
Progetto adatto a tesi di laurea magistrale e a progetto d’esame per Complementi di R.O.

1 Hierarchical TSP

The HTSP is defined as follows. A digraphG = (N,A) is given. Weights associated with the arcs indicate their length.
The node setN = {0, . . . , n} is partitioned into subsets, i.e.N =

⋃K

k=0
Nk and subsetsNk are disjoint and each subset

Nk has a priorityk = 0, . . . ,K. A starting depot0 is the only node with priority0, i.e. N0 = {0}. A non-negative (and
small) integerp is given. A vehicle must visit all nodes starting from the depot (and not necessarily returning to it) with
the following constraint: all nodes with priorityk must be visited before any node with priorityk + 1 + p. The objective
is to minimize the total distance traveled.

The motivation is the distribution of goods in an emergency context, where a priority is associated with each site to be
visited. For this reasonp is a small number because it represents the extent to which exceptions are allowed to the rule of
following the priorities.

The HTSP is a special case of the ATSPPC, where the set of precedences has a special (and regular) structure. There
are no customized exact optimization algorithms for this problem, at the best of my knowledge.

Reference: Pamchamgan et al. (2013).

The problem can be tackled with branch-and-bound based on additive bounds, with branch-and-cut and with branch-
and-price.

Existing branch-and-bound and branch-and-cut algorithmsfor the ATSPPC can be used as benchmarks for a new
branch-and-price algorithm, which exploits the special structure of the precedences of the HTSP.

Additive bounds. The following lower bounding procedures can be used:

• linear assignment, taking into account only the degree constraints on each node;

• shortest spanning 1-arborescence (in both directions, outgoing from the depot or incoming to it)

• variable decomposition induced by all precedences due to the hierarchical constraint, as in the ATSP with prece-
dence constraints

• disjunctions, as in the ATSPPC

Branch-and-cut. A branch-and-cut algorithm can use the valid inequalities developed by Ascheuer et al. for the AT-
SPPC (and possibly others).

Branch-and-price. The problem can be reformulated as a set partitioning problem, where each row is a node and each
column is a path. Each node must be visited within a path or it must be the starting node of a path and the ending node
of another. So, the master problem contains a constraint on the indegree and a constraint on the outdegree for each node.
Each column is a path starting from a nodei ∈ Nk−1, complying with the precedence constraints and ending at a node
j ∈ Nk, meaning that in a solution containing that path, nodei is the last visited node inNk−1 and nodej is the last
visited node inNk. Hence each column belongs to a column subsetk, and a solution is made by one column from each
subset.

1



The master problem is:

minimizez =

K∑

k=1

∑

l∈Ωk

clλl (1)

s.t.
k∑

h=k−p

∑

l∈Ωh

ailλl +
∑

l∈Ωk

eilλl = 1 ∀k = 1, . . . ,K ∀i ∈ Nk (2)

k∑

h=k−p

∑

l∈Ωh

ailλl +
∑

l∈Ωk+1

silλl +
∑

l∈ΩK

eilλl = 1 ∀k = 0, . . . ,K ∀i ∈ Nk (3)

∑

l∈Ωk

λl = 1 ∀k = 1, . . . ,K (4)

λl ∈ {0, 1} ∀k = 1, . . . ,K ∀l ∈ Ωk (5)

The objective function (1) asks for the minimization of the overall length of the selected paths; the costcl of each pathl
is formally defined later. Constraints (2) and (3) impose that each node has indegree and outdegree equal to 1, that is it
is visited once in the solution. In constraints (2) a nodei ∈ Nk has indegree equal to 1 when it is visited along a path
l ∈ Ωh with k − p ≤ h ≤ k (ail = 1) or when it is the end node of a pathl ∈ Ωk (eil = 1). In constraints (3) a node
i ∈ Nk has outdegree equal to 1 when it is visited along a pathl ∈ Ωh with k− p ≤ h ≤ k (ail = 1) or when it is the start
node of a pathl ∈ Ωk+1 (sil = 1); the constraint must not be imposed on one of the nodes ofNK , i.e. the last node of
the solution. For this reason the left hand side of constraints (3) also include the additional term

∑
l∈ΩK

eilλl, so that the
constraint is satisfied also for a node ofNK with no outgoing arcs, provided it is the end node of its path.Remarkably,
constraints (2) and (3), besides working as degree constraints, also forbid subtours owing to the special structure of the
precedence constraints that characterize the HTSP with respect to the more general ATSPPC. Constraints (4) are convexity
constratins, stating that the solution must include exactly one path for each priority classk = 1, . . . ,K i.e. one column
for each column subsetΩk. Finally, integrality constraints (5) on the binary variables corresponding to the columns of
the master problem are relaxed into0 ≤ λl ≤ 1 when the linear relaxation of the master problem is solved via column
generation. The dual variables corresponding to constraints (2), (3) and (4) are indicated byβ−, β+ andα respectively.

The pricing subproblem can be solved independently for eachk = 1, . . . ,K. To define the pricing subproblem we
introduce the setsAk =

⋃k

h=k +pNh ∀k = 1, . . . ,K. Each subsetAk is the subset of nodes that can be visited by a path
corresponding to a column inΩk. Such a path must start from a node inNk−1 (from the depot, ifk = 1), it must end at
a node inNk and it can visit any node inAk. A binary variablesi indicates whetheri ∈ Nk−1 is the start node; a binary
variableei indicates whetheri ∈ Nk is the end node; a binary variableai indicates whetheri ∈ Ak is visited along the
path, not being an endpoint. We also introduce binary variables associated with the arcs: a binary variablexij indicates
whether arc(i, j) is an arc of the path from an intermediate nodei ∈ Ak to an intermediate nodej ∈ Ak; a binary variable
uij indicates whether arc(i, j) is the first arc of the path, from the start nodei ∈ Nk−1 to an intermediate nodej ∈ Ak;
a binary variablevij indicates whether arc(i, j) is the last arc of the path, from an intermediate nodei ∈ Ak to the end
nodej ∈ Nk; a binary variablewij indicates whether arc(i, j) is the only arc of the path, from the start nodei ∈ Nk−1

to the end nodej ∈ Nk. With these definitions, the pricing subproblem is as follows (when not needed, indexk has been
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dropped for readability).

minimizer =
∑

i

∑

j

cij(xij + uij + vij + wij)−
∑

j

β−

j (aj + ej)−
∑

i

β+
i (si + ai)− α (6)

s.t.
∑

i

si = 1 (7)

∑

i

ei = 1 (8)

si =
∑

j

(uij + wij) ∀i ∈ Nk−1 (9)

ej =
∑

i

(vij + wij) ∀j ∈ Nk (10)

ai =
∑

j

(xij + vij) =
∑

j

(xji + uji) ∀i ∈ Ak (11)

subtour elimination constraints on variablesx (12)

integrality constraints on all binary variables (13)

In the objective function (6)r indicates the reduced cost of the column corresponding to the path. Constraints (7) and (8)
enforce the selection of a start node and an end node. Constraints (9), (10) and (11) link node variables with arc variables.
The costcl of a path is given by

∑
i

∑
j cij(xij + uij + vij + wij). The problem turns out to be an Elementary Shortest

Path Problem on a digraph with possibly negative cost cycles, owing to the dual variables. The problem is NP-hard and it
can be solved either with a cutting planes algorithm or with dynamic programming. Since the value ofp is assumed to be
small, it is likely that eachAk be significantly smaller thanN which should make each instance of the pricing subproblem
solvable within a reasonable amount of computing time.
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