
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

A new iterative method for solving the joint dynamic storage location
assignment, order batching and picker routing problem in manual picker-to-
parts warehouses
Patrick Küblera,⁎,1, Christoph H. Glockb,2, Thomas Bauernhanslc,3
a Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Universität Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
b Fachgebiet Produktion und Supply Chain Management, Technische Universität Darmstadt, Hochschulstraße 1, 64289 Darmstadt, Germany
c Institut für Industrielle Fertigung und Fabrikbetrieb IFF, Universität Stuttgart, Allmandring 35, 70569 Stuttgart, Germany

A R T I C L E I N F O

Keywords:
Order picking
Dynamic order pattern
Picker routing
Order batching
Storage location assignment
Particle swarm optimization

A B S T R A C T

Short and reliable delivery lead times are crucial for many buying decisions, making efficiently operated order
picking systems a critical contributor to a company’s competitiveness. To pick orders fast and with minimal
effort, three planning problems need to be solved, namely the assignment of items to storage locations, the
consolidation of orders in batches and the routing of the order pickers through the warehouse. Even though the
problems are strongly interdependent, they have so far largely been solved separately, leading to losses in
efficiency. Recent research has shown that a joint solution can lead to significant performance improvements as
compared to individual solutions. Up to now, no method is available that solves all three problems jointly. This
work contributes to closing this research gap by proposing an iterative heuristic method that solves the problems
jointly and that takes account of future dynamics in customer demand and their influence on the three planning
problems. The performance of the method is illustrated in numerical experiments. The results of our studies
indicate that the method may lead to significant savings in travel distance.

1. Introduction

Order picking is the most costly warehousing activity (Marchet,
Melacini, & Perotti, 2015). A well-organized order picking system that
ensures short item retrieval and, therewith, short order lead times, al-
lows a high responsiveness to last-minute orders and short delivery
times to customers (De Koster, Le-Duc, & Roodbergen, 2007). Under-
performance may result in high labor costs and unsatisfied customer
demand (Wruck, Vis, & Boter, 2017). Improving order picking effi-
ciency may therefore lead to a higher service level and to lower labor
costs (Cergibozan & Tasan, 2019).

Due to rapidly changing customer preferences, warehouses face
high product varieties, small order sizes, a fast-changing product mix,
and a highly volatile customer demand (Boysen, de Koster, &
Weidinger, 2018). Order picking has become even more important in
this environment (Menéndez, Bustillo, Pardo, & Duarte, 2017).

In light of these developments, this paper studies the management

of order picking operations in manual picker-to-parts-systems, which
account for the majority of order picking systems in warehouses
worldwide (De Koster et al., 2007). According to Henn, Koch, and
Wäscher (2012), three planning problems occur in such warehouses:
the storage location assignment problem, the order batching problem,
and the picker routing problem. Even though these problems are
strongly interdependent, they are traditionally solved separately,
leading to suboptimal solutions. This paper therefore develops an
iterative solution method for solving the three problems jointly because
recent research has shown that a joint solution leads to significant
performance improvements as compared to separate solutions (Van
Gils, Ramaekers, Caris, & de Koster, 2018).

A few authors have solved two planning problems jointly (cf.
Section 2.2 for a review of related research). However, to the best of our
knowledge, no method that solves all three planning problems jointly
has been proposed so far. This paper contributes to the literature on
order picking as follows: First, it explicitly takes account of the strong

https://doi.org/10.1016/j.cie.2020.106645
Received 6 August 2019; Received in revised form 6 April 2020; Accepted 2 July 2020

⁎ Corresponding author.
E-mail addresses: patrick.kuebler@ipa.fraunhofer.de (P. Kübler), glock@pscm.tu-darmstadt.de (C.H. Glock),

thomas.bauernhansl@iff.uni-stuttgart.de (T. Bauernhansl).
1 ORCID ID: 0000-0002-3898-0230.
2 ORCID ID: 0000-0001-6006-0070.
3 ORCID ID: 0000-0001-5768-2055.

Computers & Industrial Engineering 147 (2020) 106645

Available online 08 July 2020
0360-8352/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.106645
https://doi.org/10.1016/j.cie.2020.106645
mailto:patrick.kuebler@ipa.fraunhofer.de
mailto:glock@pscm.tu-darmstadt.de
mailto:thomas.bauernhansl@iff.uni-stuttgart.de
https://doi.org/10.1016/j.cie.2020.106645
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.106645&domain=pdf

interdependence of the three planning problems in an iterative solution
approach. Secondly, previous solution approaches for the dynamic
storage location assignment problem do not consider future customer
demand or the efforts associated with relocating items in low-level
picker-to-parts systems. In our solution approach, the expected future
benefits of a relocation of an item are calculated with the help of a
forecasting method and a newly developed estimation procedure. Our
procedure only relocates items if the expected future benefits exceed
the relocation efforts. Thirdly, we propose a novel heuristic algorithm
based on an improved version of particle swarm optimization (PSO) for
solving the joint order batching and picker routing problem. We choose
PSO as it computes good results with short computation times, uses
only primitive mathematical operators, is conceptually very simple
(Das, Abraham, & Konar, 2008) and thus easy to implement in practice.
This algorithm is also used to evaluate the benefit of an eventual re-
location of items triggered by changes in customer demand. Fourthly,
most of the existing solution approaches are theoretically complex and
validated only with the help of small problem instances. Both may make
practitioners reluctant to implement such methods. We validate our
method with the help of large-scale problems and choose heuristics
with an acceptable mathematical complexity to ensure the applicability
of our method.

The three planning problems are investigated in a low-level picker-
to-parts order picking systems (see Assumption 11 in Section 4.1) with
parallel aisles of equal length connected by an arbitrary number of cross
aisles (often referred to as a multi-block layout), where order sizes are
small and customer demand is highly volatile.

The remainder of this paper is organized as follows: Section 2 re-
views the related literature. Section 3 describes the problem in-
vestigated in this paper. Section 4 formulates a mixed-integer pro-
gramming model for the dynamic storage location assignment problem.
Section 5 develops a two-stage hybrid algorithm integrating PSO and a
2-opt-algorithm to solve the joint order batching and picker routing
problem. This algorithm is integrated into a dynamic storage location
assignment algorithm. Section 6 presents the results of a numerical
experiment. Finally, Section 7 concludes the paper and presents some
suggestions for future research.

2. Literature review

This section gives a brief overview of the related literature.
Comprehensive literature reviews on warehouse planning are those of
Rouwenhorst et al. (2000), De Koster et al. (2007), Gong and De Koster
(2011), Davarzani and Norrman (2015), De Koster, Johnson, and Roy
(2017) and Grosse, Glock, and Neumann (2017), for example.

2.1. Planning problems

To ensure efficient order picking operations, several planning pro-
blems need to be solved. We give an overview of these planning pro-
blems in the following. The basics introduced in the following are
needed for developing the proposed solution method in later sections of
this paper. Storage location assignment policies allocate items to
storage locations in the warehouse (Grosse, Glock, & Jaber, 2013; Pan,
Shih, & Wu, 2012). Common policies are random storage, dedicated
storage and class-based storage (Hausman, Schwarz, & Graves, 1976).
In random storage, incoming items are randomly assigned to empty
storage locations, whereas in dedicated storage, each item has a fixed
storage location that is left empty if the item is out of stock. In class-
based storage, items are assigned to classes based on item character-
istics, and each class is assigned a fixed set of storage locations. Storage
within the classes is random, though (Muppani & Adil, 2008). Random
storage leads to the longest expected travel distance but requires less
space, while dedicated storage has the shortest expected travel distance
at the expense of low space utilization. If the demand for a product
fluctuates, then the optimal storage location of this item changes as

well, which makes it necessary to relocate the item. In this case, dedi-
cated storage assignment policies lead to a high maintenance effort.
Class-based storage results in average travel distances that are between
those of random and dedicated storage (Rao & Adil, 2013). It is widely
used in practice because it can easily handle assortment changes or
changes in pick frequencies (Le-Duc & De Koster, 2005). Most pub-
lications focus on the static storage location assignment problem. Thus,
the impact of fluctuating order patterns, the effort for implementing a
new assignment or relocations are not considered (Kofler, Beham,
Wagner, & Affenzeller, 2015). For this reason, we concentrate on dy-
namic class-based storage in this paper.

Given a set of released orders, order batching partitions the set of
orders into sub-sets, so-called batches (Gu, Goetschalckx, & McGinnis,
2007). Items belonging to multiple orders can then be picked in a single
pick tour (see Assumption 6 in Section 4.1) to reduce the average travel
time per order (Van Nieuwenhuyse & de Koster, 2009). Order batching
is a bin packaging problem (Gu et al., 2007), and for more than two
orders, it is in the class of NP-hard problems (Gademann & Velde,
2005). The literature discusses two methods for order batching: proxi-
mity batching and time-window batching. Proximity batching assigns
orders to batches based on the proximity of storage locations that need
to be visited. In time-window batching, all orders that arrive during the
same time interval are grouped together in one batch (De Koster et al.,
2007). In this paper, we focus on proximity batching and assume that
all customer orders that need to be completed in the time period of
interest are known in advance (see Assumption 8 in Section 4.1). When
multiple orders are picked together, an additional sorting process is
necessary. Sorting can be done either during the picking process (sort-
while-pick) or after the picking process (sort-after-pick) (Gu et al.,
2007). Sort-while-pick is common in many warehouses to avoid that the
items need to be handled more than once. We assume sort-while-pick
and that customer orders may not be split over different batches (see
Assumption 3 in Section 4.1).

Picker routing determines the sequence in which the item locations
contained in an order or a batch should be visited such that the total
travel distance is minimized (Wäscher, 2004). This problem is a special
case of the Travelling Salesman Problem (TSP), and it is referred to as
the Steiner TSP. The aim is to find a minimum-length Steiner tour,
where each non-Steiner node is visited at least once (Theys, Bräysy,
Dullaert, & Raa, 2010). In a recent paper, Cambazard and Catusse
(2018) developed a dynamic programming approach that solves the
Steiner TSP for any rectangular warehouse with h cross-aisles, but that
is exponential in h. In another paper, Pansart, Catusse, and Cambazard
(2018) presented a sparse formulation in mixed-integer programming
strengthened by preprocessing that can easily accommodate side con-
straints. In addition, they extended a dynamic programming approach
to the case of an arbitrary number of cross aisles. For a detailed review
of the order picker routing problem, the reader is referred to Masae,
Glock, and Grosse (2020).

2.2. Joint optimization of order batching and picker routing

In the following, we discuss works with a specific focus on the joint
optimization of order batching and picker routing.

Won and Olafsson (2005) formulated the batching and picker
routing problem jointly as a combinatorial optimization problem. The
picker routing problem investigated by the authors differs from the
problem studied in this paper as they assumed that pickers (retrieval
units) have a dedicated aisle and travel along the aisle vertically and
horizontally at the same time. Tsai, Liou, and Huang (2008) proposed a
batch-picking model that considers travel costs and an earliness and
tardiness penalty. The batching problem was solved by a genetic al-
gorithm that aims on minimizing total cost, and by a genetic algorithm
that tries to construct a travel path with minimum length. In contrast to
our paper, the authors permitted the splitting of orders over batches.
This simplifies the order batching problem (and may lead to better

