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A B S T R A C T

Order-picking is the most time- and labor-consuming operation in a warehouse and significantly influences
supply chain efficiency. One of the basic methods for improving order-picking efficiency involves assigning
storage locations to appropriate items, i.e., the storage location assignment problem (SLAP). In existing studies,
most storage assignment methods only consider the properties of individual item rather than the item groups
that are usually collectively required. This paper introduces the concept of the demand correlation pattern (DCP)
to describe the correlation among items, based on which a new model is constructed to address the SLAP. The
model is subsequently reduced using the S-shape routing strategy, and a method for determining DCPs from
historical data is proposed. To solve the model, a heuristic and a simulated annealing method are developed. The
proposed methods are examined and compared extant methods using both real data collected from an online
retailer and numerical instances that are randomly generated. The computational results are discussed.

1. Introduction

A warehouse is an intermediary facility between suppliers and
customers that has an important role in daily supply chain operations.
Warehouse activities can be decomposed into receiving, storing, order-
picking, sorting, and shipping, among which order-picking is the most
time- and labor-consuming operation. According to Richards (2014),
order-picking accounts for approximately 35% of warehouse operating
costs. For companies faced with cost reduction, improving order-
picking efficiency may be one of the most effective options.

Order-picking is the process of retrieving items from storage loca-
tions to fulfill customers’ orders. Two types of order-picking systems
usually exist in practice: parts-to-picker systems and picker-to-parts sys-
tems. The parts-to-picker system employs automated storage/retrieval
(AS/R) machines or automated guided vehicles (AGVs) to carry the
required items to pickers, which has been intensively investigated in the
literature (Boysen, De Koster, & Weidinger, in press; Boze & Aldarondo,
2018; Roodbergen & Vis, 2009). In a picker-to-parts system, pickers
travel along aisles to retrieve all required items from storage locations.
Due to the greater flexibility of humans in adapting to real-time changes
and less investment, this manual system forms a large proportion of all
order-picking systems worldwide. Marchet, Melacini, and Perotti
(2015) investigate 40 companies and find that half of them are
equipped with the picker-to-parts order-picking systems. Napolitano

(2012) shows that in 2011–2012, about 70–80% materials handling
systems have conventional picking system. Dallari, Marchet, and
Melacini (2009) investigate 68 warehouse facilities of big companies
and find that the picker-to-parts system is very popular in the situations
where the number of items and picking volume (order line per day) are
within 1000 and 10,000. These results are consistent with the case of
JD.com, Inc. (JD), which is one of the largest e-commerce companies in
China. Although fully automated warehouses (such as the JD Asia No.1
Warehouse) are possible, we discovered that a large proportion of
warehouses remain manually operated. We consider the picker-to-parts
system in this paper.

The order-picking efficiency can be improved by a number of ap-
proaches, including (1) assigning items to appropriate storage locations
(storage strategy); (2) determining appropriate route of the picking tour
(routing), and (3) picking orders in batches (batching) (Boysen et al., in
press; Gils, Ramaekers, Caris, & De Koster, 2018). Among the three
approaches, the storage strategy is the basis of routing and batching
since the latter approaches have to be performed with the aid of storage
information. This research focuses on improving the order-picking ef-
ficiency by developing efficient storage location assignment, whereas
the picker routing problem is solved via a heuristic and batching is not
considered.

The storage location assignment problem (SLAP) involves de-
termining the allocation of items to storage locations to maximize the
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order-picking efficiency. Classic storage strategies usually assign items
according to their individual properties, such as popularity (Frazelle,
2002), picking density (Petersen, Siu, & Heiser, 2005), turnover
(Hausman, Schwarz, & Graves, 1976), volume (Petersen & Schmenner,
1999) or cube-per-order index (COI, Heskett, 1963). Class-based sto-
rage strategy that divides items into several classes and assigns each
class to a dedicated storage area is one of the most commonly adopted
storage strategies in practice (Dijkstra & Roodbergen, 2017; Muppani &
Adil, 2008). Some researchers also make assignment decisions by
considering the item correlation, where items are thought to be corre-
lated if they appear in the same order at high frequency. Correlation-
based storage strategies (also referred to as family grouping by De Koster,
Le-Duc, & Roodbergen (2007)) place correlated items as near to each
other as possible to ensure that they can be picked together without
traveling a long distance; as a result, the picking effort is reduced. The
results of Ruben and Jacobs (1999), Bindi, Manzini, Pareschi, and
Regattieri (2009) and Glock and Grosse (2012) indicate that the cor-
relation-based strategy performs better than the class-based strategy in
their picking circumstances.

To place correlated items close to each other, clustering-assigning
method is commonly used, in which highly correlated items are clus-
tered into groups and groups are then assigned to storage locations
(Chiang, Lin, & Chen, 2014; Chuang, Lee, & Lai, 2012; Liu, 2004; Xiao &
Zheng, 2010). The majority of studies use pairwise correlation to develop
their correlation-based storage strategies by referring to the statistical
correlation between any two items, which is an indirect description of
the correlation among three or more items.

Instead of using pairwise correlation, we introduce the concept of
the demand correlation pattern (DCP) to describe item correlation.
Based on the DCP, a mathematical model for SLAP is constructed. Due
to the complexity of the problem, we solve it heuristically. Two heur-
istics are developed and evaluated using real data from an online re-
tailer and numerical instances that are randomly generated. The pur-
poses of this paper are described as follows: (1) present a new
measurement for item correlation, based on which a new model for the
SLAP is built, (2) develop two heuristics to solve the problem, and (3)
investigate the proposed methods against extant storage strategies in
different environments.

The remainder of the paper is organized as follows. In the next
section, a detailed literature review is provided and related studies are
discussed. In Section 3, the SLAP is formulated as a new model based on
the DCP. To solve the model, a heuristic and a simulated annealing
method are developed in Section 4. Experiments are conducted to ex-
amine the proposed methods, and the computational results are dis-
cussed in Section 5. Section 6 states the conclusions.

