of the VNS, and differs from VNS algorithms
developed by Albareda-Sambola et al. (2009) and Menéndez et al.
(2017). These algorithms optimize the batch composition and
routes simultaneously and require the assumption of a routing
heuristic to do so, which not always guarantees the shortest tour.
In this paper, we test if the Hausdorff distance, and by extension
the two level approach, proposed for the CluVRP performs equally
well for the JOBPRP by comparing it to state-of-the-art algorithms
specifically developed for the order batching problem (OBP).

The remainder of this paper is organised as follows. In section 2
we describe in detail the JOBPRP and highlight the similarities and
differences with the CluVRP. section 3 presents a literature review
on the OBP, PRP, JOBPRP and CluVRP. In section 4, we introduce the
Hausdorff distance as used for the CluVRP, and suggest improve-
ments to the implementation in case of the JOBPRP. In section 5
we describe the 2level-VNS algorithm in detail. The experimental
setup and computational results, as well as a comparison with
state-of-the-art OBP algorithms, are discussed in section 6. We
conclude and elaborate on future research in section 7.
2. The joint order batching and picker routing problem

2.1. Problem description

In an e-commerce environment, a customer order typically con-
sists of one or multiple order lines that each contain a particular
item and a requested quantity. These items are stored at different
pick locations, according to a predefined storage policy. Pickers are
provided with a pick list with all order lines that must be handled
and the particular sequence of pick locations (i.e., picking route).
To avoid additional sorting operations and associated costs at the
depot, items that belong to the same order are not split over differ-
ent pick lists but forced to be processed together (order integrity
rule). Consequently, a batch is defined as the set of complete orders
processed in the same pick tour. The capacity of a batch is defined
by the number of items that fit into the batch (to the example of
Gibson and Sharp (1992); Zhang et al. (2017) and Scholz and
Wäscher (2017)). The pick tours always start and end at the (sin-
gle) depot.

Given the objective of minimizing the total travel distance, the
batch capacity and all orders that have to be picked, two sub-
questions remain:
2

� How are orders combined into batches?
� For each batch, in which sequence does the picker visit the pick
locations that store the items requested by the orders in the
batch?

When both questions are treated in an integrated way, this
gives rise to the combined problem, known as the JOBPRP.

2.2. Comparison with the clustered VRP

In the CluVRP, customers are clustered according to a specific
criterion such as geography (e.g., same postal code) or preference
(e.g., preferring the same driver). These clusters are assigned to
vehicles while respecting the vehicle’s capacity, that is, a cluster
can only be assigned to a vehicle if the demand of all customers
in the cluster fits in the vehicle. Once all clusters are assigned, a
route is constructed for each vehicle such that all customers are
served and the total travel distance is minimized (Defryn and
Sörensen, 2017).

Barthélemy et al. (2010) introduce a heuristic approach to solve
the CluVRP where all customers of the same cluster are forced to be
served before the vehicle moves on to the next cluster. This prob-
lem is referred to as the clustered VRP with strong cluster constraints.
However, for distance purposes it could be better to relax this rule
and allow vehicles to enter and leave clusters multiple times. Cus-
tomers of the same cluster, however, are still to be visited by the
same vehicle. Defryn and Sörensen (2017) introduced this variant
as the clustered VRP with soft cluster constraints. Both variants of
the CluVRP are illustrated in Fig. 1a and Fig. 1b.

The CluVRP with soft cluster constraints shares its mathemati-
cal structure with the JOBPRP. Indeed, the JOBRPR can be modelled
on an undirected graph G ¼ ðV ; EÞ, where V represents the set of
pick operations to be executed. A pick operation Vi is characterized
by an item requested by a specific order. The quantity of the item
to be retrieved by the pick operation Vi is denoted by qi. Items from
the same storage location but requested by different orders are
included as separate pick operations, and as such as separate
nodes. Node V0 refers to the depot, visited at the start and end of
each pick route. For each edge ði; jÞ 2 E that connects two nodes
(i.e., pick operations), the distance dij is defined as the shortest tra-
vel distance between the locations related to pick operation Vi and
pick operation Vj. For pick operations Vi and Vj that request the
same item stored at the same location but for different orders,
the distance dij is equal to 0.

K is a set of homogeneous batches, each with a capacity Q,
defined as the total number of items that can be picked by a batch.
The set of orders is given by R. The set of pick operations to com-
plete an order r is presented by Cr ¼ fVi 2 V n V0 : ri ¼ rg. S is any
subset of V that is not equal to V ; dþðSÞ is the set of outgoing edges
ði; jÞ 2 S� V n S and d�ðSÞ the set of incoming edges ði; jÞ 2 V n S� S.
The mathematical model is described as follows:

xijk ¼
1; if the route for batch k goes from the location to perform pick operation i to the

location to perform pick operation j

0; otherwise

8><
>:

yik ¼
1; if pick operation i is performed by batch k

0; otherwise

�

The objective function of the JOBPRP is modelled as

Min
X
ði;jÞ2E

X
k2K

dijxijk ð1Þ

Subject to



Fig. 1. Representation of the clustered VRP with (a) hard and (b) soft cluster constraints. Soft cluster constraints allow to visit clusters multiple times if this leads to shorter
routes, shown by the dashed line at the bottom.

Table 1
Comparison of the CluVRP with soft cluster constraints and the JOBPRP.

CluVRP with soft cluster constraints JOBPRP

Concepts

Vehicle $ Batch
Cluster $ Order
Customer $ Pick operation
Input data & precomputation
List of customer clusters, for each cluster: = List of orders, for each order:
- Cluster demand = sum of customers demand - Order quantity = sum of requested item quantities
- Customers’ coordinates - Items’ number
Routing environment $ Warehouse layout
- Available road network - Warehouse layout structured by aisles

- Item storage locations

Cluster - Assignment to vehicle/ to batch

Clusters are combined and assigned to a vehicle = Orders are combined and assigned to a batch
Customers of same cluster visited by same vehicle = Order integrity rule
Each customer visited only once $ Items can reoccur in multiple orders
Cluster demand cannot exceed vehicle capacity = Order quantity cannot exceed batch capacity

Route construction for vehicle/ for batch

Create route for each vehicle that minimizes the total travel distance = Create route for each batch that minimizes the total travel distance
Start and end route at depot = Start and end route at depot
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X
k2K

yik ¼ 1 8i 2 V n V0 ð2Þ
X
k2K

y0k ¼
X

j2VnV0

X
k2K

x0jk 6 jKj ð3Þ
X
j2V

xijk ¼
X
j2V

xjik ¼ yik 8k 2 K;8i 2 V ð4Þ
X

i2VnV0

qiyik 6 Q 8k 2 K ð5Þ
X
i2S

X
jRS

xijk P yhk 8S#V n V0;8h 2 S;8k 2 K ð6Þ
X

ði;jÞ2dþðCrÞ

X
k2K

xijk ¼
X

ði;jÞ2d�ðCrÞ

X
k2K

xijk P 1 8r 2 R ð7Þ

yik ¼ yjk 8i; j 2 Cr ;8r 2 R;8k 2 K ð8Þ
xijk 2 0;1f g 8i 2 V ;8j 2 V ;8k 2 K ð9Þ
yik 2 0;1f g 8i 2 V ;8k 2 K ð10Þ

The objective function (1) minimizes the total travel distance
over all batches. Constraints (2) guarantee that each pick opera-
tion is executed by one batch only. Constraint (3) forces all
batches, that perform at least one pick operation, to start their
tour at the depot. Constraints (4) ensure each location related
to a specific pick operation is accessed and left by the same batch.
Constraints (5) state that the capacity of the batch cannot be
exceeded by the number of items related to the pick operations
performed by that batch. The subtour elimination constraints
are described by (6). Constraints (7) refer to the soft cluster con-
3

straints. Lastly, the order integrity rule is represented by con-
straints (8).

Apart from terminology-based adaptations, the mathematical
structure of the JOBPRP and the CluVRPwith soft cluster constraints
is identical. Differences between both problems are rather reflected
in the input data. A first dissimilarity is thewarehouse layout,which
requires aisles to enter andexit tomove fromonepick location to the
next. To our knowledge, a similar routing environment has not yet
been considered in the CluVRP. This dissimilarity, however, does
not require any adaptations to the mathematical model. Instead,
we find all information regarding the warehouse layout and its
aisle-structure tobe reflected in thedistancematrix. A seconddiffer-
ence, is that the CluVRP not allows to visit a customer more than
once,while in the JOBPRPmultiple orders can request the same item,
storedat the same location. In themathematical formulationnocon-
strainthas tobe adaptedor added todealwith this disparity. Instead,
we define V as the set of pick operations rather than pick locations,
where twopick operations can refer to the retrieval of the same item
at the same location but for different orders. A summary of similar-
ities and differences between the CluVRP and JOBPRP is presented in
Table 1.

3. Literature review

In section 3.1, we give a literature overview for the OBP and
PRP. In the following sections, we summarise the literature on
the JOBPRP (section 3.2) and CluVRP (section 3.3).
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3.1. The order batching and picker routing problem

The order batching problem (OBP) and the picker routing prob-
lem (PRP) have been extensively studied in the warehouse litera-
ture as two separate problems. Because both problems are
strongly connected (Van Gils et al., 2018), assumptions have to
be made in order to solve the OBP or PRP as individual problems:
the PRP cannot be solved without knowing the outcome of the
OBP, i.e., which items to pick. The OBP, on its own turn, cannot
be solved without the assumption of a routing strategy. It is clear
that larger distance savings could be realised if the batching and
routing decisions were optimized simultaneously. However,
research on the joint problem is not found in the warehouse liter-
ature until 2005, discussed in section 3.2, and the majority of stud-
ies have focused on either the PRP or OBP. We give an overview of
both problems and proposed solution methods.

Knowing which items to collect and the pick locations where to
find them, the PRP aims to determine the sequence in which pick
locations are visited, while minimizing the total travel distance
of the pick tour (Scholz and Wäscher, 2017). The PRP in a rectangu-
lar warehouse with parallel aisles, proven to be NP-hard (Won and
Olafsson, 2005), is often solved using heuristics dedicated to the
typical aisle-structure. Such heuristics give straightforward guide-
lines (e.g. ‘‘traverse the aisle if a pick location has to be visited”)
which are considered easy to memorize and execute, although they
not always result in the best, i.e., shortest, route. Among them, the
s-shape (or traversal) (Fig. 2a), largest gap (Fig. 2a), and combined
routing heuristic (Fig. 2c) are implemented most frequently. For
a full description of these dedicated routing heuristics we refer
to De Koster et al. (2007).