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

2

optimization results), but leads to additional sorting efforts since items
need to be assigned to customer orders at the end of the picking tour.
The algorithms were developed for a one-block layout. Similarly, Ene
and Öztürk (2012) developed a genetic algorithm for jointly solving the
order batching and picker routing problems. In addition, they proposed
a class-based storage location assignment policy. In contrast to the
approach presented in this paper, only incoming items were considered.
The authors assumed a dedicated storage location assignment without
relocating items over time. Even though order batching and picker
routing were solved jointly, the storage location assignment problem
was solved separately. Kulak, Sahin, and Taner (2012) formulated a
mixed-integer optimization model of the joint order batching and
picker routing problem. The objective was to minimize the total travel
distance over all batches and tours. Unlike most common approaches,
the routing problem was modeled as a classical TSP such that any
heuristic for the classical TSP can be used to solve the problem. To solve
the picker routing problem, the authors used a nearest neighbor and an
or-opt as well as a savings and a 2-opt heuristic. To solve the order
batching problem, they developed a seed algorithm to create the initial
solution for a tabu search algorithm. Azadnia, Taheri, Ghadimi, Mat
Saman, and Wong (2013) proposed a solution approach for the joint
order batching and picker routing problem in a single-block layout that
aims on minimizing the average tardiness of all orders. Weighted as-
sociated rule mining was used to calculate associations between orders,
where the latter is based on the similarity of the items with respect to
their due dates. Genetic algorithms were used to solve the TSP and to
sequence the batches. Grosse, Glock, and Ballester-Ripoll (2014) ana-
lyzed an order batching problem where orders are permitted to be split
over batches. They solved the joint order batching and picker routing
problem sequentially by first splitting orders into batches that can be
picked in a single tour. The solution was improved by using a simulated
annealing algorithm. Matusiak, de Koster, Kroon, and Saarinen (2014)
considered a warehouse with precedence constraints of the products
including potential multiple drop-off points in a route. The solution
procedure consists of two approaches: a simulated annealing algorithm
that estimates the savings gained from batching more than two cus-
tomer orders, and an A*-algorithm that computes the travel tours.
Chen, Cheng, Chen, and Chan (2015) studied the integrated order
batching, sequencing and routing problem with the objective to mini-
mize the total tardiness of customer orders. A genetic algorithm was
used to solve the order batching and batch sequencing problem, and an
ant colony optimization algorithm was used to solve the picker routing
problem. Cheng, Chen, Chen, and Yoo (2015) used the model of Kulak
et al. (2012) and first employed a PSO algorithm to determine the pick
sequence of batches. Subsequently, ant colony optimization was used to
calculate the shortest picking tour. The authors compared the solution
quality obtained by their algorithm against the method developed by
Tsai et al. (2008) and showed that PSO outperforms the genetic algo-
rithm. Lin, Kang, Hou, and Cheng (2016) presented an improved ver-
sion of PSO that is used for simultaneously solving the order batching
and picker routing problem. Menéndez et al. (2017) solved the order
batching and sequencing problem in a single-block warehouse using
general variable neighborhood search for the case where each order has
a certain due date. Scholz and Wäscher (2017) integrated different
routing algorithms into an iterated local search approach to solve the
joint order batching and picker routing problem in a multi-block layout.
Scholz, Schubert, and Wäscher (2017) dealt with the joint order
batching, batch sequencing and picker routing problem and assumed in
addition that batches need to be assigned to pickers. Valle, Beasley, and
da Cunha (2017) presented an integer programming formulation for the
joint order batching and picker routing problem based on an ex-
ponential number of connectivity constraints. Van Gils, Caris,
Ramaekers, and Braekers (2019) solved the order batching, picker
routing and picker scheduling problems with an iterated local search
algorithm. A real-life case showed significant performance benefits
gained from integrating the three planning problems. Briant et al.

(2020) proposed an exponential linear programming formulation of the
joint order batching and picker routing problem where variables are
related to single picking routes. The solution approach was designed to
provide accurate lower and upper bounds.

2.3. Dynamic storage location assignment

The second stream of research that is relevant to this paper studies
the dynamic storage location assignment problem. Since we focus on
manual picker-to-part systems, approaches developed for automated
systems or reserve storage areas such as those of Muralidharan, Linn,
and Pandit (1995), Moon and Kim (2001) or Ang, Lim, and Sim (2012)
are not discussed in the following.

A related paper is the one of Grosse et al. (2013), who investigated
when to change a storage location assignment in situations where
warehouse workers improve their performance over time as a result of
learning, but where changes in customer demand may make adjust-
ments in the storage assignment necessary. A change in the storage
assignment would make it necessary for the worker to learn the loca-
tions of items anew. For the special case of a carton flow rack, Sadiq,
Landers, and Don Taylor (1996) designed a dynamic stock location
assignment algorithm that aims on minimizing the sum of order picking
time and order picking system re-warehousing time. The storage con-
figuration considered was an in-the-aisle order picking system where
items can occupy flexibly-sized storage locations. Splitting stock among
zones was permitted. The algorithm is run periodically and attempts to
revise the assignments of storage locations when the stock mix changes.
To assign stock to slots, the algorithm considers demand forecasts.
Pierre, Vannieuwenhuyse, Dominanta, and Van Dessel (2004) described
a dynamic variant of the traditional ABC storage policy, which can be
used in manual order picking warehouses where items experience a
rather unstable demand. This approach first classifies items into three
classes according to their contribution to the total number of orderlines.
In contrast to static variants of the ABC storage policy, the classification
is reviewed on a short-term basis based on the past evolution of the
number of orderlines per item and per day. Every item that is currently
stored in the wrong class receives a priority. The priority is used to
identify items that may lead to the highest efficiency gains if relocated.
Kofler et al. (2015) extended this approach by permitting alternative
storage paradigms beyond the ABC classification. Manzini, Accorsi,
Gamberi, and Penazzi (2015) formulated two cost-based mixed integer
linear programming models. The first model addresses the technology
selection and the storage capacity of each class. The second model se-
lects optional subsystems. In both models, the items are dynamically
assigned to the classes. The authors did not propose a solution method
and did not use forecast data. Li, Moghaddam, and Nof (2016) in-
vestigated a dynamic storage location assignment problem where in-
coming items need to be assigned to storage locations. We added a
figure to Appendix A to highlight the contribution of our paper by
comparing it to the discussed papers.

3. Problem statement

According to Tompkins, White, Bozer, and Tanchoco (2010), the
time the order picker spends on travelling through the warehouse ac-
counts for around 50% of the total picking time. Thus, as the majority of
studies (Van Gils et al., 2018), we focus on reducing the total travel
distance for a given number of orders (see Assumption 1 in Section 4.1).
We concentrate on manual low-level, picker-to-parts systems, as these
systems are most frequent in practice. In these systems, order pickers
drive or walk along the aisles of the warehouse to pick items from
storage locations (De Koster et al., 2007). If there are only two cross
aisles located at the front and at the rear of the warehouse, the ware-
house is usually referred to as a one-block warehouse. Introducing
additional cross aisles generates a multi-block layout (Wäscher, 2004).
Today, most companies use multi-block layouts, as these make

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

3

warehouse operations more efficient (Kulak et al., 2012). Therefore,
this paper also investigates a multi-block layout (see Assumption 2 in
Section 4.1). We assume that at the start of the picking process, a set of
customer orders is available. Each order consists of a number of or-
derlines, with each line representing an item and the corresponding
quantity requested by the customer (Wäscher, 2004). We note that
other factors, such as precedence constraints, batch sequences, order
due times, worker learning or picker blocking (see Assumption 5 in
Section 4.1) can also be important for a particular picking scenario. We
point out in Section 7 that these aspects could be considered in future
research.

A recent study of Van Gils et al. (2018) emphasized the strong in-
terdependence between the three planning problems. Petersen and Aase
(2004), Ho and Tseng (2006) and Ho, Su, and Shi (2008) showed that a
statistically significant interdependence between the storage location
assignment and the order batching problems exists. The inter-
dependence between the storage location assignment and the picker
routing problem was highlighted, among others, by Petersen and
Schmenner (1999), Manzini, Gamberi, Persona, and Regattieri (2007),
Theys et al. (2010), and Shqair, Altarazi, and Al-Shihabi (2014). A joint
solution of the order batching and picker routing problem can lead to
significant performance improvements as compared to separate solu-
tions (Van Gils et al., 2018). Despite the strong interdependence be-
tween both planning problems, they are traditionally solved separately
(De Koster et al., 2007), even though this usually leads to losses in ef-
ficiency (Hsieh & Huang, 2011). In fact, only a simultaneous solution of
the three problems could result in an optimal solution for the system.
However, for practical problems, this is not a realistic approach
(Wäscher, 2004), first because of the mathematical complexity of the
resulting optimization problem, and secondly because of the different
planning horizons of the three problems (the batching and routing
problems usually need to be solved on a daily basis, while the storage
location assignment problem is usually not changed on a daily, but
instead on a weekly or monthly level). In this paper, we develop an
iterative approach for solving the joint dynamic storage location as-
signment, order batching and picker routing problem.

4. Model development

This section formulates a mathematical model for the dynamic
storage location assignment problem. For a formulation of the joint
order batching and picker routing problem, we refer to the model de-
veloped by Kulak et al. (2012).

4.1. Assumptions

We make the following assumptions:

1. The objective is to minimize the total travel distance for the plan-
ning period.

2. Since it is the most common order picking system in practice, we
consider a manual picker-to-parts system in a warehouse with
parallel aisles and multiple blocks.

3. To avoid additional sorting effort, orders may not be split up into
multiple batches.

4. All locations have the same storage capacity.
5. Order pickers can pass through the aisles in both directions. We

therefore do not consider picker blocking.
6. Since a batch should be picked in a single tour, the weight of an

order is not allowed to exceed the capacity of the picker.
7. Each item type is stored only in one location, and each location

contains only a single type of item.
8. We assume that all customer orders of the current planning period

are known and that proximity batching is used. The future cus-
tomer demand is not known in advance.

9. The order picker can retrieve items from the left and right sides in

an aisle without significantly changing position. Movements from
left to right or vice versa can therefore be neglected.

10. Since we consider a low-level system, vertical movements can be
neglected.

Most of these assumptions have already been motivated in the
earlier sections. Assumption 9 is commonly made in papers that deal
with the picker routing problem (see, for example, Theys et al. (2010),
Chen et al. (2015) or Scholz et al. (2017)). Assumptions 4 and 7 are
commonly made in papers that deal with the storage location assign-
ment problem (see, for example, Pierre et al. (2004), Kofler et al. (2015)
or Li et al. (2016)).

4.2. Storage location assignment and the joint batching and picker routing
problem

The static storage location assignment problem can be modeled as a
quadratic assignment problem. We extend the model of Reschke (2013)
to take account of multiple periods and to account for a relocation effort
that depends on the distance between the items’ current and future
storage locations, an administrative time for updating the information
in the IT-system, and the time required for retrieving and restoring the
item. The model considers a planning horizon from period (e.g., weeks)
t to period u and is solved in a rolling fashion at the end of each new
period. When solving the model at the end of period t 1, all customer
orders have already been picked for that period, and it needs to be
decided which items should be relocated before the start of period t .
The following nomenclature is used throughout the paper:

Indices and sets:
m n A, Items, including a dummy item assigned to the depot and

indexed with “0″
i j V, Storage locations, where the depot is represented by “0″ and

V A| | | |
r U Time index, where …t u, , are the periods included in the

planning horizon
Parameters:
di j, Distance between storage locations i and j
fm n t, , Frequency of consecutive picks of items m and n in period t

vpick Walking speed of an order picker

zadm Administrative time for relocating one item

z phy Time for (physically) withdrawing and restoring one item

im
cur Current storage location of item m, i Vm

cur

Decision vari-
ables:

Wm i, = 1 if item m is assigned to storage location i (=0, otherwise)

We obtain the following optimization model:

= + + +
minZ

W sign i d v z z

f d W W

· (i)·(·())

· · ·
m A i V

m i m
cur

i
pick adm phy

r U m A n A
n m

i V j V
j i

m n r i j m i n j

, ,i

, , , , ,

m
cur

(1)

s.t.

W i V1
m A

m i,
(2)

=W m A1
i V

m i,
(3)

W i V m A0, 1 ,m i, (4)

The objective function (1) minimizes the relocation effort consisting
of the travel distance between the current and the future storage lo-
cations associated with the relocation of both items, an equivalent for
administrative and physical withdrawal efforts, as well as the total
travel distance of the order picking process in the future periods t u, ..., .

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

4

The signum function (sign) adopts the value 1 if the future storage lo-
cation differs from the current one. If =W 1m i, , the relocation effort is
calculated. If the item is not relocated, the function becomes zero. The
second part of Eq. (1) calculates the travel distances for all t u, ..., per-
iods under study for the case where item m is assigned to location i and
item n is assigned to location j. Constraint (2) ensures that each storage
location contains at most one item, while constraint (3) ensures that
each item has exactly one storage location. Finally, (4) defines the
domains of the variables.

Solving the storage location assignment problem at the end of
period t 1 is associated with two main problems:

1) The future customer orders for periods t u, ..., are usually not avail-
able before the start of the respective periods. Therefore, to evaluate
a storage assignment at the end of period t 1, the future demand
needs to be forecasted.

2) The frequencies (fm n t, ,) with which two items are consecutively
picked in periods …t u, , are not known as long as the joint order
batching and picker routing problem has not been solved. Hence, we
have to solve these problems for periods …t u, , first.

Since the original model of Reschke (2013) is already NP-hard, we
develop a heuristic solution method for the problem in Section 5.3.

For the joint order batching and picker routing problem, we refer
the reader to Kulak et al. (2012). The picker routing problem in a multi-
block warehouse is a Steiner TSP. Travel distances are determined by
calculating the length of the shortest path between any two storage
locations. The distance between two locations situated in two different
blocks or in the same aisle can be calculated with the help of the
Manhattan metric. In case two locations are in different aisles of the
same block, the length of both possible paths that involve the adjacent
cross aisles are calculated, and the shortest one is kept. All distances are
saved in a symmetric distance matrix. With the help of this matrix, any
of the heuristics for the classical TSP can be used to solve the picker
routing problem (Theys et al., 2010). Our contribution to the literature
is the development of a novel solution procedure for this problem,
which is presented in Section 5.2.