2. Literature review

In this section, we discuss the related studies in two aspects: storage
strategies, especially correlation-based strategies, and simulated an-
nealing methods used in order-picking research.

2.1. Storage strategies

A storage strategy is a set of rules that assign items to storage lo-
cations to improve the order-picking efficiency. Basic strategies include
the random strategy, dedicated strategy, and class-based strategy. The
random strategy randomly assigns arriving pallets to available storage
locations to enable the storage space to be shared, which causes high
storage utilization and low order-picking efficiency (De Koster et al.,
2007). The dedicated strategy assigns each item to a dedicated storage
location according to its individual properties, such as popularity,
turnover, volume or COI (Petersen et al., 2005). One advantage of the
dedicated strategy is that pickers become familiar with the locations of
items and as a result, the picking efficiency is improved at the price of
low storage utilization (De Koster et al., 2007). The class-based strategy

divides items into a certain number of classes and subsequently assigns
each class to a dedicated area in the warehouse. Within each area, the
storage locations are randomly assigned. The class-based strategy is a
tradeoff between the storage-space cost and the order-picking cost
(Muppani & Adil, 2008). The effectiveness of the three basic strategies
was examined in Hausman et al. (1976), Petersen and Aase (2004),
Muppani and Adil (2008), Chan and Chan (2011) and Dijkstra and
Roodbergen (2017).

Classic storage strategies perform well in the case in which only one
item is picked in each tour (Malmborg & Bhaskaran, 1990). In reality,
however, multiple items within an order are often collectively picked
and the efficiency can be improved by identifying the correlated items
and placing them close to each other. Frazelle and Sharp (1989) extract
the pairwise statistical correlation from historical orders and formulate
the SLAP as an integer programming problem, which is shown to be NP-
hard and solved using a two-stage heuristic. Lee (1992) studies the
man-on-board AS/R system, in which a clustering technology that
employs the Hungarian method is proposed and items are located fol-
lowing the space-filling curves. Kim (1993) develops a heuristic for the
SLAP model considering the inventory-related cost and material-hand-
ling cost. Brynzér and Johansson (1996) propose a strategy that ema-
nates from the product structure, which reduces the amount of picking
information to the picker by 75%. Liu (1999) and Liu (2004) propose
the order-item-quantity rule to measure the similarity between two
items and locate items to storage locations along the direction of
routing strategy, which is a commonly employed positioning method.
Jane and Laih (2005) investigate the synchronized zone order-picking
system and develop a heuristic to assign correlated items to different
zones so that the picking operation can simultaneously proceed. Hua
and Zhou (2008) explore SLAP in a circuit board assembly kitting area,
where components have to be effectively collected. The authors present
a new clustering method and position item groups following specific
filling-curves. Bindi et al. (2009) evaluate the performance of correla-
tion-based storage strategies with different similarity measurements,
group assignment rules, routing policies and warehouse shapes. Xiao
and Zheng (2010) investigate a production warehouse in which parts,
as determined by the bill of materials (BOM), must be picked from
storage locations. A multi-stage heuristic, in which the clustering
method is modified from Lee (1992), is developed. Chuang et al. (2012)
improve family grouping by introducing the idea of between-item as-
sociation and construct mixed integer programming formulations for
both item clustering and group locating problems, which are linearized
and solved via Lingo.

Instead of the clustering-assigning method, several different ap-
proaches have been proposed in recent years. Pang and Chan (2017)
consider the put-away cost in their model and propose a data mining-
based algorithm, that extracts and analyses the association relationships
between different products in customer orders. Chiang, Lin, and Chen
(2011) propose the concept of the association index (AIX), which
evaluates the fitness between items and available storage locations, to
determine the optimal storage assignment for newly delivered items to
be put away. The study is subsequently extended to solve the general
SLAP in Chiang et al. (2014), in which two heuristics are proposed.
Glock and Grosse (2012) investigate the U-shaped order-picking
system, in which the item demand and correlation are considered, and
propose a storage assignment method that is based on pair correlation.
Our paper considers both demand and correlation, but employs dif-
ferent correlation measurement and methods. Wutthisirisart, Noble,
and Chang (2015) adopt the concept of linear placement as an ap-
proximate description for a real warehouse layout to create a minimum
delay algorithm (MDA) that considers both item relationships and order
characteristics. Li, Moghaddam, and Nof (2015) propose a mixed in-
teger programming model for the dynamic storage location assignment
problem which is solved by a greedy genetic algorithm. The previously
mentioned correlation-based strategies are summarized in Table 1. In
the column of similarity measurement, = …z zz ( , , )i i iK1 indicates the
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appearance of item i in the order set, where =z 1ik if item i is contained
by order = …k K1, , ; 0 otherwise. Let and represent the operators,
AND and OR. In addition, =n z| |i i represents the number of orders that
contain item i and = =n z zz z| |ij i j k ik jk represents the number of
orders that simultaneously contain i and j.

Since picker-to-parts systems are primarily operated by humans, it is
reasonable and practical to consider human factors in the SLAP.
Petersen et al. (2005) propose several storage strategies that put high
demand items at the height between picker’s waist and shoulder (golden
zone) for easier access, and their simulation results show that the golden
zone storage strategies generate significant savings in terms of the order
fulfillment time. Grosse, Glock, and Jaber (2013) examine the effect of
worker learning and forgetting on storage assignment decisions, and
their results support managers in terms of when to change or keep a
storage assignment if the learning and forgetting occur. Battini, Glock,
Grosse, Persona, and Sgarbossa (2016) develop a bi-objective method to
the SLAP model that considers both picking time and human energy
expenditure, which can cause risky environments for workers to de-
velop musculoskeletal disorders. Another bi-objective model is con-
structed by Larco, De Koster, Roodbergen, and Dul (2017), who make a
tradeoff between warehouse efficiency and worker discomfort via sto-
rage assignment decisions. Otto, Boysen, Scholl, and Walter (2017)
define a combined ergonomic storage assignment and zoning model to
minimize the maximum ergonomic burden among all workers in the
picking area. Three solution methods are developed, and their results
show that much higher ergonomic risks exist if the ergonomic aspects
are neglected. For studies that consider human factors in other order-
picking problems, please see, Elbert, Franzke, Glock, and Grosse (2017),
Glock, Grosse, Elbert, and Franzke (2017), Grosse, Glock, and Neumann
(2016) and Grosse, Glock, Jaber, and Neumann (2015).

