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Abstract The distribution of relief aid is a complex problem where the operations
have to be managed efficiently due to limited resources. We present a routing problem
for relief operations whose primary goal is to satisfy demand for relief supplies at many
locations taking into account the urgency of each demand. We have a single vehicle
of unlimited capacity. Each node (location) has a demand and a priority. The priority
indicates the urgency of the demand. Typically, nodes with the highest priorities need
to be visited before lower priority nodes. We describe a new and interesting model for
humanitarian relief routing that we call the hierarchical traveling salesman problem
(HTSP). We compare the HTSP and the classical TSP in terms of worst-case behavior.
We obtain a simple, but elegant result that exhibits the fundamental tradeoff between
efficiency (distance) and priority and we provide several related observations and
theorems.
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1 Introduction

We present a model for humanitarian relief routing. Suppose, as a result of a natural
disaster such as an earthquake, tsunami, or hurricane, there are demands at many
locations for relief supplies such as food, bottled water, blankets, or medical packs.
Some locations are in more urgent need of supplies than other locations. Demand
locations and the depot are nodes and each node (other than the depot) has a priority
for a single relief product. The priorities indicate the urgency of the demand at each
location; priority 1 nodes are in most urgent need of service. To begin, we assume
that priority 1 nodes must be served before priority 2 nodes, priority 2 nodes must be
served before priority 3 nodes, and so on. Four scenarios in which this model might
apply are shown in Fig. 1.

We assume that a single vehicle has enough capacity to satisfy the needs at all
demand locations and that visits to nodes must strictly respect the node priorities (i.e.,
priority 1 nodes first, priority 2 nodes second, and so on). This defines a hierarchical
traveling salesman problem (HTSP). With this definition in mind, we will explore the
fundamental tradeoff between efficiency (distance) and priority.

There are several papers in the literature related to our work. Campbell et al. [2]
discuss routing for relief efforts using two different objective functions. In the first,
they minimize the latest arrival time at a node. In the second, they minimize the aver-
age arrival time. Ngueveu et al. [8] present the cumulative capacitated vehicle routing
problem (CCVRP). In the CCVRP, the objective is to minimize the sum of arrival
times at customers (instead of total length) subject to vehicle capacity constraints.
This is similar to the second objective function discussed by Campbell et al. [2].
Balcik et al. [1] discuss last mile distribution in humanitarian relief chains. The authors
consider two types of products over a planning horizon and develop routes by solving
TSPs. Fiala Timlin and Pulleyblank [4] describe an operational problem involving
helicopters that service an offshore oil field consisting of 45 drilling platforms. Each
day, each helicopter flies a route over a subset of these platforms, performing pickups
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Fig. 1 Four scenarios for node priorities
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and deliveries. Each platform has a priority and these are strictly respected. Although
this helicopter routing problem (HRP) is very similar to the HTSP, there are several
differences. In the HRP, there are pickups and deliveries and helicopter capacity is an
important constraint. Another variant of the TSP related to the HTSP is the precedence
constrained TSP (see Psaraftis [10]). In the clustered traveling salesman problem, the
customers are clustered and all customers in a given cluster must be visited consecu-
tively; there are no priorities (see Guttman-Beck et al. [5]).

A second potential application of the HTSP involves the routing of service tech-
nicians. Each day, your local gas and electric company routes service technicians to
homes and businesses for minor repairs, major repairs, and new installations. Cus-
tomers without heat (in the winter) or without air conditioning (in the summer) would
be classified as priority 1 nodes. Other customers might be classified as priority 2 or
priority 3 nodes. A similar application would arise for cable TV and internet providers.

A third potential (military) application of the HTSP involves the unmanned aerial
vehicle (UAV) routing problem in which target priorities are important. Both static
and dynamic versions of this application have received a lot of recent attention in the
literature (e.g., see Yadlapalli et al. [11] and Chapter 5 of Mennell [7]).

2 Worst-case results

In solving the HTSP, we visit priority 1 nodes first, priority 2 nodes second, and so
on. We pay a price for this in terms of travel distance. That is, if we ignore node
priorities and solve the associated TSP, the resulting travel distance will be smaller. In
the worst-case, how large a price do we pay? In this section, we address this question
for the strict and relaxed versions of the HTSP.

Definition 1 For any positive integers p and ¢, we define ’75—‘ to be the smallest

integer which is greater than or equal to £. To be more specific, assume p = kq +r,

where 0 < r < ¢. Then, lra—lzkifr:Oand (E—‘ =k+1ifr > 0.