5. Proposed solution approach

5.1. Structure of the proposed solution approach

To solve the three problems jointly, we propose an iterative solution
procedure illustrated in Fig. 1. This section first outlines the general
structure of the proposed solution approach. The subsequent section
then explains the different steps of the solution procedure in detail.

As input data, orders, the weights of the items, the distance matrix,
the current storage location assignment, and the capacity of the picker
are needed. The left side of Fig. 1 illustrates the joint order batching and
picker routing method that can also be applied separately without the
storage location assignment algorithm. In the first step of this method,
orders are grouped into batches. For each batch, picking tours are
constructed and the travel distances are calculated. The distances of the
tours are used to evaluate the quality of the corresponding batches. The
method then continues with computing batches and routes until a
stopping criterion is reached. The picking orders are then released. The
right side of Fig. 1 illustrates the dynamic storage location assignment
algorithm that starts with forecasting the future orderlines per item.
The method then evaluates if items should be relocated and selects new
storage locations if required. Using the joint order batching and picker
routing algorithm and the customer orders of the current period, the
method calculates the travel distance before and after relocating an
item. The potential future reduction in travel distance is estimated by a
newly developed procedure that will be outlined in detail below. If the
future travel distance reduction exceeds the relocation effort, the item
in question is relocated, and otherwise it is kept in its current storage
location. Relocation options are tested until a stopping criterion is
reached, and then the relocation orders are released.

5.2. Discrete evolutionary particle swarm optimization

In the following, we use a PSO procedure to group orders into
batches and a 2-opt-algorithm combined with a nearest neighbor al-
gorithm to construct the picker routes. PSO uses only primitive math-
ematical operators and is conceptually very simple (Das et al., 2008)
and thus easy to implement in practice. We choose PSO as earlier re-
search has shown that it works well for mixed-integer programming
problems and especially for bin packing problems such as the order
batching problem. Önüt, Tuzkaya, and Doğaç (2008) showed that PSO

order batching algorithm

picker routing algorithm

stopping
criterion

batches

picking tours

fitness
values

batches & picking tours

picking orders

forecasting method

relocation algorithm

stopping
criterion

relocation orders

orderlines

storage location
assignment

article
arrangement

efficiency check

orders, weights of the items, distance matrix, storage location assignment,
capacity of the pickerinput

method

output

travel distance

Fig. 1. Structure of the proposed iterative solution approach.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

5

computes very good results in a short time. Hembecker, Lopes, and
Godoy (2007) confirmed these results and showed that PSO works well
even for large instances. Kashan, Kashan, and Karimiyan (2013)
showed that PSO outperforms genetic algorithms in various instances of
the bin packing problem. Cheng et al. (2015) developed a PSO algo-
rithm for the order batching problem in manual picker-to-parts ware-
houses and showed that it provides better results than a genetic algo-
rithm developed by Tsai et al. (2008). Lin et al. (2016) also achieved
good results by solving the order batching problem with the help of a
PSO. Both, Cheng et al. (2015) and Lin et al. (2016) tested their algo-
rithms with the help of small test instances.

PSO was introduced by Kennedy and Eberhart (1995) for nonlinear
functions. In PSO, particles are stochastically generated in the search
space. Each particle is a candidate solution to the problem, and it is
represented by a location in the search space and a velocity. Each
particle has a memory that enables the particle to remember its own
and the swarm’s previous best position. During the optimization phase,
particles move around in the search space. In each iteration, a particle
adjusts its position and velocity, based on the best position it has visited
so far and the best position found by any other particle. When the al-
gorithm terminates, the best position the swarm reached so far is the
solution to the optimization problem (Boussaïd, Lepagnot, & Siarry,
2013).

The initial PSO was designed to operate in continuous search space,
but was adapted by Kennedy and Eberhart (1997) to operate on discrete
binary variables. One drawback of the standard PSO is a possible pre-
mature convergence and the associated trapping in local optima
(Boussaïd et al., 2013). To overcome these shortcomings, standard PSO
can be combined with elements of evolutionary computation. A com-
prehensive literature review on PSO methods is the one of Sedighizadeh
and Masehian (2009). Tian, Liu, Yuan, and Wang (2013) redefined the
particle’s velocity and moved the particle by considering the differences
between the particle’s individual best and swarm best. They also in-
troduced a mutation strategy to prevent premature convergence. In
addition, they adopted a randomized exchange neighborhood search to
enhance the local search ability.

The work at hand extends the algorithm of Tian et al. (2013) and
combines it with the savings algorithm developed by Clarke and Wright
(1964), a 2-opt-algorithm and the nearest-neighbor heuristic to solve
the joint order batching and picker routing problem. The 2-opt algo-
rithm is probably the most basic local search heuristic for the TSP, but
achieves good results for real world instances both with respect to
runtime and approximation ratio (Englert, Röglin, & Vöcking, 2014). In
case of the picker routing problem in manual picker-to-parts ware-
houses, Kulak et al. (2012) showed that 2-opt leads to good results
within a very short time. Since the routing heuristic is embedded into
PSO, and PSO itself is embedded into the dynamic storage location
algorithm, it is essential that the picker routing problem is solved
within a tight time window. Therefore, we choose the 2-opt algorithm
to solve the picker routing problem. We choose nearest-neighbor to
calculate a first feasible solution for the picker routing problem, which
is later improved by the 2-opt algorithm. The latter has the advantage
that the tours incorporate only a few serious mistakes. The calculated
tours have long segments where nodes are connected by short edges.
Such tours are good starting tours for a subsequent application of im-
provement methods (Tsai, Tsai, & Tseng, 2004).

The framework of the discrete evolutionary particle swarm opti-
mization (DEPSO) is shown in Fig. 2.

5.2.1. Picker routing
The exact algorithm proposed by Cambazard and Catusse (2018)

has a runtime complexity of O hv(5)h , where n is the number of cities
located on h horizontal and v vertical lines. Transferred to order

picking, the algorithm has an exponential runtime in the number of
cross-aisles. Since the picker routing problem needs to be solved many
times during the optimization process of DEPSO, such exact algorithms
cannot be used in real-life environments. For this reason, we use a
nearest neighbor heuristic and a 2-opt-algorithm, which are both time-
efficient. Nearest neighbor is a constructive heuristic, which builds a
tour by adding the node that is closest to the current node. The 2-opt
heuristic starts with the tour constructed by the nearest neighbor al-
gorithm and tries to reduce its length by exchanging two edges that are
part of the current tour with two new edges that are not part of the tour
(Kulak et al., 2012). Both heuristics are summarized in Appendices A
and B.

5.2.2. Initialization
We use the following encoding scheme for the algorithm: A particle

consists of a permutation of all K costumer orders, where each order
occurs exactly once. To assign orders to batches, we use the first fit
batch selection rule. This rule assigns orders into fewer batches than
other rules (as compared, for example, to the next fit rule) because
several batches are open at the same time (Koch, 2014). We assign
orders to batches in the sequence of the particle’s permutation and open
a new batch in case an order does not fit into the current batch any-
more. We then continue in the permutation and assign the remaining
orders to the batch with the smallest number into which they fit
(Wäscher, 2004). This procedure is illustrated in an example in the
Online Supplement, Part 1. The predefined number of particles Aparticle

is randomly generated upon initialization of the algorithm.
To shorten computation time and to guide the swarm early to a

promising region of the search space, a problem-specific heuristic can
be used (see, e.g., Lam, Nicolaevna, & Quan, 2007). Therefore, we in-
tegrate the savings algorithm into the swarm to determine the permu-
tation of one particle. Savings algorithms are based on the savings in
travel distance, Savk k1 2, that can be obtained by combining two orders k1
and k2 in a single route, as compared to the situation where both orders
are picked separately (De Koster, Van der Poort, & Wolters, 1999).
Routes are constructed with the heuristics outlined in Section 5.2.1 and
the travel distances are calculated with the help of the distance matrix.
The savings algorithm is described in Appendix D.

When all particles have been generated, each particle’s travel dis-
tance is calculated with the help of the picker routing heuristics and the
distance matrix. Each particle p has a memory and saves its previous
best position Pp

best and the previous best position of the whole swarm,
Gbest . Besides the particle’s position in the search space, each particle p
has a specific velocity = …V v v v{ , , , }p t p t p t p k t, ,1, ,2, , , at time t , where
v { 1, 0, 1}p k t, , is assigned to order k. The velocity vectors are gen-
erated randomly. Also, a stagnation factor SStagGbest is defined and set to
zero. This factor counts the number of iterations where Gbest has not
improved. If Gbest is updated, SStagGbest is set to zero, and otherwise it is
increased by one.

5.2.3. Movement
In each iteration, particles move through the search space to new

positions. The movement is controlled by a movement probability and a
velocity vector:

• If =v 1p k t, , , particle p in position k is attracted by Gbest and moves
towards it.

• If =v 1p k t, , , particle p in position k is attracted by Pp
best and moves

towards it.
• If =v 0p k t, , , there is no movement of particle p in position k.

Each particle has two movement probabilities, one in the direction
of its Pp

best and one in the direction of Gbest. The movement probabilities

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

6

can be calculated by the difference of the permutations Pp1 and Pp2 of
particles p1and p2:

= =Df
sign P j P j

K
(() ())

,p p
j
K

p p
,

1
1 2

1 2

where K is the total number of orders. The signum function sign is 0 if
=P j P j() ()p p1 2 , else 1. This procedure is illustrated in an example in the

Online Supplement, Part 2. The movement probability of particle p to
Pp

best is =B Dfp P p P, ,best p
best, and the movement probability to Gbest is

=B Dfp G p G, ,best best
. Unlike Tian et al. (2013), we do not multiply the

difference by a random number because we do not want to decelerate
the particle’s movement. The movement of a particle p is described in
Appendix E, and an example is provided in the Online Supplement, Part
3.

After the particle has moved, orders are assigned to batches with the
first fit rule, tours are constructed with the picker routing heuristics and
the travel distances are calculated. If Pp

best or Gbest has improved, they
are updated and the next particle is moved. After all particles have been
moved, we evaluate if Gbest has improved. In this case, SStagGbest is set to
zero, otherwise it is increased by one.

5.2.4. Mutation
In the case where a particle’s current position, Pp

best , and Gbest are the
same, the particle will not move. To prevent stagnation, a mutation
operator is introduced that modifies the position of some particles. The
mutation operator is controlled by a mutation probability, which is
based on the particle’s intensity:

= + +Int Df Df Df1
3

·p p P p G P G, , ,p
best best p

best best

The intensity indicates how close Pp, Pp
best and Gbest are to each other.

The closer they are, the higher the intensity and vice versa. After cal-
culating every particle’s intensity, the maximum intensity of all parti-
cles Intmax and the minimum intensity Intmin can be determined. A
particle’s mutation probability is:

= =M
Int Int

Int Int
ifInt Int else, (1,)p

max
p

max min
max min

As Tian et al. (2013), we assume that a particle is closer to the global
optimum if it has a better fitness. In such cases, only minor mutations
should be allowed to prevent the particle from moving too far away
from the global optimum and vice versa. Therefore, a particle’s relative
closeness Clp to the global optimum is estimated as:

=Cl
Td Td

Td Tdp
p G

max
G

best

best

where Tdp is the particle’s travel distance, TdGbest is the travel distance of
Gbest , and Tdmax is the travel distance of the particle with the lowest
fitness value. All travel distances can be calculated with the help of the
picker routing algorithms. We use three mutation operators:

• Swap: Swap the orders of two randomly chosen positions.
• Shift: A randomly chosen order is placed in front of a random po-

sition.
• Inverse: Two random positions are chosen and their orders are

swapped. The orders in-between are inverted.

While the swap operator only applies minor changes to the order
sequence, the changes are extensive if the inverse operator is applied.
The mutation operation is summarized in Appendix D, and an example
is provided in the Online Supplement, Part 4.

5.2.5. Local search
The PSO might stagnate and remain in a local optimum when Gbest

does not improve over several iterations. To avoid a premature termi-
nation of the algorithm, a local search procedure is integrated into
DEPSO. Since the local search will cost some computational time, it is
not performed in every iteration. The use of the local search is instead
controlled by an adaptive stagnation threshold, which decreases over
time such that the local search is performed rarely at the beginning of
the optimization and more frequently towards its end. The stagnation
threshold is calculated as follows:

= +S round S It It
It

1 ·Stag maxStag
max cur

max

SmaxStag is the predefined maximum stagnation bound, Itmax is the pre-
defined maximum number of iterations of DEPSO, and Itcur is the cur-
rent iteration. The symbol round represents the rounding function. The
local search is described in Appendix G. Unlike Tian et al. (2013), we
place one particle on the updated Gbest . This particle will most likely be
mutated in the next iteration and the area around Gbest can be explored.