2.2. Simulated annealing method

Due to the NP-hardness of many order-picking problems, such as the
SLAP or order batching problem (OBP), they are often solved by
heuristics or meta-heuristics. Heuristics for the SLAP, including

clustering methods and assigning rules, are summarized in Table 1.
Simulated annealing (SA) has been applied to effectively solving

many combinatorial problems. In the literature, several SA approaches
have been proposed for order-picking problems. Lai, Xue, and Zhang
(2002) propose SA methods to assign items to appropriate cells in a
paper reel warehouse. Muppani and Adil (2008) consider the holding
cost in a class-based storage policy and propose an SA approach to
determine the best members for each class by randomly moving items
from one class to another. Bartholdi and Gue (2000) use an SA ap-
proach to optimize the layout of trailers in a crossdocking terminal to
reduce the labor cost and congestion. Matusiak, De Koster, Kroon, and
Saarinen (2014) present a fast SA method for the OBP, in which the
precedence of orders is considered, that obtains better solutions by
randomly forming new batches from the old batches. Another SA ap-
proach for the OBP is discussed in Grosse, Glock, and Ballester-Ripoll
(2014).

Instead of the pairwise correlation measurement that is commonly
employed in the literature, this paper introduces a new correlation
measurement, based on which a new mathematical model is con-
structed. We develop a heuristic and an SA method to solve the pro-
blem.

3. Model

In this section, the concept of DCP is introduced to describe how
items are correlated, and then a mathematical model for the SLAP is
constructed (Section 3.1). Due to the high complexity in determining
the picking route for each order, we reduce the model with the S-shape
routing heuristic (Section 3.2). We demonstrate how to identify the
DCPs of items from historical data in Section 3.3.

3.1. Problem formulation

We examine the SLAP in a low-level picker-to-parts warehouse,
which is commonly adopted in practice (De Koster et al., 2007). The
warehouse configuration remains the same as the configuration in Xiao

Table 1
Summary of correlation-based storage strategies.

Paper Order-picking system Routing strategy Similarity measurement Method

Lee (1992) Man-on-board AS/R system –
+

k fk zik zjk

k fk zik zjk

( )

( )
a Hungarian method based clustering algorithm;

Filling curve based assignment.

Kim (1993) Miniload AS/R system – – Clustering heuristic minimizing the model’s
objective value

Liu (2004, 1999) Manual system with gravity-
flow racks

Z type route
K k

zik zjk
zik zjk

1 min{ , }
max{ , }

Ranking, clustering and interchanging
heuristic; Primal-dual algorithm

Jane and Laih (2005) Synchronized zone order-
picking system

– z zk ik jk Natural clustering algorithm

Xiao and Zheng (2010) Picker-to-parts system S-shape, Largest
gap

k fk zik zjk

k fk zik zjk

( )
( )

Hungarian method based clustering algorithm;
Assignment along the picking route

Chuang et al. (2012) Manual system with single
aisle

Z type route
+1
nij

ni nj
Linearized and solved by Lingo

Pang and Chan (2017) Picker-to-parts system Insertion
heuristic

,
nij
ni

nij
nj

Solved by relaxing the model

Bindi et al. (2009) Picker-to-parts system S-shape, Return
+ +

nij Ti Tj
nij ni nj Ti Tj

min{ , }
[ 0.25( )]max{ , }

b Hierarchical clustering algorithms; Positioning
rules: Zig-zag, Stripes

Chiang et al. (2014) Picker-to-parts system S-shape WSC c Modified class-based heuristic; Association
seed based heuristic; Genetic algorithm

Wutthisirisart et al.
(2015)

Picker-to-parts system S-shape – Minimum delay algorithm

Glock and Grosse (2012) U-shaped order-picking
system

Sweep algorithm I I,1 2
d An iterated assigning heuristic based on I1 and

I2.
This paper Picker-to-parts system S-shape Demand correlation pattern that is extracted

from historical data
Minimum increment heuristic and simulated
annealing method

a fk refers to the frequency of order k.
b =Ti Total movement/ Average stock quantity; refer to Bindi et al. (2009) for details.
c WSC= n n, 0,ij ij with respect to > = <n n n/( ) , , 1ij i j , respectively.
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and Zheng (2010), where multiple aisles exist and storage locations are
distributed on both sides of each aisle. The layout is shown in Fig. 1.
Assume that N types of items are to be assigned to L storage locations
and the objective is to determine an assignment (solution) that mini-
mizes the total traveling distance.

We assume that one type of item occupies exactly one storage lo-
cation and that one storage location holds only one type of item. In
other words, stock mixing or splitting is not allowed; this assumption is
also applied in Xiao and Zheng (2010) and Chiang et al. (2014). The
space of any storage location is sufficiently large for storing all quan-
tities of items of the same type. Since the warehouse is two-dimensional
and different types of items are placed in different locations, travel
distance will be incurred by moving from one item to the next item. We
also assume that the replenishment cost is disregarded, since the cost is
minimal compared with the cost of order-picking due to bulk replen-
ishment (Ruben & Jacobs, 1999).