Ratliff and Rosenthal (1983) developed an exact algorithm to
solve the PRP in a single-block warehouse with parallel aisles,
and is later extended to a two-block warehouse by Roodbergen
and Koster (2001). For larger multi-block layouts, Cambazard
and Catusse (2018) solve the PRP in a warehouse with up to eight
cross-aisles using a dynamic programming approach, although
the complexity is exponential in the number of cross-aisles. An
alternative solution method for the PRP is available as the PRP
shares many similarities with the well-studied travelling sales-
man problem (TSP). Indeed, the Lin-Kernighan–Helsgaun (LKH)
algorithm, considered one of the best heuristics to solve the
TSP, outperforms the warehouse dedicated routing heuristics
and has proven to solve the PRP close to optimality (Theys
et al., 2010; Van Gils et al., 2018). Despite their good perfor-
mance, we observe the use of these more complex routing heuris-
tics in the warehouse literature to be limited. Gademann and
Velde (2005) argue that these algorithms result in illogical routes
and inconvenient for pickers. Scholz and Wäscher (2017) deem
this argument to be valid for a single-block warehouse but not
when more complex warehouse layouts are considered in which
also simple, dedicated routing heuristics become less
straightforward.

Knowing the maximum capacity of the batch, the list of orders,
and the routing strategy to be used, the OBP aims to combine
Fig. 2. Visulation of routing heuristics dedicated to warehouse la
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orders into batches that require a minimal total travel distance.
Gademann and Velde (2005) have proven that the OBP is NP-
hard and polynomially solvable when batches consist of only two
orders. Consequently, a large share of OBP research is devoted to
the study of heuristics to solve the problem for realistic instances.
The few proposed exact solution approaches are limited to small
problem instances (up to 32 orders in the case of Gademann and
Velde (2005)). Öncan (2015) introduced Mixed Integer Linear
Programming (MILP) formulations in three variants, where each
variant considers another routing strategy (s-shape, return and
midpoint routing).

Batching heuristics to solve the OBP can be distinguished into
five groups: priority rule-based algorithms (e.g., First-Come-First-
Serve (FCFS) rule), seed algorithms, savings algorithms, meta-
heuristics, and data mining approaches. We refer the reader to
the detailed reviews of De Koster et al. (2007) and Henn and
Wäscher (2012) and supplement with further references to contri-
butions we deem relevant for this paper.

Seed algorithms create batches one by one, in which the choice
of the next order to be assigned is based on a chosen batching cri-
terion. Often different criteria are used to select the seed, i.e., first
order of the batch, and the additional, or accompanying, orders
(De Koster et al., 2007). It is common to assign orders to a partic-
ular batch until its remaining capacity is insufficient to include
the smallest unassigned order of the instance. Ho et al. (2008) pre-
sent an extensive study in which 11 seed-order criteria and 14
accompanying-order criteria were tested. Many of these batching
criteria utilize a metric to approximate the closeness between
orders instead of considering the actual distance between pick
locations. Moreover, we observe many of these criteria make use
of the characteristics related to the warehouse layout. For instance,
the number of aisles integrated in the minimum aisles visited
batching criterion, which combines orders into batches such that
the total number of aisles visited is minimized.

Seed algorithms can be implemented in two ways. In single
mode, the seed and accompanying orders in a batch are treated
as individual orders. In cumulative mode, the seed order is renewed
every time an order is added to the batch (De Koster et al., 1999).
We illustrate for the aisle-based batching criterion. Imagine two
orders, each requesting items from the first two aisles. The total
number of aisles visited in single mode is four, ignoring the overlap
of aisles, while in cumulative mode, the total is equal to two. The
frequent renewals of the seed order make the cumulative mode
more complex and time consuming, but in general, the cumulative
information positively influences the outcome. Ho and Tseng
(2006); Ho et al. (2008) and Van Gils et al. (2018) study the cumu-
lative minimal aisles visited-criterion, which proved to work well
in comparison to other studied batching criteria. De Koster et al.
(1999), however, showed that the cumulative mode outperformed
the single mode only to a minor extent for other studied batching
criteria, e.g., the maximum aisles visited-criterion.

Savings algorithms are based on the Clarke and Wright algo-
rithm, originally developed to solve VRPs. The algorithm initially
assigns each order to a separate batch. In a second stage, orders
yout, illustrated for a warehouse layout with parallel aisles.
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are merged if a distance saving can be realised. This move is eval-
uated using a savings matrix, which is often only calculated once,
referred to as the C&W(i) variant of the savings algorithm (Van
Gils et al., 2018). Instead of travel distance, the savings concept
can be applied to other metrics, illustrated by Rosenwein (1996).
The authors consider the minimum aisles visited-criterion, for
which the merge of orders is beneficial if less aisles have to be
visited.

Metaheuristics to solve the OBP have been proposed in the ware-
house literature since 2005. Many of these heuristics create an ini-
tial solution using the savings algorithm discussed above (Henn
and Wäscher, 2012). Next, the metaheuristic aims to improve the
solution by neighborhood exploration through which alternative
batch assignments are found and evaluated. Different types of
metaheuristics have been proposed: genetic algorithms (Hsu
et al., 2005), variable neighborhood search algorithms (Albareda-
Sambola et al., 2009; Menéndez et al., 2017), tabu search algo-
rithms (Öncan, 2015) and attribute-based hill climber algorithms
(Henn and Wäscher, 2012). Among them, the multi-start VNS
approach by Menéndez et al. (2017), is considered the state of
the art solution method for the OBP.

Most OBP metaheuristics have in common to explore the neigh-
borhood of the incumbent solution through the execution of moves
which are generally accepted when the total travel distance is
improved. This total travel distance is computed assuming dedi-
cated routing heuristics, described earlier. Some OBP metaheuris-
tics use more advanced routing heuristics (e.g., an alternative
routing algorithm based on the combined routing strategy pro-
posed by Menéndez et al. (2017)) than others, but all have in com-
mon that the choice of routing is fixed which might obstruct to
solve the OBP to optimality. Moreover, Roodbergen (2001) showed
that the performance of dedicated routing algorithms tends to
deteriorate when altering the number of cross aisles. Indeed, the
majority of studies on the OBP perform experiments for a parallel
single-block warehouse (Fig. 2), rather than multiple-block layouts
(Fig. 3) or warehouses with an atypical layout. For such ware-
houses, the performance of these OBP metaheuristics is unknown.

3.2. The joint order batching and picker routing problem

Because of the strong connection between the OBP and PRP,
studies have started to focus on the joint problem, known as the
JOBPRP (Briant et al., 2020). In the JOBPRP, the batching and rout-
ing decisions are optimized in a simultaneous way, and differs
Fig. 3. Illustration of a parallel, two-block warehouse.
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from the OBP where the routing strategy is considered to be known
in advance and fixed throughout the algorithm. Methods to solve
the JOBPRP mainly include metaheuristics, summarized below.

Won and Olafsson (2005) are one of the first to study the
JOBPRP, and propose a heuristic based on the savings concept
while the corresponding PRPs are solved with a two-opt heuristic.
Kulak et al. (2012) use a tabu search algorithm based on a
similarity-regret value index (RS-RV) that defines the overlap in
travel distance if orders are merged. The resulting PRPs are solved
by two TSP heuristics. Tsai et al. (2008) present a multiple genetic
algorithm approach, one to compose the batches, one to construct
the routes. Cheng et al. (2015) propose a hybrid approach in which
a particle swarm optimization is used for the order allocation,
while an ant colony optimization algorithm determines the route
for each batch. Scholz andWäscher (2017) present an iterated local
search approach in which they propose a routing heuristic derived
from the exact solution approach presented by Roodbergen and
Koster (2001). Briant et al. (2020) propose a heuristic based on col-
umn generation, providing lower and upper bounds for JOBPRP
instances that take place in a rectangular warehouse. The authors
state that the PRP on itself can be easily solved to optimality by
specifically making use of the properties of a rectangular ware-
house layout. So far, Valle et al. (2017) are the only ones to develop
an exact approach for the JOBPRP. With a branch-and-cut algo-
rithm, they are able to solve instances up to 20 orders to
optimality.

3.3. The clustered vehicle routing problem

The CluVRP is an extension of the clustered TSP (CTSP), intro-
duced by Chisman (1975). In the CTSP, a route is determined that
visits all customers which have been assigned to predetermined
clusters. Both the customer sequence within a cluster and the
sequence of clusters are optimized to minimize the length of the
route. The author shows that the cluster concept can be extended
to the warehousing context, and presents a MILP formulation to
solve the clustered PRP for a one batch-problem. The MILP forces
orders to be handled one by one, currently known as the strong
cluster constraint variant of the problem (visualised in Fig. 1a for
the CluVRP). Recently, Löffler et al. (2018) revived the application
of the CTSP with strong cluster constraints in the field of ware-
housing. The authors study a picking environment in which pickers
are assisted by an AGV (automated guided vehicle). The AGV is uti-
lized as pick cart and autonomously follows the picker during his
pick tour. Once the order is completed, the AGV returns to the
depot while the picker resumes his pick tour assisted by a new,
empty AGV.

Despite the early application of the CTSP in the warehousing
context, we find further research on the CTSP, the CluVRP, and in
general, cluster-based routing problems, mostly to be dedicated
to the field of vehicle routing. Among these problems, we find
the Generalised Vehicle Routing Problem (GVRP), introduced by
Ghiani and Improta (2000). In the GVRP, customers are assigned
to a predetermined cluster which is visited exactly once. The
demand of the entire cluster is delivered at the location of just
one customer, included in the respective cluster. Which customer
this is, will be determined while optimizing the inter-cluster
routes over all vehicles. The CluVRP, proposed by Sevaux et al.
(2008), is an extension of the CTSP to multiple vehicles, and a vari-
ant of the GVRP since each customer has to be visited. Both inter-
and intra-cluster routes have to be optimized. The latest addition
to the pool of cluster-based routing problems, is the Selective
VRP (SVRP), presented by Posada et al. (2018). The SVRP is a variant
of the GVRP in which customers are allowed to be assigned to more
than one cluster. Through the optimization of the inter-cluster
routes, and while respecting the vehicles’ capacity, one determines



Table 2
Literature overview of the clustered vehicle routing problem, and related problems.