Definition 2 The d—relaxed priority rule adds operational flexibility by allowing the
vehicle to visit nodes of priority m + 1, ..., w +d (if these priorities exist in the given
instance) but not priority = + d + [ for [ > 1 before visiting all nodes of priority
(formr =1,2,..., P).

The impact of d on efficiency is illustrated in Fig. 2 with P = 4. In Fig. 2a, we
have d = 3, which yields a TSP. In Fig. 2b, we have d = 1, which results in a much
longer tour.

Theorem 1 Let ZZ p and Z7.¢p be the optimal tour length (distance) for the HTSP
with the d—relaxed priority rule and for the TSP (without any priorities), respectively.
Given that the triangle inequality holds, we have

(a) ZE)k,P <P Zjsp, and
®) Zj p = |7d+1-‘ Zrsp:
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HTSP(d=3): Optimal Tour Length = 3.56 ; HTSP(d=1): Optimal Tour Length = 5.29
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Fig. 2 Efficiency versus priority

Proof (a) Suppose we have an optimal TSP tour t* of length Z7 ¢, and, for now,
assume that P = 3. Think of priority 1 nodes as red, priority 2 nodes as blue,
and priority 3 nodes as green. Now, construct a tour 7(1) over the priority 1
nodes as follows. From the depot, visit these nodes in the same sequence as
they appear in t*, and then return to the depot. Since the triangle inequality
holds, length of 7(1) < Z7.¢,. Applying the same idea for priority 2 nodes and
priority 3 nodes yields length of 7(2) < Z7¢, and length of 7(3) < Zjp.
Let t(1) = (D,Ry,...,R,,D), 1(2) = (D,By,...,Bp,D), and T(3) =
(D,Gy,...,Gg, D). Then,t = (D, Ry,..., R/, By, ..., By, G1,...,Gg, D) is
afeasible solution to the HTSP with length of T < length of 7 (1)+length of 7(2)+
length of 7(3) < 3Z7¢p. This again follows from the triangle inequality. For P
priority classes, this logic yields: Zj , <lengthof v < P Z7¢p.

(b) We can assume that P = k(d + 1) +r, where 0 <r <d+ 1 and k,d, and r
are integers. Again, assume an optimal TSP tour t* of length Z7 ¢ ,,. We divide

all the nodes in the P priority classes into {%—‘ sets as follows. The first set, Sj,
contains all nodes with priorities 1 to d 4 1. The second set, S, contains all nodes
with priorities d + 2 to 2(d + 1), and so on. The kth set, S, contains all nodes
with priorities (k — 1)(d + 1) + 1 = (k — )d + k to k(d + 1). If r > 0, there
is a (k + 1)th set, Sk+1, which contains all nodes with priorities k(d + 1) + 1 to
k(d + 1) +r = P. Tour (1) starts at the depot and visits all nodes in S; in the
same sequence as they appear in t* and then it returns to the depot. By the triangle
inequality, length of 7(1) < Z;SP. We handle sets S, S3, ..., S[ﬁ—‘ similarly
and obtain tours 7(2), 7(3), ..., r(’rdL;l—‘), where the length of 7(m) < Z?SP for

1<m< ’V%—‘. We can connect these tours, as in part (a), to obtain a feasible
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Fig. 3 Worst-case example

tour for the HTSP. By summing, length of 7 < IV%-‘ Z}gp- Since Zj p is the

length of the optimal HTSP solution, we have Z;’ p = {L—‘ z*

a1 TSP o

We point out two special cases of part (b). First, if d = 0, we have part (a). Second,
ifd = P — 1, then Z;’P =Zrgp-

Next, we show that the bounds in Theorem 1, (namely, P and {ﬁ—l) cannot be
improved. Since part (a) is a special case of part (b), we focus on the bound (ﬁ_l.

In Fig. 3, we have a polygon with n vertices. The depot (D) is the vertex at the top.
Each other vertex represents a location (1 to n — 1) that contains P nodes; each has
a different priority. The length of each edge of the polygon is 1. The lengths of the
edges within each vertex (other than the depot) are 6 << 1. Since § is so small, it can
be omitted in the calculation of total tour length.

Itis easy to observe that Z7. ¢, = n. The corresponding tour starts at the depot and
goes through each of the n — 1 locations in counterclockwise order and then returns
to the depot. The optimal tour of the HTSP can be constructed as follows. We start at
the depot and go through each location in counterclockwise order. At each location,
we visit all nodes with priorities 1 to d + 1. After we reach location n — 1, we finish
visiting all nodes in S7. Next, we can visit all nodes in location n — 1 with priorities
d + 2 to 2(d 4+ 1) and go through each location in clockwise order until we reach
location 1.