5.2.6. Overall procedure of DEPSO
The core parts of DEPSO were introduced in detail above. The

overall procedure of DEPSO can now be described stepwise in algo-
rithmic notation as follows:

Fig. 2. The framework of DEPSO.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

7

DEPSO
Initialization
Step 1: Randomly generate A(1)particle particles and their corresponding

velocity vectors.
Step 2: Generate one particle with the help of the savings algorithm.
Step 3: Assign the orders of each particle to batches with the help of the

first fit rule.
Step 4: Construct the tours for each batch with the picker routing heuristics

and calculate the travel distance.
Step 5: Set the particle’s current permutation as Pp

best and choose the
particle with the shortest distance as Gbest .

Optimization
Step 6: Choose particle =p 1.
Step 7: Move the currently selected particle.
Step 8: Assign orders of the currently selected particle with the help of the

first fit rule to batches.
Step 9: Construct the picking tours of the batches with the help of the

picker routing heuristics and calculate the travel distance.
Step 10: Update Pp

best and Gbest if the solution has improved. If there are
particles that have not been checked yet, increase p by one and
proceed with step 7, else with step 11.

Step 11: Check if Gbest has been updated. If an update has occurred, set
SStagGbest to zero, else increase SStagGbest by one.

Step 12: Apply the mutation operation.
Step 13: Apply the local search procedure.
Step 14: If <It Itcur max , increase Itcur by one and go back to step 6, else

proceed with step 15.
Output
Step 15: Terminate and return the best batch assignment, the picking tours

and the travel distance.

Before starting DEPSO, the following parameter values need to be de-
fined:

• Number of particles: Aparticle

• Number of iterations: Itmax

• Threshold value of Gbest: SGbest

• Maximum number of iterations for the local search: ItmaxLS

• Maximum stagnation bound: SmaxStag

An appropriate parameter combination is crucial for the results of
the procedure, and they can be found during pretests. This is illustrated
in Section 6.2.

5.3. Dynamic storage location assignment algorithm

To solve the dynamic storage location assignment problem, we
propose an algorithm based on the dynamic ABC storage policy of
Pierre et al. (2004). We extend it by a forecasting procedure to estimate
the future demand, a relocation algorithm to identify candidates for a
relocation and corresponding storage locations, and a procedure for
estimating the future travel distance reduction of an item relocation.

Moreover, we integrate the joint order batching and picker routing
method and take the relocation effort into account. Fig. 3 illustrates the
general structure of the algorithm.

We assume a class-based storage location assignment with three
classes A, B and C, where A items are fast movers and C items slow
movers. The algorithm is run at the end of every planning period, where
the length of the planning period can be specified by the user. In the
first step, the algorithm checks if items are stored in the wrong class.
Each item stored in the wrong class then gets a priority coefficient
based on its estimated future demand. We then evaluate if all items with
a priority coefficient can be relocated in light of the available storage
locations in the different classes and generate a relocation suggestion.
The algorithm then evaluates the suggested relocation with respect to
its potential to reduce future travel distances. If the reduction in future
travel distance exceeds the relocation effort, the item is relocated,
otherwise not. Relocation suggestions are tested until a termination
criterion is reached.

5.3.1. Item classification
At the end of period t 1, items are assigned to classes based on

their number of orderlines with the help of an ABC analysis. For periods
+t t U, ..., for, a demand forecast is made, and the items are again clas-

sified. The relative size of a class can be defined by the user. In the
following, forecasted values are denoted by the symbol “^”. For t 1
and the periods =r t U, ..., , the last items of class A and class B are
identified, and their numbers of orderlines per period are the class
limits AB (A t

Poscl
1, 1 resp. A r

Poscl
1,) and BC (A t

Poscl
2, 1 resp. A r

Poscl
2,). We refer to the

class limit AB with the order number 1 and to the class limit BC with the
order number 2. Fig. 4 shows the number of orderlines of item m and
the class limits over time in an example. Note that the figure does not
show the number of items of a class (the “size” of the classes), but in-
stead the number of orderlines an item should have at least to be as-
signed to a certain class.

The class limits vary since the total number of orderlines may vary
as well from period to period due to changes in customer demand. At
the end of period t 1 (period 10 in the example in Fig. 5), an item’s
number of orderlines for period t 1 can be calculated from the cus-
tomer orders that were received in that period. In a given period t 1, a
forecast for the future number of orderlines in the next U for periods can
be made based on the time series of past orderlines. In the numerical
experiments in Section 6, we use Holt-Winter’s exponential smoothing
method for this purpose, since the demand of the items follows a linear
trend with a seasonal component. Several studies (e.g., Makridakis et al.
(1982), Makridakis et al. (1993) or Makridakis and Hibon (2000)) have
shown that Holt-Winter’s exponential smoothing method gives results
comparable to more complex forecasting methods. According to Schuhr
(2012), Holt-Winter’s exponential smoothing is a well-established
method for applications in the field of warehousing or production

Fig. 3. Structure of the dynamic storage location assignment algorithm.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

8

planning that exhibit demand following a trend with a seasonal com-
ponent. It should be noted that other forecasting methods could be
integrated into the proposed procedure if required. In the example
shown in Fig. 4, item m is stored in class B in period 10 (cf. the solid
line, which indicates the class where item m should be stored). The
solid line in Fig. 4 indicates that since period 6, item m should have
been assigned to class A, and that it is expected to stay in this class for
the next four periods. Item m is obviously a candidate for a relocation.

We now define two thresholds for a reassignment of an item to
another class: First, the item should be stored in the wrong class for
already o periods, and secondly we should expect that it will stay in the
target class for at least u periods. Both thresholds are introduced to
prevent that items are frequently assigned to a new class and then
immediately assigned back in the next iteration, which would increase
computational time.

5.3.2. Priority rule
For all items we identified as candidates for an eventual relocation

in Section 5.3.1, we calculate a priority coefficient to find the most
promising candidates. Let Um

tar with U Um
tar for be the number of sub-

sequent periods in which item m is assumed to stay in the target class.
The priority coefficient then considers the forecasted number of or-
derlines per item, Am r

Pos
, for = +t t U, ..., m

tar . We denote the corresponding
class limit, which is between this item’s current class and its target

class, as the ‘relevant class’ relCL and the number of orderlines as
ArelCL r

Poscl
, . The difference between an item’s number of orderlines (Am r

Pos
,)

and the relevant class limit (ArelCL r
Poscl

,) is called distance dm relCL r, , , and it
can be calculated as follows:

=d A A rm relCL r m r
Pos

relCL r
Poscl

, , , ,

An item’s priority value PVmis calculated as the summed distances of
the future periods in which the item will be in the target class:

=
=

+

PV dm
r t

t U

m relCL r, ,

m
tar

All priority values are stored in a priority list, which is sorted in
descending order.

5.3.3. Feasibility
Before relocating items, we need to make sure that the items in the

priority list can be relocated and that no class cl A B C{ , , } contains
more items than storage locations. Therefore, the number of storage
locations that are currently empty, NSLcl

alempty, the number of storage
locations that may become empty during the relocation of items,
NSLcl

bempty, and the number of storage locations that may become oc-
cupied during the relocation of items, NSLcl

boccup, are determined. The

Fig. 4. Item time series and class limits.

empty storage
location

storage location
with ascending item

storage location
with descending
item 1

storage location
with descending
item 2

exchange scenario

relocation
scenario class 1. empty

storage location
2. direct

exchange
3. indirect

exchange 1
4. indirect

exchange 2

Fig. 5. Relocation scenarios for three storage classes.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

9

feasibility value is calculated as follows:

= +FV NSL NSL NSLcl cl
alempty

cl
bempty

cl
boccup

If FV 0cl , all relocations can be executed for this class. <FV 0cl , in
turn, indicates that there is not sufficient space in a class. If more than
one class has a negative value, the class with the lowest FVcl-value is
chosen, and FVcl items that were supposed to be relocated into this
class are eliminated from the priority list. We thereby first eliminate the
items with the lowest priority value and repeat this procedure until no
negative feasibility values exist anymore.

5.3.4. Relocation rule
For relocating items, we chose the first item in the priority list that

should be moved to a higher class (“ascending item”). Fig. 5 illustrates
that there are three different relocation scenarios: The item can move
from class C or B to class A or from class C to class B.

Each relocation scenario could have up to four different exchange
scenarios: Item m can be relocated to an empty storage location in the
target class (exchange scenario 1 in Fig. 5) or be exchanged with an
item in the priority list (“descending item”) that should be moved from
the target to the current class of item m (exchange scenario 2). An in-
direct exchange occurs when item m is moved to the target class, and
when an item from the target class is moved to an empty storage lo-
cation in the third class (exchange scenario 3). In exchange scenario 4,
three items are involved and change their storage location, leading to
the highest relocation effort. To identify the descending item in ex-
change scenarios 2 to 4, we implemented the following procedure: In
the class where an item needs to be removed, the item with the highest
priority value is selected as this item is expected to have the lowest
demand in its current class in the future. If multiple items have the
same priority value, we choose the item that is closest to the depot. This
way, we ensure that the future travel distance of the ascending item can
be minimized. If there are still multiple items left as candidates for a
removal from the class, we minimize the relocation effort and give
priority to exchange scenario 1 before scenarios 2, 3 and 4 and to
scenarios 2 and 3 before scenario 4. Decisions between scenarios 2 and
3 are made randomly.

5.3.5. Efficiency of the relocation
After selecting an ascending and eventual descending items (we

refer to this set as a “relocation suggestion” in the following), the re-
location effort of all involved items is calculated. Subsequently, the
reduction in future travel distance that would result from relocating the
ascending and the descending items is estimated. Both procedures are
described in more detail below. If the estimated reduction in travel
distance exceeds the relocation effort, this relocation suggestion is im-
plemented, otherwise discarded. If the termination criterion (e.g., the
number of evaluated relocation suggestions) has not been reached yet,
then the next items from the priority list are evaluated. If a relocation
suggestion was accepted, the next relocation suggestion is evaluated
with the new storage location assignment.

The relocation effort of an item m consists of three components: The
travel distance Em

dis from the current to the target storage location, the
physical effort Em

phy associated with retrieving and storing the item, and
the administrative effort Em

adm to update the IT-system. Both Em
phy and

Em
adm are expressed as travel distance equivalents:

=E t v·m
phy phy pick

=E t v·m
adm adm pick

The total relocation effort Em
total of item m is:

= + +E E E Em
total

m
dis

m
phy

m
adm

The total relocation effort Erel
total is calculated for all involved (as-

cending and descending) items.
Before evaluating the first relocation suggestion, the travel distance

(Td)act of the current period without any relocations is calculated with
the orders of the current period using DEPSO. Tdact is then saved as the
comparison travel distance Tdcom. We then execute the relocation sug-
gestion and calculate the distance after the relocation Tdrel with the help
of DEPSO. We continue with calculating the reduction in travel distance
Tdrrel t, 1 for the relocation suggestion in the current period t 1:

=Tdr Td Tdrel t
com rel

, 1

If Tdr 0rel t, 1 , the involved items are not relocated and removed
from the priority list, and the next items are tested. If >Tdr 0rel t, 1 , the
relocation would lead to a reduction in travel distance in the current
period. We then estimate the future travel distance reductions using the
procedure illustrated in Fig. 6.

The above procedure assumes that a high pick frequency in the
future leads to a higher travel distance reduction for a particular re-
location than the calculated reduction in the current period, and vice
versa. An estimate of the pick frequency is the distance between an
item’s number of orderlines and the relevant class limit, dm relCL t, , 1 (see
Section 5.3.2). To simplify computation, we only consider the time
series of the ascending item, which is the item driving the efficiency
gains. We use the relative distance of item m to the relevant class limit,
dm relCL t

rel
, , 1, to acknowledge that the class limits are fluctuating:

=d
d
A

·100%m relCL t
rel m relCL t

relCL t
Poscl, , 1
, , 1

, 1

We then calculate a factor m t, 1 that describes the reduction in
travel distance that can be achieved when deviating by one percent
from the relevant class limit in the current period:

=
Tdr

dm t
m t

m relCL t
rel, 1

, 1

, , 1

This factor can be used as an estimator for future periods:

=m r m t, , 1

The future travel distance reductions can be estimated as follows:

=Tdr d r·m r m r m relCL r
rel

, , , ,

The relocation is accepted if:

>
=

+

Tdr E
r t

t U

m r m
total

,

m
tar

Otherwise, the relocation is discarded. In both cases, the items are
removed from the priority list. If the stopping criterion has not been
reached yet, the next relocation is tested. If the relocation is accepted,
the travel distance after the relocation, Tdrel, becomes the new com-
parison travel distance Tdcom. The next relocation is then tested against
the updated Tdcom-value and the updated storage location assignment.
Possible stopping criteria are the maximum number of tested reloca-
tions, the minimum number of accepted relocations, or a maximum
computation time.