Exact algorithm Heuristic algorithm

Clustered Traveling Salesman Problem (CTSP)
Introduced by Chisman (1975) Chisman (1975) (warehouse application)

Laporte et al. (1997)
Ding et al. (2007)
Löffler et al. (2018) (warehouse application)

Generalised Vehicle Routing Problem (GVRP)
Introduced by Ghiani and Improta (2000) Pop et al. (2012) Pop et al. (2011)

Bektas� et al. (2011) Pop et al. (2013)
Clustered Vehicle Routing Problem (CluVRP)
Introduced by Sevaux et al. (2008)
Hard-cluster constraint variant Battarra et al. (2014) Barthélemy et al. (2010)

Pop and Chira (2014)
Vidal et al. (2015)
Marc et al. (2015)
Hintsch and Irnich (2018)
Decomposition-based approach:
Defryn and Sörensen (2015)
Expósito-Izquierdo et al. (2016)
Defryn and Sörensen (2017)
Horvat-Marc et al. (2018)
Pop et al. (2018)

Soft-cluster constraint variant
Introduced by Defryn and Sörensen (2017) Hintsch and Irnich (2020) Defryn and Sörensen (2017)

Hintsch (2019)
Selective Vehicle Routing Problem (SVRP)
Introduced by Posada et al. (2018) Posada et al. (2018) Posada et al. (2019)

Sabo et al. (2020)
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which customers to visit, two customers each belonging to another
cluster or one customer shared by both clusters, and in which
order. In Table 2 we present a non-exhaustive overview of research
on the cluster-based routing problems discussed above, cate-
gorised by the proposed solution method (exact versus heuristic
algorithm). Due to the NP-hardness of each discussed cluster-
based routing problem, we find the majority of papers to focus
on a heuristic solution approach.

In the current paper, we study whether the two-level VNS
developed by Defryn and Sörensen (2017) (highlighted in bold in
Table 2) can be used to solve the JOBPRP. This paper advances from
previous research by Defryn and Sörensen (2015), and is consid-
ered the first to utilize a two-level (or decomposition-based)
approach to solve the strong cluster constraint CluVRP. On the first
level, the authors focus on the assignment of clusters to vehicles as
well as the cluster sequence within each vehicle. A VNS is applied
to find a local optimum. On this level, the travel distance between
customers is not considered. Instead, the authors propose an
approximation for the closeness between clusters to make the
evaluation of vehicle assignments and cluster sequences easier.
The optimization of the customer sequence is thereby postponed
to a second level. On this second level, the route for each vehicle
is optimized while considering the travel distance between cus-
tomers. Again, a VNS is utilized to find a local optimum, while
respecting the strong cluster constraints. The algorithm continues
to iterate between both levels until a stopping criterion is met.
To determine the closeness between clusters, i.e., the criterion
applied in the VNS at the cluster level, the authors propose the
clusters’ Euclidean center.

The idea to decompose the CluVRP into two subproblems is fur-
ther explored by Expósito-Izquierdo et al. (2016). They propose a
combination of the record-to-record travel algorithm using the
clusters’ Euclidean centres to solve the subproblem at cluster-
level and the LKH algorithm to solve the routing problem within
the clusters. Horvat-Marc et al. (2018) and Pop et al. (2018), on
the other hand, both present a genetic algorithm to solve the sub-
problem at cluster-level. At customer-level, Horvat-Marc et al.
(2018) propose a simulated annealing approach, while Pop et al.
(2018) utilize the TSP concorde solver (an online solver tool, avail-
6

able at http://www.math.uwaterloo.ca/tsp/concorde.html) to opti-
mize the intra-cluster routes.

Both Defryn and Sörensen (2015) and Expósito-Izquierdo et al.
(2016) propose the clusters’ Euclidean center as an approximation
for the closeness between customer clusters, which restricts their
approaches to VRPs defined by Euclidean distances. As an alterna-
tive, Defryn and Sörensen (2017) suggest to use the Hausdorff dis-
tance as closeness criterion. The Hausdorff distance is often used
for object matching in the field op computer vision and object
recognition (Sim et al., 1999) to measure the similarities between
two sets (Hung and Yang, 2004). The Hausdorff distance can be
applied to problems defined by Euclidean (e.g., VRP), as well as
Manhattan distances (e.g., PRP).

The solution methods discussed above tackle the CluVRP with
strong cluster constraints. Defryn and Sörensen (2017) acknowl-
edge that, if the situation allows, travel distances can be reduced
by no longer obliging clusters to be visited consecutively. They
introduce the problem as the soft cluster constraints CluVRP and
solve it with their two-level VNS approach developed for the
strong-constraint variant, with only minor adaptations. For all
instance classes, the authors are able to reduce the total travel
distance when relaxing the cluster constraints. Hintsch and
Irnich (2020) confirmed that this relaxation enables a reduced
total travel distance and quantified this reduction at 6.21% for
medium-sized instances. A heuristic approach to solve the soft
cluster constraints CluVRP is presented by Hintsch (2019). The
authors adopt the large multiple neighborhood search algorithm
developed for the strong cluster constraints CluVRP (Hintsch
and Irnich, 2018), and acknowledge that major modifications
are in order to fit the algorithm to the soft-constraint character-
istics of the problem.

Even though other heuristic approaches exist for both the
strong- and soft-cluster constraints CluVRP, we chose to solve
the JOBPRP by means of the two-level VNS approach proposed by
Defryn and Sörensen (2017). We deem the use of the Hausdorff
distance as approximation for inter-cluster distances, an interest-
ing and unique feature of this approach. The two-level VNS offers
a good setting to experiment with this measure of approximation
in the warehousing context as other batching criteria can be imple-

http://www.math.uwaterloo.ca/tsp/concorde.html
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mented as benchmark without interfering with the further course
of the algorithm.
4. Proposed order batching heuristics

In this section we describe three different constructive heuris-
tics to assign orders to batches. One will be chosen later to inte-
grate in the 2level-VNS to solve the JOBPRP. First, we describe
the batching heuristic based on the Hausdorff distance as originally
developed by Defryn and Sörensen (2017) (section 4.1). In section
4.2, we propose adaptations to the original batching heuristic to
align better with the characteristics of the JOBPRP while keeping
the Hausdorff distance as batching criterion. To evaluate both
batching heuristics and the Hausdorff distance as batching crite-
rion, we include the aisle-based batching heuristic as benchmark.
The aisle-based heuristic is described in detail in section 4.3.
Table 3
Order assignment for the example in fig. 4a, determined by the HausOrig batching
heuristic.

Order
assignment

Hausdorff distance
batch

Batch 1 0 4 1 5 0 14.5+8+15+21.5=59 m
Batch 2 0 3 2 0 19.5+11+13.5=44 m

Total original Hausdorff
distance

103 m

Batch capacity = 12 items
4.1. Original Hausdorff-based batching heuristic - HausOrig

The one-way Hausdorff distance is calculated for each pair of
orders (ri; rj) as follows: for each pick location to be visited for
order ri, select the closest (i.e., for which the shortest distance is
travelled) pick location visited for order rj. The largest of these dis-
tances is the one-way Hausdorff distance between ri and rj (Hung
and Yang, 2004).

We illustrate the calculation of the one-way Hausdorff distance
on a five-order example, visualised in fig. 4a. Each cell refers to a
pick location, the number in the cell indicates the order(s) request-
ing the item stored at the respective pick location. We compute the
one-way Hausdorff distance between r1 and r2 by determining for
each pick location visited for r1, the closest pick location visited for
r2, visualised by the thick full lines. Of the four distances, the long-
est (8 m) is the one-way Hausdorff distance between r1 and r2,
indicated by H12.

The one-way Hausdorff distance is not necessarily symmetrical.
Consider the one-way Hausdorff distance between r2 and r1. The
dashed lines in Fig. 4a show for each pick location visited for r2
the closest pick location visited for r1. The travel distance marked
H21 is the longest (11 m) and differs from the 8 m distance found
for H12. In the field of object recognition it is common to take the
maximum of both values to define the Hausdorff distance between
two sets, such that the direction no longer matters (Hung and
Yang, 2004). Similarly, we apply this definition when computing
the Hausdorff distance between two orders in future experiments.
Consequently, the Hausdorff distance between r1 and r2 is 11 m.
Fig. 4. JOBPRP example (a) illustrating the computation of the Hausdorff distance betwee
item stored at the respective pick location. Corresponding interorder distance matrix, b
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The Hausdorff distance between each pair of orders is saved in
the symmetrical interorder distance matrix (fig. 4b).

Defryn and Sörensen (2017) describe the following Hausdorff-
based constructive heuristic, from now on referred to as the Hau-
sOrig batching heuristic. Prior to the assignment, orders are sorted
in decreasing order according to size (number of requested items
(see fig. 4b)), without further distinction between equally sized
orders. For the example in Fig. 4, orders are sorted as follows:
r4; r1; r5; r3; r2. At this stage, also the number of available batches
is known, which is the minimal number necessary to have all
orders assigned to a batch (discussed in more detail in section
5.1). The capacity of the batch is given and equal for all batches.
For the five order-example, we compute two available batches,
each with a capacity of 12 items. Both batches are considered when
deciding to which batch the next order is assigned. The first order
on the list, r4, is assigned to the batch with sufficient remaining
capacity, and for which the last added order is closest to r4, i.e.,
smallest Hausdorff distance. For empty batches the depot is con-
sidered as the last added order. Next, r1 is added to Batch 1 as r1
is considered to be closer to r4 than to the depot. The procedure
is repeated until all orders are assigned, resulting in the order
assignment presented in Table 3.