A customer who buys one item may tend to simultaneously buy
other items. The demand correlation among items is common in prac-
tice. For example, the components that are required by one product or
materials that belong to the same BOMs are always simultaneously
picked. The demand dependency often results in the correlation among
three or more items, which implies that the pairwise correlation mea-
sure may be not the best choice. We introduce the concept of DCP to
describe the previously mentioned item correlation. The DCP of item i is
defined as the set of items that are simultaneously ordered (with a
certain probability) due to the requirement of i. Item i is highly corre-
lated with other items in its DCP. Evidently, for item i, more than one
DCPs may exist, the set of which is denoted by i. For example,

= { , {2}, {2, 5}, {3, 4}}1 represents all DCPs of item 1. If item 1 is
ordered, then the DCP of {2}, {2,5} or {3,4} can also be ordered, and
the probabilities are determined from historical data, as illustrated in
Section 3.3. Specifically, DCP = indicates that item 1 is in-
dependently ordered. The associated notations are as follows:

= … N{1, , }: set of items, indexed by i j, ;
= … L{1, , }: set of storage locations, indexed by k l, ;
= … O{1, , }: set of historical orders, indexed by o ;
= … A{1, , }: set of aisles, indexed by a ;
= … R{1, , }: set of rows, indexed by r ;
i: set of DCPs of item i , indexed by m i;

µ: the I/O point. Let =+ µ{ };
Di: demand of item i;
ak : aisle number of storage location k;
rk : row number of storage location k;
dkl: distance between storage location k and l;
v: distance between two adjacent storage locations;
h: distance between two adjacent aisles;
pm: probability that DCP m is ordered;

=e 1mj : if item j is included in DCP m ( j m); 0 otherwise.
|·|: the cardinality of the given set.

Decision variables:

=x 1ik : if item i is assigned to location k; 0, otherwise;
=y 1mkl : if storage location l is visited immediately after k in the

route for picking the items in DCP m; 0, otherwise;

To minimize the total travel distance (TTD) for picking all DCPs, the
demand correlation pattern based model (DCPM) of the SLAP is con-
structed.

=
+ +

TTD D p d ymin ,
i m k l

i m kl mkl
i (1)

s.t.

=x k1, ,
i

ik
(2)

=x i1, ,
k

ik
(3)

=y m i1, , ,
l

mµl i
(4)

=y m i1, , ,
k

mkµ i
(5)

+
y l m i1, , , ,

k
mkl i

(6)

+
y k m i1, , , ,

l
mkl i

(7)

=
+ +

y y l m i, , , ,
k

m k l
k

m l k i, , , ,
1

1
2

2
(8)

= +
+ +

y e m i1, , ,
k l

mkl
j

mj i
(9)

+ +u u e y e k l k l1, , , ,k l
j

mj mkl
j

mj
(10)

y e x e x k l m i, , , , ,mkl
j

m j j k
j

m j j l i, , , ,
1

1 1
2

2 2
(11)

x i k{0, 1}, , ,ik (12)

+y m i k l{0, 1}, , , , ,mkl i (13)

where the distance between any two storage locations is calculated as
follows:

= =
+ + + +d r r v a a

a a h R r r r r v a a
| | , if
| | min{2 ( ) 2, ( )} , ifkl

l k l k

l k l k l k l k

Constraints (2) and (3) indicate the assumptions that one storage
location only holds one item type and one item type must be assigned to
one storage location, respectively. Constraints (4)–(10) guarantee the
integrity of the route for picking DCP m, which starts from the I/O
point, traverses all storage locations that store the items in DCP m and
ends at the I/O point. Specifically, constraints (4) and (5) indicate that
the picker must start and finish at the I/O point. Constraints (6) and (7)
indicate that at any visited location, with the exception of the I/O point,
only an antecedent location and a succedent location exist. Constraints
(8) ensure that the input degree must be equal to the output degree for
each storage location. Constraints (9) indicates that the number of
visited storage locations (with the exception of the I/O point) is equal to
the number of items in DCP m. Constraints (10) derived from the tra-
veling salesman problem (TSP) eliminates sub-cycles where uk and ul
denote variables of arbitrary values. For constraints (10), the feasible

Fig. 1. Warehouse layout and S-shape route.
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tour must be a cycle that starts from the I/O point, ends at the I/O point
and connects all visited locations. Constraints (11) ensure that all vis-
ited storage locations must correspondingly store the requested items in
DCP m.

3.2. Routing strategy

The complexity of DCPM is high since for any assignment
x i k{ : , }ik , there are a total of i i sub-problems to be solved

to determine the route y k l{ : , }mkl for picking DCP m i. The
sub-problem is a special case of TSP and can be optimized by the al-
gorithms proposed by Ratliff and Rosenthal (1983) and Scholz, Henn,
Stuhlmann, and Wäscher (2016). Although the computational effort of
the algorithms are polynomials, they are still too “expensive” for the
DCPM, and the optimal route is typically “illogical” to pickers (Elbert
et al., 2017; Glock et al., 2017; Hall, 1993). Therefore, the sub-problem
is usually solved via heuristics. The commonly used routing heuristics
include the S-shape, return, mid-point, and largest gap heuristics (De
Koster et al., 2007). Petersen and Schmenner (1999) and Dijkstra and
Roodbergen (2017) examine the joint effects of routing strategies and
storage location assignments; the conclusions indicate that the final
storage location assignment adapts to the employed routing strategies.
The performance of the final storage location assignment, i.e., TTD,
does not significantly vary when different routing heuristics are se-
lected.

In this paper, the S-shape heuristic is employed for the subproblem
in which aisles that contain at least one requested item are entirely
traversed (with the exception of the last visited aisle, where the picker
needs to turn back if the number of visited aisles is odd) and aisles
without requested items are not entered. An important reason for
choosing the S-shape is that, for this routing strategy, each picker
possesses only one direction, which will reduce the aisle congestion
(disregarded in the study) when the pick density is sufficiently high (De
Koster et al., 2007). The S-shape routing strategy is illustrated in Fig. 1.