6. Numerical analysis

This section evaluates the performance of the proposed algorithms
in numerical experiments. First, we compare DEPSO with the picking of
individual orders, a first-come-first-served heuristic and the savings
algorithm of Clarke and Wright (1964). The latter three heuristics are
combined with the S-Shape heuristic to solve the picker routing pro-
blem. We use the S-Shape heuristic as it is the most popular heuristic in
the literature (Masae et al., 2020) and often served as a benchmark to
evaluate other solution approaches (Chen, Wang, Qi, & Xie, 2013). We
further compare the dynamic storage location assignment algorithm to
the case where items are not relocated.

For both experiments, we consider a warehouse with three blocks as

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

10

illustrated in Fig. 7.
The warehouse consists of 10 picking aisles and 4 cross aisles. On

each side of a picking aisle, there are 90 rack elements with 4 storage
locations per element. In total, the warehouse has 7,200 storage loca-
tions. One rack element is one length unit (LU) wide and 1 LU long.
Cross and picking aisles are 1 LU wide. The depot is located in the right
cross aisle next to the lower picking aisle. We use a conventional layout
for our experiments since Masae et al. (2020) have shown that this is
the most frequently used layout in the literature. According to
Roodbergen and de Koster (2001) performance of heuristics in ware-
houses with one-block layout have been studied extensively. Additional
cross aisles provide the opportunity to realize more efficient picking
tours (Vaughan, 1999). Therefore, several studies focused on two-block
layouts with three cross aisles (e.g. Ene and Öztürk (2012), Kulak et al.
(2012), Chen et al. (2015) or Scholz et al. (2017)). Recent studies, such
as the one of Cano, Correa-Espinal, Gómez-Montoya, and Cortés (2019),
used a three-block layout with four cross aisles for their analysis.
However, they tested their algorithms with a maximum of 15 positions
per aisle side only. To increase the practical transferability, we also use
a three-block layout for our analysis but enlarge the warehouse to 360
positions per aisle side.

Items are assigned to locations with the help of a class-based storage
location assignment, where the top 5% items in terms of turnover are
assigned to class A, the next 15% to class B, and the bottom 80% to class
C. Item weights are randomly selected from [0.1;1.0] weight units
(WU). There are 6,000 different items to be stored in the warehouse,
and the order picking vehicle has a capacity of 100 WU. Storage loca-
tions are assigned to classes according to their distance to the depot.

6.1. Problem scenarios for the DEPSO algorithm

We analyze several problem scenarios. Each scenario is character-
ized by the number of orders (N Ord), the maximum number of

orderlines per order (N)maxOl , and the maximum number of parts per
orderline (A)maxOl . The turnover rates per item can be simulated with
the help of an access function. Different types of functions can be
generated by varying the access frequency AF . AF is the percentage of
accesses of the 20% most picked items. This can be modeled using the
following function (Reschke, 2013):

=Z yc

The parameter c is determined by:

Fig. 6. Estimation procedure for the future travel distance reduction.

2 LU

2 LU

1 LU

1 LU

depot

Fig. 7. Warehouse layout considered in the numerical experiments.

Fig. 8. Generation of test data for DEPSO.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

11

=c
AFlog

log 0.2
10

10

As shown in Fig. 8, for each problem scenario, we first generate the
number of orders N ord.

For each order k N ord, a random number of orderlines Nk
ol [1,

N maxol] is generated, where N maxol is the problem-specific maximum
number of orderlines. In Sections 6.1 and 6.3, all random numbers are
drawn from the respective intervals according to a uniform distribution.
Each orderline in order k has a random number of parts
A A[1,]ol k

maxol
, . Based on the total number of orderlines N totol of all

orders, the number of orderlines of item m, Nm
ol, can be determined

using AF . Then, the item’s orderlines are randomly distributed over all
orders N Ord; note that each item can be in an order only once.

We analyze the following problem parameters:

• Number of orders N(Ord): {50, 100, 150, 200}
• Maximum number of orderlines per order (N maxOl): {2, 6, 10}
• Maximum number of parts per orderline (AmaxOl): {2, 6, 10}

We set AF to 0.6. The problem scenarios are referred to using a
name tag structured as follows: N N A_ _Ord maxOl maxOl.

6.2. Evaluation of the DEPSO algorithm

In this section, we evaluate the performance of DEPSO for the case
without dynamic storage location assignment. To determine a suitable
parameter set for the algorithm, we performed comprehensive pre-
liminary tests with the procedure described in Koch (2014). Table 1
shows the tested parameter values and the analyzed problem scenarios,
leading to a total of 243 parameter sets.

For each problem scenario, we randomly generated five instances
separate from the main numerical experiments. Every instance was
solved for the 243 parameter sets of the DEPSO algorithm. The algo-
rithm was implemented and tested in MATLAB on a computer with a
2.5 GHz processor and 16 GB RAM. We then selected the parameter set
for the main numerical experiments that had the lowest average de-
viation from the best found solution for each problem instance:

• Number of particles: 5
• Number of iterations: 500
• Threshold value Gbest : 0.5
• Maximum number of iterations for local search: 100
• Maximum stagnation bound: 20

Appendix H shows the results of the main numerical experiments in
detail.

We analyzed 35 different problem scenarios with 40 randomly
generated instances for each scenario. We did not analyze problem
scenario 50_2_2, because in most cases all orders fitted into one batch,

which significantly simplified the problem at hand. Compared to SOP,
DEPSO reduced average travel distances by 83.78% on average. Using
DEPSO led to travel distances that were, on average, 40.80% shorter
than those obtained by FCFS. Compared to the savings algorithm,
DEPSO reduced travel distances by 31.64% on average. As shown in
Fig. 9, the average reductions in travel distance are higher when orders
have a lower number of orderlines and number of parts per orderline.

Our results imply that the developed method leads to the highest
performance improvements especially for companies with small orders.
Given the computation times obtained for solving the test instances (all
test instances could be solved in less than 4 min), the DEPSO algorithm
seems to be a method well suited for solving large problems in practice.
The results indicate that the improvements that can be obtained by
using DEPSO may lead to a significant increase in the efficiency of order
picking processes.

6.3. Problem scenarios for the dynamic storage location assignment
algorithm

This section evaluates the performance of the dynamic storage lo-
cation assignment algorithm including DEPSO. We first present a gen-
eral procedure for generating the required problem data and then de-
scribe the two data sets we analyzed. The test data for the dynamic
storage location assignment algorithm were generated as shown in
Fig. 10.

The problem consists of several periods (e.g., months) divided into
several sub-periods (e.g., weeks or days). Orders in period 1 are gen-
erated in the same way as for DEPSO and distributed uniformly over the
sub-periods. Since we would like to test the performance of the dynamic
storage location assignment algorithm in a dynamic situation with
highly fluctuating demand, we modeled the customer demand with the
help of a time series with a linear trend, an additive seasonality com-
ponent and an irregular factor (see also Schröder, 2012).

The demand of each item (number of orderlines) per period for the
U periods included in the planning horizon was modeled as follows:

= + + +N round N T t S cos t
L

Ir

t U

() ·(1) · 2· ·(1)
m t
ol

m
ol

m
trend

m
season

m t, ,1 ,

The trend Tm
trend and seasonality Sm

season components for each item m
are modeled with the help of the number of orderlines in period 1, a
problem-specific factor (trend or seasonality factor) and a random
number:

=T Tf N rand· ·m
trend

m
ol

,1

=S Sf N rand· ·m
season

m
ol

,1

An item’s number of orderlines per period without irregular com-
ponent Nm t

olwoIr
, is:

Table 1
Parameter values and problem scenarios (preliminary tests).

Name Symbol Values

Number of particles Aparticle {5, 10, 15}
Number of iterations Itmax {200, 350, 500}
Threshold value Gbest SGbest {0.25, 0.5, 0.75}
Maximum number of iterations for

local search
ItmaxLS {50, 75, 100}

Maximum stagnation bound SmaxStag {20, 40, 60}
Problem number Number of

orders
Maximum number
of orderlines

Maximum number
of parts

1 50 10 10
2 100 2 6
3 150 6 2
4 200 2 2

70%

75%

80%

85%

90%

95%

100%

2 6 10

tra
ve

l d
is

ta
nc

e
re

du
ct

io
n

number of parts per order line

2 orderlines 6 orderlines 10 orderlines

Fig. 9. Effect of the number of orderlines and the number of parts per orderline
on the average reduction in travel distance.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

12

= + +N N T t S cos t
L

t U·(1) · 2· ·(1)
m t
olwoIr

m
ol

m
trend

m
season

, ,1

The irregular component Irm t, can be positive or negative, and it
depends on the item’s number of orderlines per period without the ir-
regular component:

=Ir Irf N rand t U· ·m t m t
olwoIr

, ,

= =Ir Ir if rand Ir else t U·(1), 0.5(,)m t m t m t, , ,

The problem parameters Tf (trend factor), Sf (seasonality factor),
Irf (irregular factor) and L (length of the seasonal cycles) influence how
strongly the customer demand changes over time. To avoid unrealistic
scenarios with an extreme demand fluctuation over time, we introduce
a condition that limits demand variations. The total number of order-
lines over all items in the period with the highest demand should not
exceed M times the lowest demand that occurs in the planning horizon:

max N M min N t U{ } · { }t
totol

t
totol

Modern warehouses often face situations where fast-moving pro-
ducts become slow movers over time and vice versa (cf. Kofler et al.,
2015). Therefore, we also implemented a procedure simulating such
dynamics. The basic idea is to randomly select a fast-moving product
and to gradually turn this product into a slow mover over time. Simi-
larly, we select a slow-moving item and turn it into a fast mover. Using
a probability threshold (S)prob , we ensure that items with a high number
of orderlines in the first period will more likely become a slow mover
than items with fewer orderlines. Since we also want to permit that a
fast mover grows over time, we implemented a random principle. We
created the required data according to the following procedure:

Step 1: Create a list of all items and their number of orderlines in
period 1. Sort the list in descending order of the number of order-
lines.
Step 2: Choose the first item as basis item BI .
Step 3: Define a probability threshold Sprob and set it to 1.

Step 4: Calculate TBI
trend, SBI

season, IrBI t, and NBI t
ol

, .
Step 5: If <rand Sprob, invert the algebraic sign =T T ·(1)BI

trend
BI
trend .

Step 6: Randomly choose an item from the list as counter item CI .
Step 7: Calculate TCI

trend, SCI
season and IrCI t, as follows:

= >T Tf N rand T· · , if 0:CI
trend

BI
ol

BI
trend

,1

=T Tf N rand· · ·(1)CI
trend

BI
ol

,1

=S Sf N rand· ·CI
season

BI
ol

,1

= + +N N T t S cos t
L

t U·(1) · 2· ·(1)
CI t
olwoIr

CI
ol

CI
trend

CI
season

, ,1

=Ir Irf N rand t U· ·CI t CI t
olwoIr

, ,

= =Ir Ir if rand Ir else t U·(1), 0.5(,)CI t CI t CI t, , ,

Calculate NCI t
ol

, .

Step 8: If max N M min N t U{ } · { }t
totol

t
totol , keep NBI t

ol
, and NCI t

ol
, ,

else set = =N N N N t U,BI t
ol

BI
ol

CI t
ol

CI
ol

, ,1 , ,1 .
Step 9: =S S ·0.995prob prob .
Step 10: Remove both items from the list and choose the first item as
base item BI . If the list is empty, terminate the procedure.