Because the HausOrig heuristic assigns orders primarily on a
size-based criterion, the potential of the Hausdorff distance as a
batching criterion might not be fully exploited. Moreover, the Hau-
sOrig heuristic only considers the last order added to each batch to
select the batch for the next order. In the JOBPRP, the sequence of
orders in the assignment should no longer matter, which creates
opportunities currently not embraced. We propose a variant of
the HausOrig heuristic in the following section.
4.2. Adapted Hausdorff-based batching heuristic - HausAdap

Given the remarks in the previous section, we propose an alter-
native constructive heuristic which we deem to align better with
n order 1 and order 2. The numbers in the cells represent the order(s) requesting the
ased on the Hausdorff distance, and orders’ sizes are presented on the right.
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the characteristics of the JOBPRP. We do not adapt the Hausdorff-
based batching criterion, but rather make adaptations to the
heuristic such that it is used to its full potential. We refer to this
batching heuristic as HausAdap, of which the outline is shown in
Algorithm 1.
Ta
Or
he
Algorithm1 HausAdap batching heuristic
ble 4
der assignment for the example in fig. 4a, determined by the HausAdap
uristic.

Order
assignment

Hausdorff distanc
batch

Batch 1 0 2 1 4 0 13.5+11+8+20.5=5
Batch 2 0 3 5 0 19.5+15+21.5=56 m

Total adapted Hausdorff
distance

109 m

Batch capacity = 12 items
1: Input: Set of unassigned orders R with r 2 f1; . . . ; ng,
batch capacity Q
2: Step 0: Precomputation

3: H½0 . . .n�½0 . . .n�  interorder (Hausdorff) distance

matrix;

4: K  minimal number of batches;

5: for each k 6 K do

6: Initialize batch k (assign depot, remaining capacity
 Q, total Hausdorff distance  0);
7: end for

8: Step 1: Assignment

9: k  1;

10: while R is non empty do

11: if batch k only includes depot then

12: Assign r 2 R to batch k for which H½0�½r� is the

smallest*;

13: Update remaining capacity, increase total

Hausdorff distance batch k by H½0�½r�;

14: Remove r from R;

15: else if remaining capacity batch k Psize of the

smallest order 2 R then

16: bestHausDist  1; rbest  £;

17: for each s 2 batch kndepot do

18: Find r 2 R for which H½s�½r� is the smallest* and

for which size 6remaining capacity batch k;

19: bestHausDist  minfbestHausDist;H½s�½r�g,

update rbest if necessary;

20: end for

21: Assign rbest to batch k;

22: Update remaining capacity, increase total

Hausdorff distance batch k by bestHausDist;

23: Remove rbest from R;

24: else ifremaining capacity batch k < size of the

smallest order 2 R then

25: Find r 2 batch kndepot for which H½0�½r� is the

largest;

26: Increase total Hausdorff distance batch k by

H½0�½r�;

27: k kþ 1;

28: end if

29: end while

30: *In case of a tie, choose r that requests the most

number of items
batching

e

3 m
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A first modification we propose, is to fill batches one by one
instead of considering all batches at once. In the HausAdap heuris-
tic, orders are added to the current batch as long as the smallest
unassigned order fits into the remaining capacity (line 15 in
Algorithm 1). Secondly, we omit the sorting operation and use
the Hausdorff distance as primary criterion to assign orders to
batches, rather than order size. In case of a tie, preference goes
to the largest order, with the argument that with the limited
capacity it is easier to assign larger orders first.

The third adjustment is to extend the pool of information when
deciding which order will be assigned next. Since the JOBPRP
resembles the soft cluster constraints variant of the CluVRP, one
can benefit from this property by considering the Hausdorff dis-
tance of all orders already assigned to the batch (lines 17–20 in
Algorithm 1), instead of considering only the last one. The depot,
however, is not considered, unless the seed-order is selected (lines
11–14 Algorithm 1). We argument that a visit to the depot is
obliged anyway, and it is more relevant to take into account only
fellow orders when selecting the next order to add to the batch.
With a similar reasoning we determine the Hausdorff distance to
return to the depot, that is when the batch is full or has insufficient
remaining capacity. However, instead of the smallest we consider
the largest of all Hausdorff distances between the depot and any
order included in the batch as experiments showed a clear prefer-
ence for the latter option (lines 25–28 in Algorithm 1).

We apply the HausAdap batching heuristic to the example of
fig. 4a, which results in the order assignment shown in Table 4.

Both the HausOrig and HausAdap heuristic are implemented in
single rather than cumulative mode, explained in section 3.1. In the
cumulative mode it is unclear how to correctly handle the final
Hausdorff distance of a batch given that its orders are treated as
one, cumulative order. The Hausdorff distance of the batch would
become the travel distance between the farthest location visited
by the batch and the depot, ignoring all intermediate visited loca-
tions and geographical similarities between orders. This would
make the Hausdorff distance deviate from its original definition.
Together with former mentioned time-based arguments (discussed
in section 3.1), we decide to implement both Hausdorff-based
batching heuristics in single mode.

4.3. Aisle-based batching heuristic - Aisles

With the HausOrig and HausAdap batching heuristics, we are
the first, to our knowledge, to propose the minimal Hausdorff dis-
tance as a batching criterion in the warehouse literature. To evalu-
ate this new batching criterion, we include the minimal aisles
visited-criterion as benchmark, proven in prior OBP studies to be
a performant batching criterion. We briefly explain the aisle-
based batching heuristic, referred to as Aisles.

The Aisles heuristic is implemented as seed-algorithm (batch
per batch) in cumulative mode. The order requiring the least num-
ber of aisles is selected as seed. Accompanying orders are chosen
based on the least number of additional aisles to visit on top of
the ones already accessed for the batch. Only the number of aisles
is taken into account; information regarding the distance between
aisles is not considered.

With the calculations provided in Table 5, we illustrate the
Aisles heuristic for the example given in fig. 4a. In contrast to the
interorder distance matrix showed in fig. 4b, we find the structure
of the matrix to be different when the Aisles heuristic is applied.
Due to the cumulative implementation of the Aisles heuristic, the
values of the matrix are no longer fixed, but change according to
the orders already assigned to the batch. In the first stage, with
no order other than the depot assigned yet, the values indicate
for each order the number of aisles requiring a visit. Given that
the order with the smallest number is selected, r3, we compute



Table 5
The interorder distances in terms of the additional aisles to visit, worked out for the example in Fig. 4a.

assignednto add r0 r1 r2 r3 r4 r5

Stage 1 r0 / 3 3 2 4 3
Stage 2 r3 / 1 1 / 2 2
Stage 3 r3; r1 / / 1 / 1 2

Table 6
Order assignment for the example illustrated in fig. 4a, determined by the Aisles
batching heuristic.

Order assignment Number of aisles

Batch 1 0 3 1 4 0 4 aisles
Batch 2 0 2 5 0 4 aisles

Total number of aisles 8 aisles
Batch capacity = 12 items
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for each remaining order the additional number of aisles to visit in
the second stage. The final batch assignment is presented in
Table 6.

5. Metaheuristic approach for the joint order batching and
picker routing problem

In this paper, we solve the JOBPRP with the two-level variable
neighborhood search (2level-VNS) algorithm proposed by Defryn
and Sörensen (2017). At order-level, orders are assigned to batches
using one of the batching criteria presented in section 4. Next,
batches of orders are passed on to the pick operation-level, where
a route is constructed for each batch. At both levels, a variable
neigborhood search (VNS) algorithm is used to find a local opti-
mum, although at both levels another objective, minimal value
with respect to the chosen batching criterion versus minimal travel
distance, is pursued. A full description of the algorithm is given in
the following sections.

5.1. Step 1: Precomputation

For each instance, the following information is known:

� Warehouse layout (e.g., parallel aisles), number and width of
aisles, number and width of cross-aisles, width and depth of
pick locations, length of the rack.
� List of pick locations of the items: each pick location is dedi-
cated to one SKU and each SKU is located at a single pick loca-
tion (no scattered storage).
� Capacity of the batch: equal for all batches, defined by number
of items.
� List of orders, with for each order the list of items and required
quantity.

During precomputation, the shortest travel distance between
pick locations (including the depot) is calculated. Interorder dis-
Fig. 5. Illustrations of an inter batch swap (a) and relocation (b) d
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tances are computed according to the chosen batching criterion,
illustrated in fig. 4b and Table 5.

Given the capacity of the batch and the total number of items
requested, the minimum number of batches is defined. De Koster
et al. (1999) show that the number of batches used and the total
travel distance are strongly related, confirmed by Menéndez
et al. (2017) who obtained a shorter total travel distance when less
batches are used. We determine the number of batches K as
follows:

K ¼ dTotal number of items
Capacity

e

K is currently a lower bound on the number of batches and does
not guarantee that the order integrity rule is obeyed. We describe
in section 5.3 how K is updated if necessary.
5.2. Step 2: Construction phase

An initial assignment of orders to batches is generated accord-
ing to the HausOrig (section 4.1), HausAdap (section 4.2) or Aisles
batching heuristic (section 4.3). A feasible solution on order level is
found if all orders are assigned to a batch.
5.3. Step 3: Redistribution phase

During the construction phase, it occurs that not all orders fit
into the predefined number of batches K. In that case, the redistri-
bution function is called to free capacity by swapping two orders of
different batches (i.e., inter batch swap, visualised in Fig. 5a) or to
reallocate an order to a another batch (i.e., inter batch relocation,
visualised in Fig. 5b). Both operators are detailed in Table 7, with
n referring to the number of orders.

During redistribution, orders are reshuffled to gain capacity. The
orders’ size is the primary criterion to do so, while the batching cri-
terion not matters in this stage. The move that leads to sufficient
capacity release or to the largest capacity release (in case multiple
redistributions are required to create enough space in a batch) is
executed. We remove the respective order(s) from its current batch
and add it last in the sequence of the other batch. To avoid moves
being reversed directly after execution, a simple tabu list is
included which prevents the last move to be undone.

After 10 consecutive reassignments with insufficient capacity
saving, the number of batches K is increased by one. All orders
are reverted back to the status ’unassigned’ and we restart the con-
struction from scratch.
uring redistribution to free capacity for an order of five items.



Table 7
Operators performed during redistribution at the order level. The same operators are
used during intensification at order-level when the HausAdap or Aisles batching
heuristic is implemented.