With the S-shape routing strategy, the DCPM is reduced. With re-
spect to a certain storage location assignment x i k{ , , }ik , the
visited storage locations for picking DCP m are determined as

= =k x j m{ : 1, }m jk and subsequently the visited aisles are
= a k{ : }m k m . The last visited aisle is =a a¯ max{ }m k m

and the row of the last visited storage location in aisle ām is
= =r r a a k¯ max{ : ¯ , }m k k m m . Consequently the travel distance

for picking m is recast as:

= + +

+

+ +
d y a h R v

r R v

2( ¯ 1) | |( 1)

(2¯ 1) .
k k

kl mkl m m

m
| | mod 2m

As a result, we obtain the reduced demand pattern-based model
(RDCPM) as follows.

= + +

+

TTD D p a h R v

r R v

min [2( ¯ 1) | |( 1)

(2¯ 1) ]
i m

i m m m

m
| | mod 2

i

m (14)

s.t.

(2),(3),(12).

The complexity of the RDCPM is significantly reduced compared
with that of the DCPM. The development of an effective algorithm once
the DCPs and demands of items are determined is possible.

3.3. Determining DCPs

With respect to item i, numerous associated DCPs may exist and the
size of i is extremely high, since (1) a few DCPs only occur with small
probabilities and (2) a few DCPs may be the supersets of the other
DCPs. For example, in the DCP = {2, 3} of item 1, the item pairs of 1 and

2 or 1 and 3 are correlated, and therefore, both {2} and {3} are also DCPs
of item 1. To overcome the weaknesses, only the DCP that satisfies the
following conditions is considered: (1) it frequently occurs; and (2) it
does not have a superset. The available DCPs can be determined by
applying maximal frequent itemset mining algorithms, such as FP-max
(Grahne & Zhu, 2003), to historical orders.

Algorithm 1 enables us to determine all available DCP sets
= …i N, 1, ,i from historical orders , where i represents the sup-

port count of item i, i.e., the total number of orders that contain i. With
the minimum support count min as the threshold of frequency, all
maximal frequent itemsets in are mined out by FP-max and added to
DCP sets based on the rule of maximizing the association confidence
(steps 4 and 5 in Algorithm 1).

Algorithm 1. Method for determining available DCP sets

1: For item i , calculate its support count i and set =i
2: Run FP-max on to determine all maximal frequent itemsets, denoted by . Each

element m satisfies m min
3: for m do

4: Get = { }i argmaxi m
m
i

5: Set =pm
m
i

and = m: { }i i

6: end for

To demonstrate the implementation of Algorithm 1, an example for
which the historical data set is displayed in Table 2 is considered. If
we set = 5min and apply FP-max to , a maximal frequent itemset is
obtained: =m {2, 5, 7} with = 5m . Additionally, the support count of
the items in =m i, ( 2, 5, 7)i are calculated as 6, 7, 7, respectively.

Given that = == { }i argmax 2i 2,5,7
m
i

, we set m{ }2 2 and
=p 0.83m . The demand, = …D i N( 1, , )i is estimated by the frequency

of i in ; for example, the frequency of item 2 is 8, and thus =D 82 .

4. Solution

The non-linearity and non-convexity of the proposed model exclude
traditional integer programming techniques. Therefore, we will heur-
istically solve the model. This section presents two methods: the
minimum increment heuristic (MIH) and simulated annealing (SA)
method.

4.1. Minimum Increment Heuristic (MIH)

MIH assumes that the picking route always starts from the I/O point
and traverses all possible aisles until the location of the last item is
reached. We refer to the specific picking route as the all-traverse route,
which ensures that the travel distance is only dependent on the location
of the last picked item in the order. Starting with all empty locations
and total travel distance of zero, MIH assigns each item to the most

Table 2
An example of historical data .

Order Items

o1 1, 2, 3, 5, 5, 7
o2 3, 4, 7
o3 2, 4, 5, 6, 7, 9
o4 2, 2, 10
o5 2, 5, 6, 7, 8
o6 2, 3, 7
o7 2, 3, 4, 5, 5, 7
o8 1, 3
o9 5
o10 1, 2, 5, 7, 8, 10
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remote location and selects the one with a minimum increment of travel
distance. Consider that the item, say i , with a minimum number of
involved orders will be assigned. Since orders that contain the assigned
item i must be completed by reaching the most remote location, they
are removed from the order set and are not considered in the next
iteration. The process repeats until all items are assigned. MIH is de-
scribed in Algorithm 2, where represents the set of unassigned items
and the set of empty locations. Note that MIH takes advantage of the
item correlation by removing orders that contain the assigned items
(step 7 in Algorithm 2).

Algorithm 2. MIH

1: Set and
2: Calculate the all-traverse route distance dk for k
3: repeat
4: From , calculate the number of involved orders i for i
5: Assign item =i argmini i to location =k dargmaxk k
6: Set i{ } and k{ }
7: Remove all orders that contain i from
8: until =

4.2. Simulated Annealing (SA)

SA has been applied to solving many combinatorial optimization
problems. We observe that feasible solutions can be easily obtained by
swapping the storage locations of any two items and that the local
search based meta-heuristic can be more flexible and easily to be im-
plemented. This makes SA with a good balance between exploration
and exploitation suitable to solve the model.