In step 5, we induce that the most frequently picked items from
period 1 will most likely become slow movers. To decrease the prob-
ability of those items becoming a slow mover, the probability threshold
in step 3 can be set to a smaller value than 1. Step 9 lowers the prob-
ability threshold in each iteration, which reduces the probability that
fast movers will be converted into slow movers. Step 7, in turn, effects
that a randomly selected item gets an increasing (or decreasing) de-
mand over time. The demand pattern of this item is based on the de-
mand of the item BI that is turned into a slow-moving item (fast-moving
item), multiplied by a random number. The intention of this step is to
generate a new fast-moving item (slow-moving item) with a demand
similar to the demand of the former fast-moving item (slow-moving

N1
ord

Nk,1
ol

N1
totol

Nm,1
ol

Aol,k,1

orders in t=1

orders in sub-period in t=1

Nt
ord

random number {1,
Nmaxol}

access frequency

distribute randomly
over orders

random number
{1, Amaxol}

distribute uniformly over
sub-periods

Aol,k,t

Nt
totol

Nk,t
ol

orders in t

orders in sub-period in t

distribute uniformly over
sub-periods

for all N1
ord

orders

for all Nk,1
ol

orderlines

Nm,t
ol

random
number {1,

Nmaxol}

open new
orders until

Nt
totol

orderlines
have been
distributed

Nm,t
ol

distribute randomly

over orders

random number
{1, Amaxol}

for all Nk,t
ol

orderlines

for all t>1

item
demand

for all items

Fig. 10. Generation of test data for dynamic storage location assignment.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

13

item). If the condition in step 8 does not hold, both time series are
discarded, and the next items are chosen from the list. The above
procedure enables us to model a highly dynamic demand if required,
where fast-moving items can (frequently) become slow movers, and
vice versa. After the number of orderlines of the items per period have
been calculated, orders are generated in a similar way as in period 1.
Thus, an empty order is opened and the number of orderlines and
number of items per orderline are generated randomly. This process is
repeated until the number of orderlines of the orders equals the number
of orderlines of all items in this period. Afterwards, the items are ran-
domly assigned to orders. Finally, orders are distributed uniformly over
the sub-periods. Table 2 shows the parameters used for this study.

We analyzed two test scenarios, one highly dynamic scenario and
one with a less fluctuating demand. We considered 21 periods in total,
but used the first 12 periods to parameterize the forecast coefficients
and the last nine to test the dynamic storage location assignment al-
gorithm. The current storage location assignment was determined
based on the item demand of period 1, and items were assigned to
classes with the help of an ABC analysis. Within the classes, items were
assigned randomly to storage locations.

6.4. Results of the dynamic storage location assignment algorithm

As in Kofler et al. (2015), we evaluated 50 relocation suggestions in
both test scenarios. Given that the demand of the items follows a linear
trend and a seasonal component, we used Holt-Winters exponential
smoothing method to forecast the item’s orderlines per period (Schuhr,

2012):

= + + +x a b c^ ^ ^ · ^T t t T L L,

= + +a x c a b·() (1)·()t t t L t t1 1

= +b a a b·() (1)·t t t t1 1

= +c x a c·() (1)·t t t t L

where T is the period where the forecast is calculated, and is the
period the forecast is made for. L is the smallest non-negative integer
not smaller than

L
. To set the smoothing parameters, we followed the

recommendation of Silver, Pyke, and Thomas (2016) for situations
without structural changes in the trend and seasonality pattern:

= = =0.19; 0.053; 0.1. For this numerical experiment, we as-
sumed that items are only classified as being stored in the wrong class if
they were in the wrong class at least in the last period and in the current
period (threshold =o 2) and if they were assumed to stay in the target
class for at least one more period (threshold =u 1). Fig. 11 shows the
results of scenario 1.

We compared the travel distances obtained with DEPSO for the case
with no relocations to the results obtained using the dynamic storage
location assignment algorithm. The relocation efforts are based on the
travel distances resulting without relocations:

=

Relocation effort
Relocation effort length units

Travel distance without relocation length units

[%]
[]

[]
·(100%)

t

t

t

In the nine periods studied here, relocation leads to travel distance
reductions of 15.02% and relocation efforts of 2.79%. In total, the order
picking effort can be reduced by 12.23% (travel distance reduction –
relocation effort). As can be seen, the benefit of relocating items in-
creases over time. On average, 0.28% of the items are relocated per
period (Fig. 12).

Fig. 13 shows the results of scenario 2.
As in scenario 1, the performance improvement that results from re-

locating items improves over time. In total, travel distances can be reduced
by 7.45%. The relocation efforts are 2.08%. In total, the order picking
effort can be reduced by 5.37%. On average, 0.20% of the items are re-
located per period (Fig. 14) in this scenario. The detailed results of the
numerical experiments can be found in the Online Supplement, Part 5.

In summary, the dynamic storage location assignment algorithm
reduces travel distances in both scenarios. With a relatively small
number of relocated items, a significant reduction in travel distance
could be obtained. As the method provides even better results for the
more dynamic scenario 1, we conclude that it works well for companies
facing highly fluctuating order patterns.

Table 2
Constants and parameters of the analyzed scenarios.

Parameters (constant) Symbol Value

Number of orders in t = 1 N ord
1 5,000

Maximum number of orderlines per order Nmaxol 2
Maximum number of parts per orderline Amaxol 6
Seasonal cycle L 12 periods
Access frequency Af 0.6
Number of items Aitem 6,000
Number of sub-periods Asubp 20
Analyzed time U 9 (+12) periods
Maximum fluctuation factor M 2
Irregular factor If 0.025
Physical effort t phy 3 min
Administrative effort tadm 1 min
Average walking speed vpick 1 length units/sec
Parameters (varied in experiments) Symbol Scenario 1 Scenario 2
Trend factor Tf 0.300 0.150
Seasonality factor Sf 0.150 0.075

-5%
-3%
-1%
1%
3%
5%
7%
9%

11%
13%
15%
17%
19%
21%
23%
25%

1 2 3 4 5 6 7 8 9

tra
ve

l d
is

ta
nc

e
re

du
ct

io
n

an
d

re
lo

ca
tio

n
ef

fo
rt

periods

relocation effort travel distance reduction

Fig. 11. Travel distance reduction and relocation effort in scenario 1.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

14

7. Conclusion

This paper investigated the joint storage location, order batching and
picker routing problem in a dynamic environment. This problem is of
considerable practical interest since it is a common problem companies
face in a large number of industrial applications. Up to now, the literature
did not propose an integrated method that facilitates solving this problem.
In addition, previous work did not consider future customer demand and
relocation effort when identifying promising relocations. The three plan-
ning problems are strongly interconnected and, in fact, only a simulta-
neous solution could result in a global optimum. Since this is not a realistic
approach for large-scale problems encountered in practical applications,
we developed a sequential iterative method in this paper. First, we pro-
posed the DEPSO algorithm, which combines PSO with evolutionary

computation, a savings algorithm and a 2-opt algorithm to solve the joint
order batching and picker routing problem for a given storage location
assignment. This hybrid approach helps to avoid some of the major
drawbacks of the traditional PSO, which was reported to frequently arrive
at a locally optimal solution too quickly. To further improve the optimi-
zation results and the computation times, we calculated an initial solution
with the help of a savings algorithm. The routes were constructed by a 2-
opt algorithm with short runtimes. In extensive numerical experiments, we
showed that DEPSO outperforms algorithms that are frequently used in
practice. Even for large-scale problems, the results could be computed in
less than four minutes. This illustrates the practical applicability of the
developed method.

This paper also developed a novel dynamic storage location assign-
ment algorithm, which uses DEPSO to construct order batches and picker

0,00%
0,05%
0,10%
0,15%
0,20%
0,25%
0,30%
0,35%
0,40%
0,45%
0,50%

1 2 3 4 5 6 7 8 9

fra
ct

io
n

of
re

lo
ca

te
d

ite
m

s

periods

Fig. 12. Fraction of relocated items in scenario 1.

-4%
-2%
0%
2%
4%
6%
8%

10%
12%

1 2 3 4 5 6 7 8 9

tra
ve

l d
is

ta
nc

e
re

du
ct

io
n

an
d

re
lo

ca
tio

n
ef

fo
rt

periods

relocation effort travel distance reduction

Fig. 13. Travel distance reduction and relocation effort in scenario 2.

0,00%
0,05%
0,10%
0,15%
0,20%
0,25%
0,30%
0,35%
0,40%
0,45%
0,50%

1 2 3 4 5 6 7 8 9

fra
ct

io
n

of
re

lo
ca

te
d

ite
m

s

periods

Fig. 14. Fraction of relocated items in scenario 2.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

15

routes, and which assigns items into three classes based on their forecasted
number of orderlines. With the help of an estimation procedure and
DEPSO, travel distance reductions that may result from relocating items
were calculated and compared to the required relocation effort. Items
were relocated if the estimated reduction in travel distance exceeds the
relocation effort. It could be shown that the method provides especially
promising results for companies facing highly fluctuating demands.

Companies can benefit from the method proposed in this paper as
follows: First, travel distances can be significantly reduced by solving
the three problems in a single solution approach. This leads to high cost
savings or the possibility to pick more items within the same time
period. Secondly, further travel distance reductions can be obtained
using the improved PSO, which computes results with short runtimes.
Thirdly, the method allows aligning the storage assignment to fore-
casted customer demand. Quite large efficiency improvements can
often be realized by just a few relocations. Fourthly, to guarantee that
the proposed method is applicable in practice, we designed a method
that is rather simple in terms of mathematical complexity and that is
able to solve large-scale problems. Future research could analyze how
the findings need to be adjusted to optimize other order picking sys-
tems, for example parts-to-picker systems, AS/RS, automated systems
or systems with picking robots. Another interesting question is how
different layout variants affect the results of the optimization.
Moreover, the effect of picker blocking could be analyzed. Furthermore,
future research could consider the due date of each order and solve the
joint problem with the help of a multi-objective approach. Optimization

results may be further improved by incorporating relocation orders
resulting from the dynamic storage location assignment algorithm into
the order batching and picker routing problem. The combination of
regular picking and relocation processes may lead to further reductions
in travel distance. The dynamic storage location assignment algorithm
could be extended to facilitate the application of further storage loca-
tion assignment strategies (as for example dedicated storage or family
grouping). Another promising extension could be the consideration of
different item or load carrier geometries. The integration of other
forecasting methods, of ergonomic criteria or worker learning into the
dynamic storage location assignment algorithm could also be examined.
Finally, also the effect of storing an item in several storage locations
could be analyzed.

Funding sources

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Patrick Kübler: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Writing - original draft,
Visualization. Christoph H. Glock: Conceptualization, Writing - ori-
ginal draft, Writing - review & editing, Supervision. Thomas
Bauernhansl: Conceptualization, Supervision.

Appendix A. Contribution of this paper

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

16

Appendix B. Nearest neighbor heuristic

Step 1: Choose the depot as the starting node of the picking tour Pt and save it as the current node.
Step 2: Use the distance matrix to determine the distance between the current node and all other nodes that need to be visited, but that are not yet

in the tour Pt . Choose the node which is closest to the current node and add it to the tour Pt . Save the new node as the new current node and repeat
step 2 until no nodes are left that have not yet been visited.

Step 3: Choose the depot as the last node of the tour Pt .

Appendix C. 2-opt heuristic

Step 1: Calculate the length of the picking tour Pt that was constructed by the nearest neighbor heuristic and save it as the current travel distance
Td.

Step 2: Choose position 1 of the current tour Pt as position q. Choose position 3 as r .
Step 3: Calculate the distance before (= ++ +d d dbefore

Pt q Pt q Pt r Pt r(), (1) (), (1)) and after changing edges (= + + +d d dafter
Pt q Pt r Pt q Pt r(), () (1), (1)), where

dPt q Pt r(), () is the distance between the nodes Pt q() and Pt r().
Step 4: Calculate = d dafter before. If 0, discard the change and proceed as follows:

a) If r is not the second last position in the tour, keep q. Increase r by one and proceed with step 3.
b) If r is the second last position and q is not the fourth-to-last position, increase q by one and set = +r q 2. Proceed with step 3.
c) If q is the fourth-to-last position and r is the second last position, terminate and return Pt and Td.

If < 0, accept the change and set = + +Pt Pt q Pt r Pt r q Pt r end((1:), (), ((1): (1): (1)), ((1):)).
Step 5: Calculate the length of the current tour, Td, and proceed with step 2.

Appendix D. Savings algorithm

Step 1: Calculate the savings = +Sav Td Td Tdk k k k k k1 2 1 2 1 2 for every pair k k(,1 2) of customer orders that satisfy the capacity restriction of the
picker. Store the savings value in a savings list.

Step 2: Sort the savings list in decreasing order of the savings value.
Step 3: Choose the first order pair in the savings list that has not been examined yet. Three cases can be distinguished:

(1) Neither of the orders has been assigned to a batch. Open a new batch and assign both orders to it.
(2) One order has already been assigned to a batch. If there is sufficient capacity left, assign the second order to this batch. If not, choose the next

order pair in the savings list.
(3) Both orders have already been assigned to a batch. Choose the next order pair in the savings list.

Continue with step 3 until all order pairs in the list have been evaluated.
Step 4: If there are still orders left that have not been assigned to a batch yet, open separate batches for each order and assign the orders to those

batches. When all orders have been assigned to batches, terminate the algorithm.