Inter batch operators

Swap Swap two orders belonging to two different batches.
Each order is added last in the sequence of the other batch.
Complexity: O(n2)

Relocation Remove an order from one batch, add it last in the sequence of
another batch.
Complexity: O(n)
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5.4. Step 4: Intensification at the order level

The initial batch assignment is based on a greedy heuristic that
makes the best local choice at each step rather than looking at the
entire solution. During the intensification phase, we aim to
improve the batch assignment by a VNS algorithm at the order
level, based on the batching criterion chosen at the start.

In the original CluVRP approach with the HausOrig heuristic
implemented, the sequence of orders in a batch is of great impor-
tance. Therefore, it is relevant to not only explore inter batch
moves (e.g., swap orders between batches), but also to consider
intra batch moves that seek to optimize the order sequence within
a batch. Defryn and Sörensen (2017) propose five local search oper-
ators that explore inter and intra batch neighbourhoods, presented
in Table 8. In Table 9 we show an example of such a move starting
from the initial assignment determined by the HausOrig heuristic,
provided in Table 3. Order r1 is relocated from Batch 1 to the first
position in the sequence of Batch 2. The difference in total Haus-
dorff distance, represented by delta, is positive and gives a negative
advice regarding this move.

In section 4.2, we proposed an alternative Hausdorff-based con-
structive heuristic. Suggestions were introduced to benefit more
Table 8
Moves at the order level during intensification, when implementing the HausOrig
batching heuristic. All operators have complexity O(n2).

Intra batch operators

Swap Swap the position of two orders in the sequence of the same
batch.

Relocate Remove an order from a sequence, insert it at another position in
the sequence of the same batch.

Two-Opt Remove two edges from the batch’s sequence, replace them by
two new edges.

Inter batch operators

Swap Swap two orders belonging to two different batches.
Relocation Remove an order from one batch, insert it at a position in the

sequence of another batch.

Table 9
Illustration of an inter batch relocation when the HausOrig heuristic is implemented.

Order
assignment

Hausdorff distance
batch

Batch 1 0 4 5 0 14.5+14+21.5=50 m
Batch 2 0 1 3 2 0 20.5+12+11+13.5=57 m

Delta Batch 1 -8 – 15+14
Delta Batch 2 -19.5+20.5+12

Total original Hausdorff
distance

Delta = 4 m 107 m

Batch capacity = 12 items Do not perform move
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from the JOBPRP characteristics, and continue to apply during
intensification. Therefore, we present the following adaptations
to the intensification at order-level when the HausAdap heuristic
is implemented. First, we no longer perform intra batch operators.
We argue that the optimization of the orders’ sequence has no
influence on the routes of the batches composed afterwards.
Aligned with the former argument, we decide to no longer swap
or relocate orders to a specific position in an order sequence, but
move them to the end of the order sequence. The operators per-
formed during intensification at order-level are listed in Table 7,
which are the same operators used during redistribution. These
operators are also applicable when the Aisles heuristic is imple-
mented, for which similar arguments hold because of its cumula-
tive implementation.

Despite the fact that less moves have to be evaluated, we find
that the corresponding time benefit compensates only partly for
the complexity of the HausAdap implementation. This is because
in the HausAdap heuristic all orders are considered when deter-
mining the Hausdorff distance of the batch. Consequently, the
removal of one order can have a large impact on the batch’s Haus-
dorff distance, illustrated in Table 10. We show an example of an
inter batch relocation performed on the initial order assignment
determined with the HausAdap heuristic (see Table 4). Order r1
is removed from Batch 1 and added last in the sequence of Batch
2, which reduces the number of relocation possibilities (before r3,
before r5, last in the sequence) to only one. In contrast to the Hau-
sOrig implementation, more computational effort is required to
compute the Hausdorff distance of the modified batches. For
instance, to return to the depot, the largest Hausdorff distance
between the depot and any order included in the batch is consid-
ered. For Batch 1, that was 20.5 m, the Hausdorff distance between
the depot and r1. With the removal of r1, we have to find again the
largest Hausdorff distance between the depot and any of the
remaining orders in Batch 1.

During intensification at the order level, a move is accepted if
the value of the chosen batching criterion improves. The neighbor-
hoods are checked in a random way by the algorithm and for each
neighborhood all possible moves are evaluated. If an improvement
is found, the algorithm returns to the first neighborhood. Other-
wise, the algorithm randomly picks one of the remaining neighbor-
hoods. The intensification at the order level terminates when all
neighborhoods were consecutively checked with no improvement.

5.5. Step 5: Conversion from order to pick operation-level

For each batch constructed in the previous stage, a routing is
determined in which all pick locations required to fulfil the orders
of a batch, are included. This routing problem is solved as a TSP by
means of a greedy heuristic: the pick location with the shortest tra-
vel distance to the previous pick location is visited next. The proce-
dure is repeated until all pick locations to be visited are included.
Table 10
Illustration of an inter batch relocation when the HausAdap heuristic is implemented.

Order
assignment

Hausdorff distance
batch

Batch 1 0 2 4 0 13.5+11+14.5=39 m
Batch 2 0 3 5 1 0 19.5+15+12+21.5=68 m

Delta Batch 1 –8–20.5–11+11
+14.5

Delta Batch 2 12

Total adapted Hausdorff
distance

Delta = �2 m 107 m

Batch capacity = 12 items Perform move
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5.6. Step 6: Intensification at the pick operation level

The intensification process at the pick operation level aims to
improve the routes composed in the previous stage. Again, a VNS
is applied and follows the same procedure as described in section
5.4. Both intra and inter batch operators, described in Table 11,
are implemented, which are no longer evaluated by the chosen
batching criterion but by total travel distance.

Apart from intra batch operators, also inter batch moves at pick
operation-level are included by Defryn and Sörensen (2017). This
means that orders are swapped or relocated between batches if it
results in a reduced total travel distance. In some way it seems
strange to include these moves since much attention already has
been paid to swapping and relocating orders at the order level.
However, these moves have only been evaluated using the chosen
batching criterion, while further travel distance improvements
could be found when the position of and distance between pick
locations is taking into account.

At this point, the algorithm has produced an initial solution. The
total travel distance of the solution, used later to evaluate the per-
formance of the algorithm, cumulates the travel distance over all
batches.
5.7. Step 7: Diversification phase and iterative loop

After the initial solution has been obtained, the algorithm con-
tinues to explore the solution space through diversification. Part of
the solution is destroyed and subsequently repaired to comply
with feasibility rules. Because of the order integrity rule, we per-
form the perturbation at order-level to ensure orders remain com-
plete. From each batch, a number of orders is removed (we
currently set this number to 10% of the orders included in a batch)
and reassigned to batches randomly, while meeting the capacity
constraint. Redistribution (described in section 5.3) is performed
when no sufficient remaining capacity is available to fit all orders.

Steps 4 to 6 of the algorithm are repeated for the newly com-
posed batches. In case a better solution is found, the incumbent
solution is updated. We currently apply the same stopping crite-
rion as Defryn and Sörensen (2017): the algorithm terminates after
1000 consecutive iterations without improvement.
6. Numerical experiments

In this section we present the experimental results to evaluate
the performance of the proposed 2level-VNS algorithm. All exper-
iments are conducted on the instance set developed by Henn and
Wäscher (2012). The characteristics of the dataset are described
in section 6.1. In section 6.2, we report preliminary tests on the
Table 11
Description of operators implemented during intensification at the pick operation
level. All operators have complexity O(n2).

Intra batch operators

Swap Swap the position of two pick operations in a single pick tour.
Relocate Remove a pick operation, insert it at another position in the

same pick tour.
Two-opt Remove the edges between two pick operations, replace them by

two new edges.

Inter batch operators

Swap Remove two orders’ pick operations from the sequence, insert
them at the best position in the sequence of the other batch.

Relocation Remove the order’s pick operations from the sequence, insert
them at the best position in the sequence of another batch.
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configuration of our 2level-VNS algorithm, with in particular adap-
tations required to obtain good results in an acceptable time.

Finally, we analyse the outcome of the 2level-VNS approach in a
twofold way:

� We compare the results for the HausOrig, HausAdap and Aisles
heuristic to conclude which batching heuristic is superior, and
whether this depends on features such as the number of orders
or the batch size (section 6.3).
� We compare the performance of the 2level-VNS with algo-
rithms considered state-of-the-art in the OBP literature (section
6.4).

We have implemented the 2level-VNS in C++ Visual Studio 17.
All experiments are carried out on an Intel(R) Core i7-6820HQ
CPU, 2.7 GHz laptop with 16 GB RAM of memory. A peak perfor-
mance of 132,06 GFlops was reached by our laptop in the LINPACK
benchmark (8 threads, LinX program version 0.6.5). For all experi-
ments the average of three runs is reported.
6.1. Instance description

The dataset of Henn and Wäscher (2012) originally includes
5760 instances, of which half follow an ABC storage policy (ABC)
and half a random distribution (Ran). As we did not explicitly
include decisions related to the storage allocation, we currently
focus only on instances following a random distribution. Of these
2880 instances, Menéndez et al. (2017) report the results for a lim-
ited set, which they found to be a representative subset. This set
includes 32 instances, referred to as Ran_32.

In the Ran_32 dataset, half of the instances are originally
labelled as ’s-shape instances’, half as ’largest gap instances’.
When comparing both subsets in terms of various parameters
(number of orders, number of total items requested, number of
unique items requested), we were not able to explain in what
way both instance groups differ, apart from their solution method
which we do not value important during instance generation. In
further experiments, we make no distinction and report the accu-
mulated results.

All instances are defined on a warehouse with a single-block
layout, consisting of 10 aisles. Each aisle contains 90 pick locations,
45 on each side, leading to 900 pick locations in total. Each pick
location has a width of 1 m. It takes 5 m to move from one aisle
to the next, and 1.5 m to move from the depot to the first pick
location.

Instances differ in terms of the number of orders (n) and the
batch capacity (C). For each (n;C)-combination, of which the values
can be found in Table 12, two instances are included in the Ran_32
dataset. For all instances, the number of items per order are uni-
formly distributed in U{5,25}.

Although the 2level-VNS is currently tested for a single-block
warehouse, our approach can easily be extended to instances
defined on a warehouse with a multi-block layout, as well as lay-
outs other than the often used parallel warehouse layout.
Table 12
Overview of (n,C)-values represented in instances of Ran_32 dataset.