We construct an initial assignment by assigning items with high
picking frequency to aisles near the I/O point as much as possible. The
initial solution is refined through the SA procedure that finds neighbors
from the current solution and evaluates each neighbor using objective
(14). Better neighbors with smaller objective values will be accepted,
whereas worse neighbors will be accepted with the probability of

( )exp T , where is the gap of objective values between the neighbor
and the current solution, and T the current temperature. The inner loop
with the temperature T has SAIter iterations, and subsequently the
temperature will be cooled by T T , where (0, 1) is the cooling
rate. The commonly used swapping operator is employed in this study to
obtain the neighbors from the current solution, which randomly selects
two items and exchanges their storage locations. SA is described in
Algorithm 3, where s0 and s are the initial solution and the best so-
lution, respectively. T0 and Tmin are the initial temperature and terminal
temperature, respectively.

A suitable parameter setting typically indicates a good balance be-
tween the solution quality and the computational effort. We use a
number of experiments and set = =T T800, 10 min and = 0.95.
Regarding the inner loop iteration (steps 4–10 in Algorithm 3), we set

= ×SAIter N2 as the neighborhood space grows with an increase in
the instances scale. SA terminates when the current temperature is less
than Tmin.

Algorithm 3. SA

1: Set s s s s,0 0 and T T0;
2: repeat
3: Set u 0
4: repeat
5: Obtain a neighbor s by swapping operator
6: Calculate = TTD s TTD s( ) ( )

7: If 0, set s s ; otherwise, set s s with the probability of ( )exp T
8: If <TTD s TTD s( ) ( ) 0, set s s

9: Set +u u 1
10: until >u SAIter
11: T T
12: until >T Tmin

5. Computational study

This section presents several computational experiments to evaluate
the proposed methods using both real data collected from an online
retailer and numerical data that are randomly generated. The perfor-
mances of the proposed methods are compared with those of extant
methods from the literature. All implemented algorithms are encoded
in Java and run on a Windows 10 platform with Intel i7-3770 CPU and
4.0 G Rom. Section 5.1 describes the experiment setting. Section 5.2
and 5.3 present the computational results for the real data and nu-
merical instances, respectively.

5.1. Experiment setting

First, we shall discuss how to assess and compare the performance
of the assignment methods and how to determine the minimum support
count min. Moreover, the methods used for comparison are described.

Performance evaluation. We compare our methods with existing
SLAP methods from the literature. To assess the solution, the training-
testing evaluation mechanism is employed, in which the order set in
each problem is split into two parts, namely the training part and the
testing part. The training part, including 70% of all orders, is utilized as
historical data and input into each method to produce a solution,
whereas the testing part, including the remaining 30% of orders, is used
as newly arrived orders for testing the solution generated by each
method. The testing result (TR) in terms of the total travel distance for
picking all testing orders is the output. The training-testing mechanism
is described in Fig. 2. We use the dedicated storage strategy (DSS) as the
benchmark, which assigns items with the highest picking frequency to
locations nearest to the I/O point. The improvement (Impr) over DSS is
finally output as the performance index. Impr is calculated as:

= ×Impr TR TR
TR

(DSS) (method)
(DSS)

100%,
(15)

Fig. 2. Training-testing evaluation mechanism.
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where TR (·) refers to the TR of the given model.
Minimum support count. The minimum support count min indicates

the minimum frequency of DCPs, i.e., the DCP m is considered to be
frequent if m min. With an appropriate value of min, DCPs that
describe the item correlation in the original data can be mined out via
FP-max (Grahne & Zhu, 2003). A large min may not be necessarily a
suitable choice because only strong correlations (high frequencies) are
mined out, whereas weak correlations (low frequencies) are dis-
regarded. However, if min is excessively low, then weak correlations
are mined out even if some of the correlations are accidental. As a re-
sult, the computational effort may be high since an excessive number of
DCPs will be considered. We determine the min value through a
number of trials. Given an instance of = =A R 20 generated in Section
5.3 as an example, to determine the appropriate min, a number of trials
are conducted where the value of min is changed from 0 to 100 with
each step of 5. The results displayed in Fig. 3 show that the Impr in-
creases when 5 15min and sharply decreases when > 40min .
Additionally, the computational time is high when 10min and re-
mains almost unchanged when 20min . We also observe that there
exists a reasonable interval within which min produces better frequent
itemsets. As indicated by certain experiments, we find that a suitable
interval exists for almost all instance scales, the bounds of which are 20
and 50. Therefore, in the following experiments, min is determined by a
number of trials within [20, 50] and the best result is adopted.

Methods for comparison. Three typical approaches for the SLAP are
selected from the following studies: Minimum Delay Algorithm (MDA,
Wutthisirisart et al., 2015), Association Seed-Based Heuristic (ASBH,
Chiang et al., 2014) and Clustering-Assigning Heuristic (CAH, Xiao &
Zheng, 2010). MDA is an algorithm for a two-phase model. In the first
phase, an item sequence is obtained by modelling the SLAP as a linear
replacement assignment problem. In the second phase, items are as-
signed to storage locations along the S-shape route. For solving the
linear replacement assignment problem, the MDA is employed. In each
iteration, the MDA assigns each item to the most remote place, calcu-
lates their delays within the linear placement, and selects the item with
the minimum value. ASBH is another heuristic with the characteristic,
that the natures of items’ relationships (complementary, substitutive or
independent) are determined and used for assigning (Chiang et al.,
2014). Regarding each aisle, the most correlated item pair is initially
assigned, and subsequently, the aisle is fulfilled with items that are
most correlated with the items that are already located in the aisle. CAH
is a typical clustering-assigning method, that first groups items by the
Hungarian method and then modifies and sorts the groups. In the as-
signing phase, items within each group that are already ranked in non-
decreasing order are assigned to storage locations in a way that

minimizes the travel distance to visit all these locations following the S-
shape route. According to the results of Xiao and Zheng (2010), the
parameters of CAH, TL and TU, are set to 0.1 and 0.6, respectively.