Appendix E. Particle movement

Step 1: Start the procedure at position =h 1 in the permutation Pp of particle p.
Step 2: If =v 1p h t, , and >B S rand·p G

G
, best

best , choose Gbest as comparative permutation Pcomp. The variable rand represents a random variable
uniformly distributed over [0,1]. In contrast to Tian et al. (2013), SGbest is introduced to allow the swarm to favor movements in the direction of Gbest
or Pp

best . If =v 1p h t, , and >B randp P, best , choose Pp
best as comparative permutation Pcomp. If none of the conditions is satisfied, proceed to step 5.

Step 3: Find position r in Pp which contains order P h().comp

Step 4: If v 0p r t, , or =v 0p r t, , and <rand 0, 5, change orders P r()p and P h()p and recalculate the movement probabilities.
Step 5: Update the velocity vp h t, , by randomly selecting an element from the set { 1, 0, 1}. If the last position in Pp has not been reached yet,

increase h by one and proceed with step 2, else terminate the procedure.

Appendix F. Mutation operation

Step 1: Calculate the particle’s intensity Intp.
Step 2: Choose particle =p 1 as the current particle.
Step 3: Calculate the particle’s mutation probability Mp.
Step 4: If >M randp , calculate Clp, else increase p by one and proceed to step 3. Terminate the procedure if p was the last particle.
Step 5: If <Cl 0, 5p , apply the swap operator, if <Cl0, 5 0, 8p , apply the shift operator, else apply the inverse operator.
Step 6: Randomly choose two positions in the velocity vector Vp t, and change both values. Increase p by one and proceed with step 3. Terminate

the procedure if p was the last particle.

Appendix G. Local search

Step 1: If >S S rand·StagG Stagbest , set the iteration counter of the local search ItLS to zero and proceed with step 2, else terminate the procedure.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

17

Step 2: Apply the swap operator on Gbest .
Step 3: Assign orders to batches with the help of the first fit rule.
Step 4: Construct the tours with the help of the picking heuristics and calculate the travel distance. If the travel distance is shorter than before, set

SStagGbest to zero, update Gbest , choose a random particle, and place it on the position of Gbest and terminate the procedure. If the travel distance is not
shorter, increase ItLS by one and proceed with step 2. Terminate the procedure if the maximum number of iterations of the local search, ItmaxLS, has
been reached.

Appendix H. Detailed results of the numerical experiments for DEPSO

DEPSO vs. SOP DEPSO vs. FCFS DEPSO vs. Savings runtime DEPSO [sec]

Problem scenario min. Ø max. min. Ø max. min. Ø max. Ø

50_2_6 −87.50% −88.52% −89.37% −32.66% −38.98% −48.61% −17.12% −30.03% −38.54% 23.96
50_2_10 −86.04% −87.13% −88.25% −36.73% −44.00% −48.69% −26.54% −33.36% −41.96% 21.28
50_6_2 −86.23% −87.36% −88.48% −24.98% −30.74% −36.97% −23.22% −28.35% −36.82% 74.15
50_6_6 −80.18% −81.54% −84.61% −36.91% −41.09% −48.75% −30.71% −35.92% −41.48% 42.79
50_6_10 −75.49% −77.49% −80.20% −38.04% −44.20% −50.11% −29.99% −36.31% −42.50% 38.25
50_10_2 −83.83% −84.83% −86.56% −18.74% −28.61% −34.26% −15.85% −25.90% −32.07% 108.77
50_10_6 −74.69% −76.61% −78.83% −34.44% −38.75% −43.04% −26.33% −32.60% −37.59% 63.93
50_10_10 −68.30% −70.60% −73.90% −38.03% −42.37% −46.18% −26.95% −33.87% −37.96% 57.21
100_2_2 −92.29% −92.74% −93.43% −31.29% −36.46% −43.34% −18.53% −26.29% −33.78% 59.56
100_2_6 −89.76% −90.79% −91.41% −40.31% −47.77% −53.42% −26.00% −34.77% −39.34% 35.69
100_2_10 −87.43% −88.63% −89.56% −45.77% −51.33% −54.92% −31.86% −38.24% −44.05% 30.50
100_6_2 −87.92% −89.20% −90.26% −24.20% −30.78% −35.11% −21.29% −26.55% −32.89% 107.80
100_6_6 −81.34% −82.77% −84.61% −38.24% −42.66% −47.14% −31.32% −35.36% −39.40% 63.73
100_6_10 −76.62% −78.51% −80.30% −41.30% −45.74% −49.09% −29.87% −36.43% −40.70% 58.80
100_10_2 −84.70% −86.23% −87.76% −24.14% −29.22% −35.04% −22.49% −26.40% −30.49% 146.50
100_10_6 −75.48% −77.36% −79.54% −38.08% −41.29% −45.44% −29.73% −33.56% −36.36% 91.49
100_10_10 −69.20% −71.25% −74.83% −41.58% −44.12% −46.84% −29.62% −33.65% −36.71% 88.89
150_2_2 −93.74% −94.22% −94.64% −29.00% −34.15% −39.97% −18.52% −24.76% −30.73% 78.85
150_2_6 −90.30% −91.23% −92.65% −46.81% −50.26% −55.19% −28.10% −34.75% −40.20% 44.98
150_2_10 −88.50% −89.25% −90.16% −45.77% −51.97% −55.94% −32.30% −35.80% −39.95% 40.96
150_6_2 −88.74% −89.34% −90.06% −28.85% −32.23% −36.94% −23.05% −28.04% −31.86% 117.91
150_6_6 −81.32% −82.89% −84.07% −38.98% −43.43% −46.62% −30.10% −35.08% −38.98% 79.13
150_6_10 −76.54% −78.45% −79.67% −43.67% −46.16% −48.21% −32.03% −35.84% −38.94% 71.21
150_10_2 −85.47% −86.22% −87.04% −24.56% −29.21% −35.75% −20.73% −24.83% −28.74% 185.54
150_10_6 −76.02% −77.32% −78.65% −37.19% −40.74% −43.23% −29.21% −32.25% −35.59% 114.83
150_10_10 −70.28% −71.41% −72.88% −42.42% −44.38% −47.21% −29.71% −32.15% −35.38% 117.10
200_2_2 −93.83% −94.26% −94.65% −36.54% −41.36% −45.51% −20.65% −26.89% −32.32% 82.87
200_2_6 −90.69% −91.54% −92.10% −47.30% −51.42% −55.07% −27.60% −33.72% −38.08% 52.11
200_2_10 −88.43% −89.26% −89.95% −50.27% −53.33% −57.27% −30.25% −35.29% −40.23% 50.53
200_6_2 −88.69% −89.61% −90.15% −27.62% −31.43% −35.35% −22.90% −26.41% −31.27% 138.78
200_6_6 −81.17% −82.58% −83.94% −38.89% −41.96% −44.15% −29.02% −33.17% −36.30% 97.02
200_6_10 −77.19% −78.35% −80.04% −43.56% −45.24% −48.21% −29.40% −34.01% −36.77% 91.46
200_10_2 −85.42% −86.11% −87.13% −25.49% −28.26% −31.57% −20.97% −24.02% −28.02% 226.18
200_10_6 −75.60% −77.21% −78.16% −37.99% −40.34% −42.47% −28.11% −31.02% −33.45% 138.90
200_10_10 −70.31% −71.57% −72.62% −41.01% −43.94% −46.19% −29.88% −31.79% −34.19% 138.01

Appendix I. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2020.106645.

References

Ang, M., Lim, Y. F., & Sim, M. (2012). Robust storage assignment in unit-load warehouses.
Management Science, 58(11), 2114–2130.

Azadnia, A. H., Taheri, S., Ghadimi, P., Mat Saman, M. Z., & Wong, K. Y. (2013). Order
Batching in warehouses by minimizing total tardiness: A hybrid approach of
weighted association rule mining and genetic algorithms. The Scientific World Journal,
2013.

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics.
Information Sciences, 237, 82–117.

Boysen, N., de Koster, R., & Weidinger, F. (2018). Warehousing in the e-commerce era: A
survey. European Journal of Operational Research..

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A. L., & Ogier, M. (2020).
An efficient and general approach for the joint order batching and picker routing
problem. European Journal of Operational Research, 285(2), 497–512.

Cambazard, H., & Catusse, N. (2018). Fixed-parameter algorithms for rectilinear Steiner
tree and rectilinear traveling salesman problem in the plane. European Journal of
Operational Research, 270(2), 419–429.

Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019). Genetic
algorithms for the picker routing problem in multi-block warehouses. International
Conference on Business Information Systems (pp. 313–322). Cham: Springer.

Cergibozan, Ç., & Tasan, A. S. (2019). Order batching operations: an overview of

classification, solution techniques, and future research. Journal of Intelligent
Manufacturing, 30(1), 335–349.

Chen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm
for two order pickers with congestion consideration. Computers & Industrial
Engineering, 66(1), 77–85.

Chen, T. L., Cheng, C. Y., Chen, Y. Y., & Chan, L. K. (2015). An efficient hybrid algorithm
for integrated order batching, sequencing and routing problem. International Journal
of Production Economics, 159, 158–167.

Cheng, C. Y., Chen, Y. Y., Chen, T. L., & Yoo, J. J. W. (2015). Using a hybrid approach
based on the particle swarm optimization and ant colony optimization to solve a joint
order batching and picker routing problem. International Journal of Production
Economics, 170, 805–814.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4), 568–581.

Das, S., Abraham, A., & Konar, A. (2008). Swarm intelligence algorithms in bioinfor-
matics. Computational Intelligence in Bioinformatics (pp. 113–147). Berlin, Heidelberg:
Springer.

Davarzani, H., & Norrman, A. (2015). Toward a relevant agenda for warehousing re-
search: literature review and practitioners’ input. Logistics Research, 8(1), 1.

De Koster, R., Johnson, A. L., & Roy, D. (2017). Warehouse design and management.
International Journal of Production Research, 55(21), 6327–6330.

De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse
order picking: A literature review. European Journal of Operational Research, 182(2),

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

18

https://doi.org/10.1016/j.cie.2020.106645
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0005
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0005
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0010
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0010
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0010
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0010
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0015
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0015
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0020
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0020
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0025
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0025
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0025
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0030
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0030
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0030
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0035
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0035
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0035
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0040
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0040
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0040
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0045
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0045
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0045
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0050
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0050
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0050
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0055
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0055
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0055
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0055
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0060
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0060
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0065
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0065
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0065
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0070
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0070
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0075
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0075
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0080
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0080

481–501.
De Koster, M. B. M., Van der Poort, E. S., & Wolters, M. (1999). Efficient order batching

methods in warehouses. International Journal of Production Research, 37(7),
1479–1504.

Ene, S., & Öztürk, N. (2012). Storage location assignment and order picking optimization
in the automotive industry. The International Journal of Advanced Manufacturing
Technology, 60(5–8), 787–797.

Englert, M., Röglin, H., & Vöcking, B. (2014). Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. Algorithmica, 68(1), 190–264.

Gademann, N., & Velde, S. (2005). Order batching to minimize total travel time in a
parallel-aisle warehouse. IIE transactions, 37(1), 63–75.

Gong, Y., & De Koster, R. B. (2011). A review on stochastic models and analysis of
warehouse operations. Logistics Research, 3(4), 191–205.

Grosse, E. H., Glock, C. H., & Ballester-Ripoll, R. (2014). A simulated annealing approach
for the joint order batching and order picker routing problem with weight restric-
tions. International Journal of Operations and Quantitative Management, 20(2), 65–83.

Grosse, E. H., Glock, C. H., & Jaber, M. Y. (2013). The effect of worker learning and
forgetting on storage reassignment decisions in order picking systems. Computers &
Industrial Engineering, 66(4), 653–662.

Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: a
content analysis of the literature. International Journal of Production Research, 55(5),
1260–1276.

Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A
comprehensive review. European journal of operational research, 177(1), 1–21.

Hausman, W. H., Schwarz, L. B., & Graves, S. C. (1976). Optimal storage assignment in
automatic warehousing systems. Management Science, 22(6), 629–638.

Hembecker, F., Lopes, H. S., & Godoy, W. (2007). Particle swarm optimization for the
multidimensional knapsack problem. International Conference on Adaptive and Natural
Computing Algorithms (pp. 358–365). Berlin, Heidelberg: Springer.

Henn, S., Koch, S., & Wäscher, G. (2012). Order batching in order picking warehouses: a
survey of solution approaches. Warehousing in the Global Supply Chain (pp. 105–137).
London: Springer.

Ho, Y. C., & Tseng, Y. Y. (2006). A study on order-batching methods of order-picking in a
distribution centre with two cross-aisles. International Journal of Production Research,
44(17), 3391–3417.