Number of orders (n) Batch capacity (C)

40 30
60 45
80 60
100 75
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6.2. Preliminary experiments to speed up the algorithm

We test the 2level-VNS algorithm on the 32 instances of Ran_32
by alternately implementing the HausOrig, HausAdap and Aisles
batching heuristic. Regardless of the batching heuristic, we find
the computation time to be extremely high in comparison to
state-of-the-art references. On average, the 2level-VNS requires
11 times more computation time than the multi-start VNS by
Menéndez et al. (2017). Since the JOBPRP is an operational prob-
lem, the instances should be solved in a realistic time, which is cur-
rently not guaranteed. Adaptations to the algorithm are necessary
to make it competitive to available (J) OBP(RP) algorithms.

We propose three adaptations:

� Omit the inter batch moves at pick operation-level: during
the VNS at pick operation-level, only intra batch moves are
evaluated and performed. Swapping and relocating orders
between batches will be reserved for the VNS performed at
the order level.
� Omit the diversification stage: we take the initial solution as
the final solution.
� Adapt the stopping criterion of the algorithm: the algorithm
terminates after 60 s. This replaces the original stopping crite-
rion of 1000 consecutive iterations without improvement,
counted once an initial solution was found.

All adaptations are tested separately on the Ran_32 instances
and evaluated in Table 13. We report for each adaptation the aver-
age percentage deviation relative to the original algorithm imple-
mentation (all stages included and with the original stopping
criterion), together with the time improvement realised by the
adaptation. Each suggestion, independent of the implemented
batching heuristic, reduces the computation time significantly.
However, with a switch to a time-based stopping criterion we find
the solution quality to deteriorate only little (< 0:48%). We there-
fore decide to continue experiments with the 2level-VNS in which
a time-based stopping criterion is adopted.
Table 13
Evaluation of three alternatives to speed up the 2level-VNS. Values represent the average
algorithm with the original stopping criterion.

Avg. gap total travel distance (%)

HausOrig HausAdap Aisles

1) Algorithm without inter batch moves at routing-level
Ran_32 3.63% 3.13% 3.10%
2) Algorithm without diversification stage
Ran_32 3.28% 2.70% 2.70%
3) Algorithm with time-based stopping criterion (60 s)
Ran_32 0.48% 0.42% 0.44%

Fig. 6. Evolution in time of the solution’s objective for instance 40s-60–75-0, solved by
implemented. Each mark refers to the moment when a better solution is found, with on
respective batching heuristic.
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To conclude about the duration adopted in this time-based
stopping criterion, we perform additional experiments. Fig. 6
shows for a random chosen instance how the solution’s quality
evolves in time when solved with the 2level-VNS with original
stopping criterion in which respectively the HausOrig, HausAdap
or Aisles heuristic is implemented. Each mark refers to a point in
time when an improved total travel distance is found. On the y-
axis one reads the solution’s improvement (in %) relative to the ini-
tial solution found by the respective batching heuristic. For all
batching heuristics tested, improvements to the solution are signif-
icant during the first minute. After 60 s, the solution improves only
little, while the time between improvements generally increases.
For further experiments we decide to terminate the 2level-VNS
after 60 s. We denote the 2level-VNS algorithm with time-based
stopping criterion as 2level-VNS60.

6.3. Two-level VNS approach - Comparison of batching heuristics

In this section, we analyse the results for the HausOrig, HausA-
dap and Aisles heuristic, to conclude which one performs best
when implemented in the 2level-VNS60 algorithm. In section
6.3.1, we compare the performance of the batching heuristics in
a pairwise manner for the Ran_32 dataset. To validate our observa-
tions, we perform similar experiments on a larger dataset. Results
are provided and discussed in section 6.3.2.

6.3.1. Results for limited dataset, Ran_32
For the Ran_32 instances, we analyse the results of the Hau-

sOrig, HausAdap and Aisles batching heuristic, summarized in
Table 14. We compare the heuristics in a pairwise manner and
count the number of instances for which each was able to find
the best solution, i.e., the best of both outcomes, over the set. This
number includes instances for which both batching heuristics
obtained the same total travel distance. For instances for which
the heuristic performs worse, we compute the average deviation
relative to the best solution. Detailed results are provided in
Appendix A.
gap (%) in respect of the solution and computation time obtained by the 2level-VNS

Avg. gap computation time (%)

HausOrig HausAdap Aisles

-94.42% -93.81% -93.95%

-99.92% -99.92% -99.92%

-77.48% -78.97% -76.64%

the original 2level-VNS algorithm with the HausOrig, HausAdap or Aisles heuristic
the y-axis the percentual improvement relative to the initial solution found by the



Table 15
Pairwise comparison of the HausOrig, HausAdap and Aisles batching heuristic implemented in the 2level-VNS60 algorithm, applied to the instances of the Ran_1280 dataset.

# best solutions Avg. gap (%) Computation time (sec)

Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles
Inst. Orig Adap Orig Adap Orig Adap

2level-VNS60
Ran_1280 60 60 60
HausOrig-HausAdap 1280 454 840 0.51% 0.20%
HausOrig-Aisles 1280 298 990 0.85% 0.35%
HausAdap-Aisles 1280 412 879 0.63% 0.36%

Table 14
Pairwise comparison of the HausOrig, HausAdap and Aisles batching heuristic when implemented in the 2level-VNS60 algorithm, applied to the instances of the Ran_32 dataset.

# best solution Avg. solution gap (%) Computatation time (sec)

Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles
Inst. Orig Adap Orig Adap Orig Adap

2level-VNS60
Ran_32 60 60 60
HausOrig-HausAdap 32 13 20 0.46% 0.14%
HausOrig-Aisles 32 9 23 0.75% 0.45%
HausAdap-Aisles 32 12 20 0.54% 0.38%
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Of both Hausdorff-based batching criteria, the HausAdap clearly
finds the best solution for more instances than the HausOrig
heuristic. For the remaining instances, the solutions provided by
HausAdap are only 0.14% worse, in contrast to 0.46% when the
HausOrig heuristic is adopted. Despite the large similarities
between the CluVRP and JOBPRP, these findings prove the merit
of our adaptations to the original Hausdorff batching heuristic in
order to produce JOBPRP-fit solutions.

Despite these adaptations, we observe that the minimal aisles
visited-criterion still performs better. The Aisles heuristic is able
to find the best solution for 62.5% of the instances. For the remain-
ing instances, the aisle-based heuristic deviates on average 0.38%
from the best solution, while a slightly larger average is recorded
for the HausAdap heuristic (0.54%). Before stating a clear prefer-
ence, for any batching heuristic, we validate our observations with
a similar analysis conducted on a larger dataset. Results are dis-
cussed in the next section.
1 The results of the 2level-VNS are compared to publicly available results obtained
on an Intel QuadCore with 2.5 GHz and 6 GB of RAM with Xubuntu 14.04 64 bit OS, a
platform that is less performant than ours. However, the intention of this paper is not
to compare the solution quality of our algorithm in terms of CPU performance, but in
terms of total picker travel distance.
6.3.2. Validation on larger dataset, Ran_1280
We extend the pairwise comparisons to a larger dataset, that is

the initial set from which Ran_32 was drawn. Each (n;C)-
combination (values given in Table 12) is now represented by 80
instances instead of two, leading to a set of 1280 instances, referred
to as Ran_1280.

We repeat the experiments of section 6.3.1 on the instances of
Ran_1280, and record the results in Table 15. Based on this set,
which statistically includes more variation than Ran_32, we con-
firm that the HausAdap implementation outperforms the HausOrig
heuristic. Moreover, we find for this larger dataset more obvious
preference for the Aisles heuristic in comparison to the best per-
forming Hausdorff based-heuristic. The aisle-based heuristic is
able to find a better (or the same) solution for a double amount
of instances than the HausAdap heuristic.

Notwithstanding the results in favour of the Aisles heuristic, we
remark that a small subset of instances (32.5%) seems to perform
better when the HausAdap heuristic is implemented. By decom-
posing the results by number of orders and batch capacity, we find
that especially the latter influences these results. This decomposi-
tion is graphically presented in Table 16. Each cell summarizes the
results for one (n;C)-combination, represented by 80 instances.
The bars show the percentage of instances for which the HausAdap,
respectively Aisles heuristic is able to find the best solution.
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When the batch capacity is set at 30 items, we observe that the
HausAdap heuristic often performs better than the Aisles heuristic,
except when the number of orders is rather small. However, the
percentages remain too low to declare a clear preference for the
HausAdap heuristic for this particular set of instances. As the batch
capacity grows, the superiority of the Aisles heuristic increases.

We conclude that the results found for the Ran_32 subset align
with the results obtained for the extended dataset, Ran_1280. We
are able to confirm that the HausOrig heuristic is outperformed by
both the HausAdap and Aisles heuristic. Regarding the comparison
of the HausAdap and Aisles heuristic, we found evidence for the
Ran_32 instances to state a preference for the latter, which was
validated by the Ran_1280 dataset. In particular, there is a larger
absolute number of instances for which the Aisles heuristic per-
forms better than the HausAdap heuristic. However, the domi-
nance of the Aisles heuristic is only visible for 69% of the
instances and we decide to continue experiments with both the
HausAdap and Aisles heuristics.