5.2. Computational results on real data

The real data in this study is collected from an online retailer, which
sells products on the Internet. The dataset includes a total of 19,718
orders collected in one year; the information is summarized in Table 3.
The picking area contains 788 items. The distribution center has a
rectangular shape with 800 storage locations consisting of 20 two-sided
aisles and 20 storage locations per aisle side. The width between ad-
jacent aisles and locations are 4 m and 1 m, respectively. The distribu-
tion center adopts the picker-to-parts order-picking system and the
dedicated storage strategy (DSS), where items are assigned to locations
according to their picking frequency. The S-shape heuristic is employed
for routing pickers. In the picking process, several orders are usually
batched as a pick-list and sent to human pickers, who will retrieve the
requested products and scan the code bars with their radio frequency
identification (RFID) terminals. Once a pick-list is completed, the re-
trieved items are split into orders (re-bin), packed and delivered to
customers. In this study, we do not consider the batching operation and
assume that all the orders are picked one by one. We divide the orders
into four groups according to the four quarters of the year and apply the
aforementioned methods to each group. Since ASBH and SA are algo-
rithms with random factors, we run them 10 times and pick the best
result. The computational results are reported in Table 4.

From Table 4, we observe that MIH significantly outperforms the
other methods, especially on the data of the first quarter. ASBH and SA
are the next best methods. ASBH performs well in the 2nd, 3rd and 4th
quarters, but fails in the 1st quarter, with an average improvement of
2.77 %, which is slightly better than those of SA and CAH, 2.55 % and
2.30 %. SA outperforms CAH in three of four quarters. The performance
of MDA is not ideal. Table 3 indicates that the order size (number of
items in one order) substantially varies, which causes MDA that tends to

Fig. 3. Performance for different min.

Table 3
Information about the real data.

Data Order
number

Max. item
number per
order

Min. item
number per
order

Avg. item
number per
order

Stdev. item
number per
order

1st quarter 3989 409 1 12.91 24.71
2nd quarter 4747 212 1 12.30 16.13
3rd quarter 5032 209 1 13.84 19.93
4th quarter 5950 465 1 15.13 27.00
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assign items of large (small) order to locations far from (near to) the I/O
point to perform worse. With the exception of MIH, we also observe
that the improvement of the remaining methods over DSS is not sig-
nificant. This finding may be explained by the weak item correlation in
the dataset.

5.3. Numerical simulation

The real data in Section 5.2 presents weak correlation among items.
In this subsection, we examine the proposed methods in the scenarios,
where items are highly correlated. The situation can usually be found in
production warehouses, where parts, components or materials that
belong to the same BOMs or products are frequently retrieved together,
and therefore, are highly correlated. We also examine how the proposed
methods perform on different problem scales and correlation degrees.
We generate instances of different scales, and then present and discuss
the computational results.

5.3.1. Instance generation
The method for generating instances is similar to that of Xiao and

Zheng (2010). We examine the proposed heuristics for different ware-
house shapes determined by the aisle number A and the row number R.
We assume that the number of items is equal to the number of storage
locations, i.e., = =N L AR2 . This is without loss of generality, since
dummy items requested by no order can be created, when <N L. In
Xiao and Zheng (2010), the authors evaluate their multi-stage heuristic
in a warehouse of = =A R10, 20. In this study, we expand the problem
scale and generate the numerical instance sets SA R, as follows:

• =A 10, 20, 30;
• =R 10, 20, 30.

There are × =3 3 9 combinations. Therefore, we have 9 instance
sets as follows: S S S S S S S S, , , , , , ,10,10 10,20 10,30 20,10 20,20 20,30 30,10 30,20, and
S30,30. For each set, 10 instances are generated, yielding a total of

× =9 10 90 instances. Regarding the other warehouse parameters, we
set =v 1 and =h 4.

For each instance, a number of orders are randomly generated, in
which several items are correlated. We use the concept of common
itemset, a small subset of (set of items), to reflect the demand de-
pendency, as in Xiao and Zheng (2010). To make items correlated to
each other, a number of itemsets are randomly generated and placed
into each order with a probability of U [0, 1]. is referred to as the
correlation degree and U [·,·] the uniform distribution. We set the order
and itemset quantities proportional to N (cardinality of ) to adapt to
different problem scales. The involved parameters are generated as
follows.

• Number of orders: ×N U [30, 50];
• Number of common itemset: ×N U [0.1, 0.5];
• Size of an order: U [5, 15];
• Size of common itemset: U [2, 5];
• Correlation degree: = 0.7.

Note that we set = 0.7 to ensure that the items are highly corre-
lated. New instances with different are generated and solved in
Section 5.3.3. For each order, the size is first determined and a decimal
within [0, 1] is randomly generated to indicate whether it should in-
clude a few common itemsets. If the decimal is less (greater) than ,
then one to three (zero) common itemsets are randomly picked and
added to the order. If the order is fulfilled, then stop and proceed to
produce the next order; otherwise, the order is filled with items that are
randomly picked from , set of items. Note that an item can appear
more than once in an order, given that items can be appear with other
items or independently.

5.3.2. Performance for different instance scales
We solve the generated instances by the previously mentioned

methods, i.e., MDA, CAH, ASBH, MIH and SA. With respect to each set
SA R, , the improvements of the five methods over DSS for all instances

Table 4
Computational results for real data.

DSS MDA CAH ASBH MIH SA

Data Dista Dist % Dist % Dist % Dist % Dist %

1st quarter 784,356 788,084 −0.48 753,092 3.99 802,392 −2.30 686,676 12.45 767,128 2.20
2nd quarter 998,854 997,882 0.10 979,644 1.92 957,692 4.12 922,802 7.61 965,958 3.29
3rd quarter 1,090,862 1,093,838 −0.27 1,079,672 1.03 1,034,358 5.18 1,004,418 7.92 1,065,464 2.33
4th quarter 1,352,928 1,352,198 0.05 1,322,316 2.26 1,297,650 4.09 1,246,902 7.84 1,320,588 2.39

Avg. – – −0.15 – 2.30 – 2.77 – 8.96 – 2.55

a Dist refers to the travel distance for picking all orders in one quarter. Unit: meter.