Ho, Y. C., Su, T. S., & Shi, Z. B. (2008). Order-batching methods for an order-picking
warehouse with two cross aisles. Computers & Industrial Engineering, 55(2), 321–347.

Hsieh, L. F., & Huang, Y. C. (2011). New batch construction heuristics to optimise the
performance of order picking systems. International Journal of Production Economics,
131(2), 618–630.

Kashan, A. H., Kashan, M. H., & Karimiyan, S. (2013). A particle swarm optimizer for
grouping problems. Information Sciences, 252, 81–95.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995
Proceedings, IEEE International Conference on 4 (pp. 1942–1948). .

Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm al-
gorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and
Simulation, 1997 IEEE International Conference on 5 (pp. 4104–4108). .

Koch, S. (2014). Genetische Algorithmen für das Order Batching-Problem in manuellen
Kommissioniersystemen. Springer-Verlag.

Kofler, M., Beham, A., Wagner, S., & Affenzeller, M. (2015). Robust storage assignment in
warehouses with correlated demand. Computational Intelligence and Efficiency in
Engineering Systems (pp. 415–428). Cham: Springer.

Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in
single and multiple-cross-aisle warehouses using cluster-based tabu search algo-
rithms. Flexible services and manufacturing journal, 24(1), 52–80.

Lam, H. T., Nicolaevna, P. N., & Quan, N. T. M. (2007). A heuristic particle swarm op-
timization. Proceedings of the 9th annual conference on Genetic and evolutionary com-
putation (pp. 174). .

Le-Duc, T., & De Koster, R. M. B. (2005). Travel distance estimation and storage zone
optimization in a 2-block class-based storage strategy warehouse. International
Journal of Production Research, 43(17), 3561–3581.

Li, J., Moghaddam, M., & Nof, S. Y. (2016). Dynamic storage assignment with product
affinity and ABC classification—a case study. The International Journal of Advanced
Manufacturing Technology, 84(9–12), 2179–2194.

Lin, C. C., Kang, J. R., Hou, C. C., & Cheng, C. Y. (2016). Joint order batching and picker
Manhattan routing problem. Computers & Industrial Engineering, 95, 164–174.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., &
Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a
forecasting competition. Journal of forecasting, 1(2), 111–153.

Makridakis, S., Chatfield, C., Hibon, M., Lawrence, M., Mills, T., Ord, K., & Simmons, L. F.
(1993). The M2-competition: A real-time judgmentally based forecasting study.
International Journal of Forecasting, 9(1), 5–22.

Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and im-
plications. International journal of forecasting, 16(4), 451–476.

Manzini, R., Accorsi, R., Gamberi, M., & Penazzi, S. (2015). Modeling class-based storage
assignment over life cycle picking patterns. International Journal of Production
Economics, 170, 790–800.

Manzini, R., Gamberi, M., Persona, A., & Regattieri, A. (2007). Design of a class based
storage picker to product order picking system. The International Journal of Advanced
Manufacturing Technology, 32(7–8), 811–821.

Marchet, G., Melacini, M., & Perotti, S. (2015). Investigating order picking system

adoption: A case-study-based approach. International Journal of Logistics Research and
Applications, 18(1), 82–98.

Masae, M., Glock, C. H., & Grosse, E. H. (2020). Order picker routing in warehouses: A
systematic literature review. International Journal of Production Economics, 224.

Matusiak, M., de Koster, R., Kroon, L., & Saarinen, J. (2014). A fast simulated annealing
method for batching precedence-constrained customer orders in a warehouse.
European Journal of Operational Research, 236(3), 968–977.

Menéndez, B., Bustillo, M., Pardo, E. G., & Duarte, A. (2017). General Variable
Neighborhood Search for the Order Batching and Sequencing Problem. European
Journal of Operational Research, 263(1), 82–93.

Moon, G., & Kim, G. P. (2001). Effects of relocation to AS/RS storage location policy with
production quantity variation. Computers & Industrial Engineering, 40(1–2), 1–13.

Muppani, V. R., & Adil, G. K. (2008). A branch and bound algorithm for class based
storage location assignment. European Journal of Operational Research, 189(2),
492–507.

Muralidharan, B., Linn, R. J., & Pandit, R. (1995). Shuffling heuristics for the storage
location assignment in an AS/RS. The International Journal of Production Research,
33(6), 1661–1672.

Önüt, S., Tuzkaya, U. R., & Doğaç, B. (2008). A particle swarm optimization algorithm for
the multiple-level warehouse layout design problem. Computers & Industrial
Engineering, 54(4), 783–799.

Pan, J. C. H., Shih, P. H., & Wu, M. H. (2012). Storage assignment problem with travel
distance and blocking considerations for a picker-to-part order picking system.
Computers & Industrial Engineering, 62(2), 527–535.

Pansart, L., Catusse, N., & Cambazard, H. (2018). Exact algorithms for the order picking
problem. Computers & Operations Research, 100, 117–127.

Petersen, C. G., & Aase, G. (2004). A comparison of picking, storage, and routing policies
in manual order picking. International Journal of Production Economics, 92(1), 11–19.

Petersen, C. G., & Schmenner, R. W. (1999). An evaluation of routing and volume-based
storage policies in an order picking operation. Decision Sciences, 30(2), 481–501.

Pierre, B., Vannieuwenhuyse, B., Dominanta, D., & Van Dessel, H. (2004). Dynamic ABC
storage policy in erratic demand environments. Jurnal Teknik Industri, 5(1), 1–12.

Rao, S. S., & Adil, G. K. (2013). Optimal class boundaries, number of aisles, and pick list
size for low-level order picking systems. IIE Transactions, 45(12), 1309–1321.

Reschke, V. (2013). Lagerplatzvergabe in Person-zur-Ware-Kommissioniersystemen.
Shaker.

Roodbergen, K. J., & de Koster, R. (2001). Routing methods for warehouses with multiple
cross aisles. International Journal of Production Research, 39(9), 1865–1883.

Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel, R. J., & Zijm, W.
H. (2000). Warehouse design and control: Framework and literature review. European
Journal of Operational Research, 122(3), 515–533.

Sadiq, M., Landers, T. L., & Don Taylor, G. (1996). An assignment algorithm for dynamic
picking systems. IIE Transactions, 28(8), 607–616.

Scholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and
due dates–Simultaneous solution of Order Batching, Batch Assignment and
Sequencing, and Picker Routing Problems. European Journal of Operational Research,
263(2), 461–478.

Scholz, A., & Wäscher, G. (2017). Order Batching and Picker Routing in manual order
picking systems: the benefits of integrated routing. Central European Journal of
Operations Research, 25(2), 491–520.

Schröder, M. (2012). Einführung in die kurzfristige Zeitreihenprognose und Vergleich der
einzelnen Verfahren. In Prognoserechnung (pp. 11–45). Physica, Heidelberg.

Schuhr, R. (2012). Einführung in die Prognose saisonaler Zeitreihen mithilfe ex-
ponentieller Glättungstechniken und Vergleich der Verfahren von Holt/Winters und
Harrison. In Prognoserechnung (pp. 47–73). Physica, Heidelberg.

Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, tax-
onomy and applications. International Journal of Computer Theory and Engineering,
1(5), 486.

Shqair, M., Altarazi, S., & Al-Shihabi, S. (2014). A statistical study employing agent-based
modeling to estimate the effects of different warehouse parameters on the distance
traveled in warehouses. Simulation Modelling Practice and Theory, 49, 122–135.

Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). Inventory and production management in
supply chains. CRC Press.

Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing
order pickers in warehouses. European Journal of Operational Research, 200(3),
755–763.

Tian, Y., Liu, D., Yuan, D., & Wang, K. (2013). A discrete PSO for two-stage assembly
scheduling problem. The International Journal of Advanced Manufacturing Technology,
66(1–4), 481–499.

Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning.
John Wiley & Sons.

Tsai, C. F., Tsai, C. W., & Tseng, C. C. (2004). A new hybrid heuristic approach for solving
large traveling salesman problem. Information Sciences, 166(1–4), 67–81.

Tsai, C. Y., Liou, J. J., & Huang, T. M. (2008). Using a multiple-GA method to solve the
batch picking problem: considering travel distance and order due time. International
Journal of Production Research, 46(22), 6533–6555.

Valle, C. A., Beasley, J. E., & da Cunha, A. S. (2017). Optimally solving the joint order
batching and picker routing problem. European Journal of Operational Research,
262(3), 817–834.

Van Gils, T., Caris, A., Ramaekers, K., & Braekers, K. (2019). Formulating and solving the
integrated batching, routing, and picker scheduling problem in a real-life spare parts

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

19

http://refhub.elsevier.com/S0360-8352(20)30379-X/h0080
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0085
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0085
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0085
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0090
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0090
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0090
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0095
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0095
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0100
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0100
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0105
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0105
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0110
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0110
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0110
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0115
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0115
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0115
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0120
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0120
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0120
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0125
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0125
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0130
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0130
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0135
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0135
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0135
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0140
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0140
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0140
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0145
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0145
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0145
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0150
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0150
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0155
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0155
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0155
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0160
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0160
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0165
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0165
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0170
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0170
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0170
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0175
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0175
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0180
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0180
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0180
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0185
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0185
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0185
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0190
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0190
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0190
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0195
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0195
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0195
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0200
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0200
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0200
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0205
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0205
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0210
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0210
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0210
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0215
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0215
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0215
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0220
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0220
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0225
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0225
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0225
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0230
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0230
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0230
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0235
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0235
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0235
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0240
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0240
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0245
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0245
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0245
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0250
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0250
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0250
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0255
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0255
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0260
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0260
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0260
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0265
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0265
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0265
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0270
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0270
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0270
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0275
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0275
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0275
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0285
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0285
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0290
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0290
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0295
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0295
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0300
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0300
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0305
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0305
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0315
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0315
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0320
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0320
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0320
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0325
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0325
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0330
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0330
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0330
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0330
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0335
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0335
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0335
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0350
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0350
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0350
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0355
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0355
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0355
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0360
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0360
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0365
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0365
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0365
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0370
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0370
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0370
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0375
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0375
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0380
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0380
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0385
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0385
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0385
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0390
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0390
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0390
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0395
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0395

warehouse. European Journal of Operational Research, 277(3), 814–830.
Van Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. (2018). Designing Efficient Order

Picking Systems by Combining Planning Problems: State-of-the-art Classification and
Review. European Journal of Operational Research, 267(1), 1–15.

Van Nieuwenhuyse, I., & de Koster, R. B. (2009). Evaluating order throughput time in 2-
block warehouses with time window batching. International Journal of Production
Economics, 121(2), 654–664.

Vaughan, T. S. (1999). The effect of warehouse cross aisles on order picking efficiency.

International Journal of Production Research, 37(4), 881–897.
Wäscher, G. (2004). Order picking: A survey of planning problems and methods. Supply

Chain Management and Reverse Logistics (pp. 323–347). .
Won, J., & Olafsson, S. (2005). Joint order batching and order picking in warehouse

operations. International Journal of Production Research, 43(7), 1427–1442.
Wruck, S., Vis, I. F., & Boter, J. (2017). Risk control for staff planning in e-commerce

warehouses. International Journal of Production Research, 55(21), 6453–6469.

P. Kübler, et al. Computers & Industrial Engineering 147 (2020) 106645

20

http://refhub.elsevier.com/S0360-8352(20)30379-X/h0395
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0400
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0400
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0400
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0405
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0405
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0405
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0410
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0410
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0415
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0415
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0420
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0420
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0425
http://refhub.elsevier.com/S0360-8352(20)30379-X/h0425

	A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses
	Introduction
	Literature review
	Planning problems
	Joint optimization of order batching and picker routing
	Dynamic storage location assignment

	Problem statement
	Model development
	Assumptions
	Storage location assignment and the joint batching and picker routing problem

	Proposed solution approach
	Structure of the proposed solution approach
	Discrete evolutionary particle swarm optimization
	Picker routing
	Initialization
	Movement
	Mutation
	Local search
	Overall procedure of DEPSO

	Dynamic storage location assignment algorithm
	Item classification
	Priority rule
	Feasibility
	Relocation rule
	Efficiency of the relocation

	Numerical analysis
	Problem scenarios for the DEPSO algorithm
	Evaluation of the DEPSO algorithm
	Problem scenarios for the dynamic storage location assignment algorithm
	Results of the dynamic storage location assignment algorithm

	Conclusion
	Funding sources
	CRediT authorship contribution statement
	Contribution of this paper
	Nearest neighbor heuristic
	2-opt heuristic
	Savings algorithm
	Particle movement
	Mutation operation
	Local search
	Detailed results of the numerical experiments for DEPSO
	Supplementary material
	References