Again, at each location, we visit all nodes with priorities from d+2 to 2(d+1). After
we reach location 1, we finish visiting all nodes in S,. Next, we visit all nodes with
priority from 2(d 4 1) 41 to 3(d 4+ 1) and go through all locations in counterclockwise
order until we reach location n — 1. We continue the procedure until all the nodes have
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been visited. At this point, we will be either at location 1 or location n — 1. From here,
we return to the depot.
Now, we can calculate the total length of the tour. We travel from location 1 to

location n — 1 (or the reverse) a total of (‘%—I times. We begin the tour by traveling
from the depot to location 1 and we end the tour by traveling from either location 1
or location n — 1 back to the depot. Therefore, we have Zj’ p= ’7#-‘ (n—-2)+2.
Dividing by Z7¢ ., we obtain

Zip |l @-2+2 rpq arp g 1

ge-e i) o

which goes to {%—‘ as n — oo. Therefore, a tight, worst-case bound for sz,p is
TSP

]

Based on the proof of Theorem 1, we can make the following observations:

Observation 1 If we divide the nodes in the P priority classes into "%—I sets, as

indicated in part (b), we can solve (approximately) a TSP over each set using our
favorite TSP heuristic. We can connect the resulting tours, as in part (a), to obtain a
feasible tour for the HTSP.

Observation 2 Alternatively, we can solve (approximately) a TSP over the entire set
of nodes using our favorite TSP heuristic and obtain a feasible tour for the HTSP by
following the part (b) proof.

Observation 3 Suppose we select Christofides’ heuristic (see Christofides [3]) in
Observation 2. If we let Z;y p be the length of the resulting feasible solution to the
HTSP, we have

. 3 P
Zap=5- [m—‘ Zrsp- (2)

Observation 4 The HTSP (with d = 0) can be modeled and solved as an asymmetric
TSP.

In Theorem 1, we presented a worst-case result for the HTSP on a graph. Next, we
present a similar result (with a smaller bound) for the HTSP on the line.

Theorem 2 Let Z}; p and Z7.sp be the optimal tour length (distance) for the HTSP
on the line with the d—relaxed priority rule and for the TSP (without any priorities),
respectively. Given that the triangle inequality holds, we have

@ Z§ p < 5(P +1)Z3p, and
® Zjp=3 ({%—‘ + 1) Z7sp
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Fig. 4 The HTSP on the line

Discussion The proof for Theorem 2, using the configuration of nodes shown in Fig. 4,
where L is the left-most point, D is the depot, and R is the right-most point, is easy
to prove. The bound in (b) is tight. If one takes an example in which nodes of each
priority class are located at both L and R, this becomes apparent. Here we assume
the distance between any two nodes at L (and at R) is less than §. Of course, (a) is a
special case of (b).

3 A related result

Suppose we define the Hierarchical Chinese Postman Problem (HCPP) so that it is
analogous to the HTSP. Here, each arc has a length and a priority. Arcs may be traversed
in any order, but they must be serviced according to the d—relaxed priority rule (this
definition is a generalization of the one presented by Korteweg and Volgenant [6]).
The HCPP has obvious applications in snow removal over a road network. A result
similar to Theorem 1 holds.

Theorem 3 Let Wj , and W¢.p p be the optimal cycle length (distance) for the HCPP
with the d—relaxed priority rule and for the CPP (without any priorities), respectively.
Given that the triangle inequality holds, we have

(a) W&P < PW(pp, and
P
(b) Wi p =< {m—‘ Wepp-

Discussion The proof of Theorem 1 can be easily applied to Theorem 3. Furthermore,
we can show that the bounds in Theorem 3 are tight by slightly modifying Fig. 3. In
particular, replace each of the n — 1 locations in Fig. 3 with a cycle of length § containing
an arc from each priority class. Assume that the arcs forming the larger circle (each
of length 1) are of priority 1.

4 Conclusions

In this paper, we introduced the HTSP which considers the priority of a location (node)
with respect to humanitarian relief operations. We proposed a d —relaxed priority rule
that provides flexibility to the decision maker in terms of capturing tradeoffs between
total distance and node priorities. Furthermore, we derived worst-case bounds for
the HTSP with respect to the TSP and were able to show that the bounds are tight.
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We discussed other potential applications of the HTSP as well as related observations
and results.

Our work could be extended to handle a fleet of capacitated vehicles, locations
with demands for multiple products, or a longer planning horizon (e.g., a week).
Furthermore, the node priorities might not be known with certainty or they may become
known when a vehicle gets close enough to the node.

We point out that Panchamgam [9] formulated the HTSP and several extensions as
mixed integer programs. HTSP instances with 30 or so nodes were solved to optimality
using CPLEX.
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