6.4. Two-level VNS approach – Comparison with state of the art
algorithms

In this section, we compare the 2level-VNS60 algorithm with
the following state-of-the-art OBP algorithms:

� Variable Neighborhood Descent (VND) approach by Albareda-
Sambola et al. (2009)
� Attribute-Based Hill Climbing approach with s-shape routing
(AHBC + SS) by Henn and Wäscher (2012)
� Attribute-Based Hill Climbing approach with largest gap routing
(AHBC + LG) by Henn and Wäscher (2012)
� Multi-Start Variable Neighborhood Search (MS-VNS) by
Menéndez et al. (2017)

Following analyses are based on the results for the Ran_32 set,
made available by Menéndez et al. (2017) (available at http://grafo.
etsii.urjc.es/optsicom/obp/ (Menéndez et al., 2016))1.

http://grafo.etsii.urjc.es/optsicom/obp/
http://grafo.etsii.urjc.es/optsicom/obp/


Table 16
Pairwise comparison of the HausAdap and Aisles heuristic, broken down by number of orders and batch capacity. Each cell represents 80
instances.
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In Table 17 we compare the 2level-VNS60 and the four
algorithms mentioned above. This comparison is performed
twice: once when implementing the HausAdap heuristic in the
Table 17
Comparison of the 2level-VNS60 with state-of-the-art OBP algorithms. Table shows the n
Ran_32 instances, with respectively the HausAdap or Aisles batching heuristic implement

Ran_32

# inst. Algorithm
Overall comparison
# best solutions 32 2level-VNS60

VND
ABHC + SS
ABHC + LG
MS-VNS

Pairwise comparison
# best solutions by 2level-VNS60 32 VND

ABHC + SS
ABHC + LG
MS-VNS

Avg. improvement (%) VND
when 2level-VNS60 better ABHC + SS

ABHC + LG
MS-VNS

Avg. gap (%) 2level-VNS60 VND
in respect of best found solution ABHC + SS

ABHC + LG
MS-VNS

Avg. computation time (sec) 2level VNS60
VND
ABHC + SS
ABHC + LG
MS-VNS
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2level-VNS60, once with the Aisles heuristic adopted. The results
are found in the penultimate, respectively last column. We start
with an overall comparison for which we report how many times
umber of times the 2level-VNS60 or OBP algorithms obtain the best solution for the
ed.

2level-VNS60 HausAdap 2level-VNS60 Aisles

8 8
0 0
7 7
0 0
17 17

32 32
22 22
32 32
8 8

�6.02% �6.20%
�6.14% �6.29%
�10.37% �10.53%
�1.51% �1.38%

– –
2.88% 2.60%
– –
1.81% 1.51%

60 60
0.66 0.66
13.45 13.45
61.57 61.57
49.09 49.09



Table 18
Comparison of the 2level-VNS including original stopping criterion with state-of-the-art OBP algorithms. Table shows the number of times the 2level-VNS or OBP algorithms
obtain the best solution for the Ran_32 instances, with respectively the HausAdap or Aisles batching heuristic implemented.

Ran_32

# inst. Algorithm 2level-VNS HausAdap 2level-VNS Aisles
Overall comparison
# best solution 32 2level-VNS 9 11

VND 0 0
ABHC + SS 7 7
ABHC + LG 0 0
MS-VNS 16 14

Pairwise comparison
# best solution by 2level-VNS VND 32 32

ABHC + SS 22 23
ABHC + LG 32 32
MS-VNS 10 11

Avg. improvement (%) VND �6.41% �6.61%
when 2level VNS better ABHC + SS �6.50% �6.38%

ABHC + LG �10.74% �10.93%
MS-VNS �1.36% �1.22%

Avg. gap (%) 2level-VNS VND – –
in respect of best found solution ABHC + SS 2.36% 2.30%

ABHC + LG – –
MS-VNS 1.43% 1.16%

Avg. computation time (sec) 2level VNS 576.51 486.07
VND 0.66 0.66
ABHC + SS 13.45 13.45
ABHC + LG 61.57 61.57
MS-VNS 49.09 49.09
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each algorithm is able to find the best solution out of the five
obtained results. Next, we conduct a pairwise comparison
between the 2level-VNS60 and each of the four state-of-the-art
algorithms. We report how many times the 2level-VNS60 is able
to find the best result, as well as the average improvement (%)
achieved by the algorithm for that particular set of instances.
For the cases where the 2level-VNS60 performed worse, we
report the average deviation (%) relative to the best solution.
We close Table 17 with the average computation time (in
seconds).

Overall, the 2level-VNS60 performs well for both the HausAdap
and Aisles batching heuristic. It outperforms the VND and
ABHC + LG algorithms for all instances, with an average
improvement up to 6.20 and 10.53%, respectively. Compared to
the ABHC + SS method, the 2level-VNS60 performs better for 22
out of the 32 instances, and improves the ABHC + SS solution up
to 6.29% on average for those 22 cases. Results are similar for the
HausAdap and Aisles heuristic, although in general, larger
improvements are obtained with the Aisles heuristics. Differences,
however, are minor.

In comparison to the MS-VNS, the 2level-VNS60 performs
better for only 8 out of 32 instances. From the detailed results
provided in Appendix A, we derive that, independent of the imple-
mented batching heuristic, the 2level-VNS60 often finds better
solutions than the MS-VNS method for instances where the batch
capacity is small (30 or 45 items). For larger batch size (P60 items)
the MS-VNS method consistently performs better.

Finally, we perform a similar comparison with the original
2level-VNS algorithm, i.e., the 2level-VNS that terminates after
1000 consecutive iterations without improvement. Results are
reported in Table 18, which deviate only little from the results in
Table 17. This is remarkable, given that the average computation
time required by the original 2level-VNS is significantly larger than
the 60 s adopted in the 2level-VNS60. Overall, we find prior conclu-
sions to remain valid and confirm that the adoption of a time-
based criterion is a good approach to retain performant solutions,
competitive with state of the art OBP algorithms.
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We conclude that the 2level-VNS60 algorithm is able to outper-
form the VND, ABHC + SS and ABHC + LG algorithms for the major-
ity of instances. However, our algorithm is not able to dominate the
MS-VNS approach, although the solutions deviate to a minor
extent (<1.81%). Concerning the batching criteria, we conclude
that when the 2level-VNS60 approach is used, it is best to imple-
ment the aisle-based batching heuristic.

7. Conclusion

We demonstrate that the joint order batching and picker rout-
ing problem (JOBPRP), studied in the warehouse literature, and
the clustered vehicle routing problem (CluVRP), studied in the
VRP literature, share many similarities. Despite the mathematical
overlap of both problems, only limited attempts have been found
to use existing CluVRP algorithms when solving the JOBPRP. In this
paper, we propose the two-level VNS presented by Defryn and
Sörensen (2017) for the CluVRP, as a metaheuristic approach to
solve the JOBPRP. In contrast to existing algorithms for the
(J)OBP(RP), our approach does not primarily assign orders to
batches based on the total travel distance, but rather utilizes the
Hausdorff distance between orders to compose batches in a first
phase. We implemented the Hausdorff-based batching heuristic
(HausOrig) as originally proposed by Defryn and Sörensen
(2017), and proposed an adapted version (HausAdap) to create a
better alignment with the JOBPRP. Both the HausOrig and
HausAdap heuristics were compared with an aisle-based batching
heuristic, regularly used in warehouse literature.

We consider the 2level-VNS with adapted Hausdorff batching
heuristic to be successful as it found a better solution for almost
twice the number of instances than the original Hausdorff-based
batching heuristic. Nonetheless, we observe that the aisle-based
heuristic remains superior. The Aisles heuristic finds the best solu-
tion for 69% of the instance set, in contrast to 32.5% when the
adapted Hausdorff batching heuristic is implemented. Moreover,
we find that if the Aisles heuristic performs worse, the average
deviation relative to the best solution remains small. We therefore
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conclude a preference for the aisle-based batching heuristic. Addi-
tionally, we compared the 2levelVNS to state of the art OBP algo-
rithms. Our 2level-VNS, modified to a time-based stopping
criterion for a fair comparison, outperformed three of the four algo-
rithms, with average improvements between 6% and 10%. How-
ever, the MS-VNS algorithm, developed by Menéndez et al.
(2017), maintains its superiority and performs best, especially
when the batch capacity is large.

We note that these conclusions hold for a single-block ware-
house with parallel aisles and the instance characteristics used in
this study. We acknowledge the need of further studies on other
warehouse layouts and other instance sets to validate the conclu-
sions regarding the performance of the Hausdorff heuristic and
proposed metaheuristic in solving the JOBPRP.

In this paper, we showed that more similarities can be found
between the vehicle routing context and warehouse environment
besides the resemblances between the TSP and PRP. We therefore
encourage future experimentation of existing VRP algorithms for
warehousing problems that share similar structures with their
VRP-counterparts although, we do recommend to implement small
adaptations to ensure a proper fit with the problem under study.
Table A.1
Detailed results for the original 2level-VNS algorithm with stopping criterion ’1000 conse
implemented. Results are provided for the Ran_32 instances.

Total travel distance (m)

n C 2level-VNS

HausOrig 40 30 9390
40 30 9826
40 45 6239
40 45 7257
40 60 5674
40 60 5034
40 75 4433
40 75 4071
60 30 14825
60 30 13660
60 45 9628
60 45 10458
60 60 7844
60 60 7448
60 75 5562
60 75 5590
80 30 19223
80 30 17533
80 45 14204
80 45 12045
80 60 9990
80 60 9977
80 75 8149
80 75 8199

100 30 21017
100 30 23068
100 45 14756
100 45 14664
100 60 11796
100 60 13434
100 75 9635
100 75 9970

HausAdap 40 30 9395
40 30 9821
40 45 6249
40 45 7263
40 60 5645
40 60 5010
40 75 4431
40 75 4078
60 30 14817
60 30 13673
60 45 9626
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Appendix A. Detailed results

Appendix A shows the detailed results when comparing the
original 2level-VNS algorithm (Table A.1), respectively 2level-
VNS60 algorithm (Table A.2) to state-of-the-art OBP algorithms
and is complimentary to the data provided in section 6.4.
cutive iterations without improvement’ with HausOrig, HausAdap or Aisles heuristic