Table 5
Computational results with respect to different scales.

Instance Avg.Impr (%) CPU (s)

set MDA CAH ASBH MIH SA MDA CAH ASBH MIH SA

S10,10 3.50 6.71 7.62 7.72 9.02 0.03 0.13 0.16 0.01 2.08
S10,20 4.88 7.18 8.74 7.50 10.89 0.10 0.45 0.77 0.04 7.99
S10,30 6.51 8.94 11.46 8.81 12.55 0.22 1.02 2.85 0.07 21.99
S20,10 1.16 6.32 7.34 7.33 8.27 0.09 0.43 0.72 0.03 6.04
S20,20 4.82 7.29 9.66 7.65 10.26 0.46 2.08 7.65 0.14 47.02
S20,30 4.81 8.99 12.45 8.94 12.51 1.35 4.82 28.33 0.28 132.47
S30,10 2.60 5.13 5.45 6.07 6.83 0.23 1.10 2.91 0.08 19.59
S30,20 3.42 8.27 10.93 8.77 11.25 1.06 4.63 27.19 0.25 94.36
S30,30 4.15 9.28 12.75 9.22 13.16 3.04 11.35 92.72 0.53 335.15

Avg. 3.98 7.57 9.60 8.00 10.53 0.73 2.89 18.14 0.16 74.08
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are calculated; the average improvements (Avg. Impr) are reported in
Table 5.

From Table 5, we observe that SA significantly outperforms other
methods for all cases. The second best method is ASBH; its good per-
formance may be attributed to its characteristics of identifying and
using item relationships. MIH is the third best method with an average
improvement of 8.00 %, which is slightly better than that of CAH, 7.57
%. The improvement of MDA is still limited. The computational time is
also reported in Table 5, which indicates that MIH runs very quickly;
the computational time is less than one second for all instance scales.
For SA, the running time is longer.

The results presented in Table 5 also indicate that with the given
number of aisles A, the improvement significantly grows with an in-
crease in the number of rows R. This phenomenon indicates that the
warehouses that have more storage locations in one aisle would be
more eager to be improved by considering item correlation. This fact is
also observed by fixing the number of items N (= AR2 ).

5.3.3. Performance for different correlation degrees
The instances in Section 5.3.2 are generated by assuming that items

are highly correlated ( = 0.7). We further randomly generate a set of
instances with different correlation degrees and re-evaluate the per-
formances of the five methods. We fix the instance scale to S20,20 and
change the value of from 0 to 1 with each step of 0.1. For each value
of , 10 instances are generated, and there is a total of 110 instances.
These instances are solved using the five methods, and the average
improvements (Avg. Impr) over DSS for each is reported in Fig. 4.

In Fig. 4, = 0 indicates minimal correlation among items. In this
case, no significant improvement over DSS is observed, and the per-
formances of the five methods are almost equal. When items are weakly
correlated, i.e., [0.1, 0.4], ASBH outperforms other methods. When
the item correlation grows strong, i.e., [0.5, 1], SA obtains the best
performance. We conclude that SA is especially useful in situations in
which items are highly correlated and that ASBH is the best choice
when item correlation is weak to medium. The performance of MIH is
better than that of CAH and MDA for all values.

6. Conclusions

Order-picking is considered to be the most time- and labor-con-
suming operation in picker-to-parts warehouses; it accounts for a large
proportion of the operating expense in a warehouse. This study aims at
improving the order-picking efficiency by assigning storage locations to

appropriate items, where the correlation among items is considered.
Different from most studies that utilize picking frequency or pairwise
correlation to make assignment decisions, we introduce the demand
correlation pattern (DCP) to describe the item correlation and for-
mulate the storage location assignment problem as an integer pro-
gramming model. To solve the problem, the minimum increment
heuristic (MIH) and simulated annealing (SA) algorithm are developed.
The two methods are evaluated against extant methods using both real
data and numerical instances. The computational results indicate the
following:

• In general, the MIH is a good choice. It outputs competent assign-
ments within a short computational time for all instance scales and
correlation degrees. The MIH is especially useful for situations in
which items are weakly correlated and order size considerably
varies.

• When items are highly correlated, SA yields very competitive solu-
tions compared with extant methods. Its performance decreases
when the item correlation is weak.

• It is more effective to apply correlation-based storage strategies to
warehouses with more storage locations per aisle.

• When items are independently demanded, the advantages of corre-
lation-based strategies disappear and it is a good choice to apply the
picking frequency-based strategy.

In this paper, we use DCP to describe item correlation and construct
our model. The maximum frequent itemsets are determined by applying
data-mining techniques to historical orders to determine DCPs. This is a
good choice when item correlation is strong but may not be promising
when the demand correlation is weak. These findings have been de-
monstrated in the computational experiments. Another limitation of
our model and methods is that they are based on the S-shape route. In
practice, however, other routing strategies are also usually adopted. For
sake of simplicity, we also assume that only one I/O point exists in the
warehouse. Multiple I/O points and separated input and output points
are common, which need further investigation. Moreover, this paper
does not consider aisle congestion, which makes influences to order-
picking efficiency when the high demand and correlated items are as-
signed to locations near the I/O point.

This paper develops the correlation-based storage assignments for
low-level picker-to-parts warehouses. Our model can be extended to the
situation in which multilevel storage racks are employed. In this sce-
nario, one storage rack can be occupied by different item types. The

Fig. 4. Computational results for different correlation degrees.
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vertical assignment decision should be made, and additional item
properties, such as volume, weight or fragility, must be considered. For
example, heavy items should be placed in low level locations and
popular items should be placed in medium level locations for easier
access by humans. Since the picker-to-parts order-picking system is
manually operated, taking human factors into consideration is also a
promising topic.
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