Avg. deviation (%) relative to outcome OBP algorithm

VND ABHC + SS ABHC + LG MS-VNS

�6.82% �6.40% �6.54% �1.87%
�6.77% �12.00% �9.47% �1.94%
�6.78% �1.52% �11.29% �0.06%
�6.61% �8.06% �11.99% �1.36%
�7.93% 2.75% �13.10% 0.76%
�6.41% �5.41% �12.70% 0.72%
�7.08% 2.15% �15.09% 1.09%
�4.53% �5.76% �17.32% 1.07%
�7.16% �5.77% �8.31% �0.90%
�9.23% �13.87% �10.27% �2.49%
�7.02% 0.15% �6.72% 0.02%
�6.20% �4.69% �10.19% 1.78%
�7.28% 0.40% �10.15% 1.08%
�5.92% �4.21% �12.73% 1.71%
�6.60% 1.48% �14.05% 1.63%
�3.97% �3.04% �14.97% 0.88%
�7.23% �9.76% �5.64% �2.31%
�6.66% �14.10% �9.16% �0.14%
�5.93% �0.83% �6.89% 1.44%
�6.95% �5.94% �10.27% 1.40%
�3.49% 3.15% �5.81% 2.11%
�7.43% �4.14% �12.00% 1.74%
�6.56% 3.88% �11.65% 1.74%
�5.67% �3.13% �15.30% 1.52%
�8.36% �7.99% �5.78% �0.52%
�8.31% �12.63% �9.58% �1.97%
�3.42% 1.21% �4.49% 2.29%
�5.33% �5.87% �9.78% 1.67%
�4.26% 5.34% �7.84% 3.32%
�4.87% �4.62% �12.29% 1.75%
�5.41% 5.55% �14.76% 2.55%
�4.25% �0.61% �13.17% 4.37%
�6.77% �6.35% �6.49% �1.82%
�6.81% �12.05% �9.52% �1.99%
�6.63% �1.37% �11.15% 0.10%
�6.54% �7.98% �11.92% �1.28%
�8.40% 2.23% �13.54% 0.25%
�6.86% �5.86% �13.11% 0.24%
�7.13% 2.11% �15.13% 1.05%
�4.36% �5.60% �17.18% 1.24%
�7.21% �5.83% �8.36% �0.96%
�9.14% �13.78% �10.19% �2.40%
�7.04% 0.12% �6.74% 0.00%



Table A.1 (continued)

Total travel distance (m) Avg. deviation (%) relative to outcome OBP algorithm

n C 2level-VNS VND ABHC + SS ABHC + LG MS-VNS

60 45 10322 �7.42% �5.93% �11.35% 0.46%
60 60 7824 �7.52% 0.14% �10.38% 0.82%
60 60 7442 �6.00% �4.28% �12.80% 1.63%
60 75 5560 �6.63% 1.44% �14.08% 1.59%
60 75 5583 �4.09% �3.16% �15.07% 0.76%
80 30 19229 �7.20% �9.73% �5.61% �2.28%
80 30 17532 �6.67% �14.10% �9.16% �0.15%
80 45 14223 �5.80% �0.70% �6.76% 1.57%
80 45 12072 �6.74% �5.72% �10.07% 1.62%
80 60 9952 �3.85% 2.76% �6.17% 1.72%
80 60 9979 �7.41% �4.12% �11.99% 1.76%
80 75 8129 �6.79% 3.62% �11.87% 1.49%
80 75 8212 �5.52% �2.98% �15.17% 1.68%

100 30 20914 �8.81% �8.44% �6.24% �1.01%
100 30 23125 �8.08% �12.41% �9.36% �1.73%
100 45 14785 �3.23% 1.41% �4.30% 2.50%
100 45 14645 �5.46% �6.00% �9.90% 1.54%
100 60 11693 �5.10% 4.42% �8.65% 2.42%
100 60 13430 �4.90% �4.65% �12.31% 1.72%
100 75 9618 �5.58% 5.37% �14.91% 2.37%
100 75 9832 �5.57% �1.98% �14.37% 2.92%

Aisles 40 30 9380 �6.92% �6.50% �6.64% �1.98%
40 30 9820 �6.82% �12.05% �9.53% �2.00%
40 45 6251 �6.60% �1.33% �11.12% 0.13%
40 45 7208 �7.24% �8.68% �12.59% �2.03%
40 60 5645 �8.40% 2.23% �13.54% 0.25%
40 60 4992 �7.19% �6.20% �13.42% �0.12%
40 75 4446 �6.81% 2.45% �14.84% 1.39%
40 75 4053 �4.95% �6.18% �17.69% 0.62%
60 30 14874 �6.85% �5.46% �8.01% �0.57%
60 30 13660 �9.23% �13.87% �10.27% �2.49%
60 45 9630 �7.00% 0.17% �6.70% 0.04%
60 45 10242 �8.14% �6.66% �12.04% �0.32%
60 60 7843 �7.29% 0.38% �10.16% 1.07%
60 60 7417 �6.32% �4.60% �13.09% 1.28%
60 75 5476 �8.04% �0.09% �15.38% 0.05%
60 75 5531 �4.98% �4.06% �15.87% �0.18%
80 30 19262 �7.05% �9.58% �5.44% �2.11%
80 30 17615 �6.22% �13.69% �8.73% 0.32%
80 45 14191 �6.01% �0.93% �6.97% 1.34%
80 45 12011 �7.22% �6.20% �10.53% 1.11%
80 60 9988 �3.51% 3.13% �5.83% 2.09%
80 60 9924 �7.92% �4.65% �12.47% 1.20%
80 75 8092 �7.21% 3.15% �12.27% 1.02%
80 75 8193 �5.74% �3.20% �15.36% 1.45%

100 30 21048 �8.22% �7.85% �5.64% �0.37%
100 30 23240 �7.63% �11.98% �8.91% �1.24%
100 45 14697 �3.80% 0.81% �4.87% 1.89%
100 45 14653 �5.40% �5.94% �9.85% 1.59%
100 60 11566 �6.13% 3.29% �9.64% 1.31%
100 60 13469 �4.62% �4.37% �12.06% 2.01%
100 75 9591 �5.84% 5.07% �15.15% 2.09%
100 75 9757 �6.29% �2.73% �15.02% 2,14%

Table A.2
Detailed results for the 2level-VNS60 algorithm, with HausAdap or Aisles heuristic implemented. Results are shown for the Ran_32 instances.

Total travel distance (m) Avg. deviation (%) relative to outcome OBP algorithm
n C 2level-VNS60 VND ABHC + SS ABHC + LG MS-VNS

HausAdap 40 30 9399 �6.73% �6.31% �6.45% �1.78%
40 30 9833 �6.70% �11.94% �9.41% �1.87%
40 45 6269 �6.33% �1.05% �10.86% 0.42%
40 45 7265 �6.51% �7.96% �11.90% �1.25%
40 60 5680 �7.84% 2.86% �13.00% 0.87%
40 60 5025 �6.58% �5.58% �12.85% 0.54%
40 75 4454 �6.64% 2.64% �14.69% 1.57%
40 75 4086 �4.17% �5.42% �17.02% 1.44%
60 30 14840 �7.06% �5.68% �8.22% �0.80%
60 30 13677 �9.12% �13.76% �10.16% �2.37%

(continued on next page)

B. Aerts, T. Cornelissens and K. Sörensen Computers and Operations Research 129 (2021) 105168

17



Table A.2 (continued)

Total travel distance (m) Avg. deviation (%) relative to outcome OBP algorithm
n C 2level-VNS60 VND ABHC + SS ABHC + LG MS-VNS

60 45 9669 �6.62% 0.57% �6.33% 0.45%
60 45 10370 �6.99% �5.50% �10.94% 0.92%
60 60 7901 �6.61% 1.13% �9.50% 1.82%
60 60 7472 �5.62% �3.90% �12.44% 2.03%
60 75 5550 �6.80% 1.26% �14.23% 1.41%
60 75 5640 �3.11% �2.17% �14.21% 1.79%
80 30 19292 �6.90% �9.44% �5.30% �1.96%
80 30 17587 �6.37% �13.83% �8.88% 0.17%
80 45 14224 �5.80% �0.69% �6.76% 1.58%
80 45 12126 �6.33% �5.30% �9.67% 2.08%
80 60 9982 �3.56% 3.07% �5.88% 2.02%
80 60 10062 �6.64% �3.32% �11.25% 2.61%
80 75 8195 �6.03% 4.46% �11.16% 2.31%
80 75 8271 �4.84% �2.28% �14.56% 2.41%

100 30 21103 �7.98% �7.61% �5.39% �0.11%
100 30 23348 �7.20% �11.57% �8.48% �0.78%
100 45 14799 �3.14% 1.51% �4.21% 2.59%
100 45 14725 �4.94% �5.48% �9.41% 2.09%
100 60 11623 �5.67% 3.80% �9.20% 1.80%
100 60 13546 �4.08% �3.83% �11.56% 2.60%
100 75 9609 �5.66% 5.27% �14.99% 2.28%
100 75 9801 �5.87% �2.29% �14.64% 2.60%

Aisles 40 30 9371 �7.01% �6.59% �6.73% �2.07%
40 30 9809 �6.93% �12.15% �9.63% �2.11%
40 45 6277 �6.22% �0.92% �10.75% 0.54%
40 45 7234 �6.91% �8.35% �12.27% �1.67%
40 60 5634 �8.58% 2.03% �13.71% 0.05%
40 60 5007 �6.92% �5.92% �13.16% 0.18%
40 75 4485 �5.99% 3.35% �14.10% 2.28%
40 75 4062 �4.74% -5.97% �17.51% 0.84%
60 30 14938 �6.45% �5.06% �7.61% �0.15%
60 30 13696 �8.99% �13.64% �10.04% �2.23%
60 45 9675 �6.57% 0.63% �6.27% 0.51%
60 45 10318 �7.45% �5.97% �11.39% 0.42%
60 60 7897 �6.65% 1.08% �9.54% 1.77%
60 60 7446 �5.95% �4.23% �12.75% 1.68%
60 75 5517 �7.36% 0.66% �14.74% 0.80%
60 75 5553 �4.60% �3.68% �15.53% 0.22%
80 30 19302 �6.85% �9.39% �5.25% �1.91%
80 30 17713 �5.70% �13.21% �8.22% 0.88%
80 45 14259 �5.56% �0.45% �6.53% 1.83%
80 45 12044 �6.96% �5.94% �10.28% 1.39%
80 60 10050 �2.91% 3.77% �5.24% 2.72%
80 60 10035 �6.89% �3.58% -11.49% 2.34%
80 75 8151 �6.54% 3.90% �11.63% 1.76%
80 75 8240 �5.20% �2.65% �14.88% 2.03%

100 30 21103 �7.98% �7.61% �5.39% �0.11%
100 30 23348 �7.20% �11.57% �8.48% �0.78%
100 45 14799 �3.14% 1.51% �4.21% 2.59%
100 45 14725 �4.94% �5.48% �9.41% 2.09%
100 60 11623 �5.67% 3.80% �9.20% 1.80%
100 60 13546 �4.08% �3.83% �11.56% 2.60%
100 75 9609 �5.66% 5.27% �14.99% 2.28%
100 75 9801 �5.87% �2.29% �14.64% 2.60%
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