
Questo argomento è adatto come progetto d’esame per Complementi di R.O. e come tesi di laurea
magistrale.

1 A bi-dimensional level packing problem arising from the op-

timization of thermal treatment of heat exchangers

Industrial heat exchangers are huge metallic cylinders subject to high reliability requirements. One of
the critical phases in their production is a thermal treatment that implies to cover the cylinder with
rectangular patches. We investigate the resulting optimization problem, where the objective is to use
an optimal subset of patches taken from a ground set of available patches, while complying with some
geometrical constraints. The resulting mathematical model is a variation of the level rectangle packing
problem, an NP -hard generalization of the bin packing problem.

2 Problem description

The surface of the heat exchanger to be covered is represented by a rectangle of known size: we indicate
its width by W and its height by H . A set N of N types of rectangular patches is available; each patch
type i ∈ N is characterized by its unit cost ci, its width wi and its height hi and by a number Mi of
available patches. For operational reasons it is required that patches are arranged into adjacent horizontal
stripes (levels); we indicate the set of levels by L. Patches cannot overlap. A maximum horizontal gap
equal to δW is allowed between patches in the same level. A maximum vertical gap equal to δH is allowed
between patches in adjacent levels.

Variables. A binary variable tij indicates whether patches of type i ∈ N are used in level j ∈ L. An
integer non-negative variable xij indicates how many patches of type i ∈ N are arranged into level j ∈ L.
The height of each level j ∈ L is indicated by a continuous non-negative variable zj ≥ 0. Since the
number of levels is not a datum, we also use a binary variable yj to indicate whether each level j ∈ L is
actually used or not.

Constraints. Variables x and t are related by:

xij <= Mitij ∀i ∈ N , j ∈ L.

The number of patches for each type is limited:
∑

j∈L

xij ≤ Mi ∀i ∈ N .

The sum of the heights of the levels must be equal to the height of the rectangle:
∑

j∈L

zj = H.

Obviously, levels that are not used have zero height:

zj ≤ Hyj ∀j ∈ L.

Patches cannot exceed the height of their level:

hitij ≤ zj ∀i ∈ N ∀j ∈ L.

Vertical tolerance:
zj ≤ H − (H − hi − δH)tij ∀j ∈ L.

Horizontal tolerance: ∑

i∈N

wixij ≤ Wyj ≤
∑

i∈N

(wi + δW )xij ∀j ∈ L.

With this formulation of the last constraints we allow for a maximum gap of δW

2
between the patches

and the edge of the rectangle.

1



Objective. The objective is to minimize the cost of the patches used:

minimize f =
∑

i∈N ,j∈L

cixij .

Patches rotation. An important variation of the problem allows for rotating the patches. We deal
with this possibility by defining two virtual patch types for each real patch type. Now N indicates the
set of virtual patch types and all virtual patch types are given in pairs; P indicates the set of pairs. For
each pair p = [u, v] ∈ P with u ∈ N and v ∈ N , we have wu = hv, wv = hu, cu = cv, Mu = Mv. The
only constraint that needs to be reformulated is the assignment constraint:

∑

j∈L

(xuj + xvj) ≤ Mp ∀p = [u, v] ∈ P

where Mp = Mu = Mv is the overall number of patches of type p ∈ P , and u ∈ N and v ∈ N are two
virtual types corresponding to the same real type p ∈ P .

Mathematical model. The following integer linear programming model is obtained.

minimize f =
∑

i∈N ,j∈L

cixij (1)

s.t. xij <= Mitij ∀i ∈ N , j ∈ L (2)
∑

j∈L

(xuj + xvj) ≤ Mp ∀p = [u, v] ∈ P (3)

∑

j∈L

zj = H (4)

zj ≤ Hyj ∀j ∈ L (5)

hitij ≤ zj ∀i ∈ N , ∀j ∈ L (6)

zj ≤ H − (H − hi − δH)tij ∀i ∈ N , ∀j ∈ L (7)
∑

i∈N

wixij ≤ Wyj ∀j ∈ L (8)

∑

i∈N

(wi + δW )xij ≥ Wyj ∀j ∈ L (9)

xij ∈ Z+ ∀i ∈ N , ∀j ∈ L (10)

tij ∈ {0, 1} ∀i ∈ N , ∀j ∈ L (11)

yj ∈ {0, 1} ∀j ∈ L (12)

zj ≥ 0 ∀j ∈ L. (13)

3 A reformulation

We present a reformulation of the problem, where each column k ∈ K corresponds to a feasible level filled
with patches.

minimize f =
∑

k∈K

bkλk (14)

s.t.
∑

k∈K

αpkλk ≤ Mp ∀p ∈ P (15)

∑

k∈K

hmin
k λk ≤ H (16)

∑

k∈K

hmax
k λk ≥ H (17)

λk ∈ Z+ ∀k ∈ K. (18)

2



Here bk represents the total cost of all patches in level k; αpk is the number of patches of real type p ∈ P
in level k; hmin

k and hmax
k are the minimum and maximum feasible height for level k; λk are integer

variables, representing the number of times level k is used in the solution. The set K has a combinatorial
size because it includes all feasible levels (index k has been dropped for convenience):

K ={(α, hmin, hmax) ∈ ZP
+ ×ℜ+ ×ℜ+ :

ai <= Midi ∀i ∈ N (19)

au + av = αp ∀[u, v] ∈ P (20)

αp ≤ Mp ∀p ∈ P (21)

hidi ≤ hmin ∀i ∈ N (22)

hmax ≤ H − (H − hi − δH)di ∀i ∈ N (23)
∑

i∈N

wiai ≤ W (24)

∑

i∈N

(wi + δW )ai ≥ W (25)

ai ∈ ZN
+ (26)

di ∈ {0, 1}N (27)

}.

The cost of a level is given by

b =
∑

i∈N

ciai.

The master problem (14)-(18) is an integer knapsack problem, with some additional features. Its
linear relaxation can be solved with column generation by iteratively inserting columns in a restricted
linear master problem. The reduced cost of each column is given by

r =
∑

i∈N

ciai −
∑

p∈P

βpαp − µminhmin − µmaxhmax,

where βp is the non-positive dual variable corresponding to each constraint (15), µmin is the non-positive
dual variable corresponding to constraint (16) and µmax is the non-negative dual variable corresponding
to constraint (17).

It should be noted that constraints (16) are not likely to be active in any optimal solution of the
relaxed master problem, while constraints (17) will be active for the break item, i.e. the level with a
fractional value of λ in the optimal solution.

3



The pricing problem is as follows:

minimize r =
∑

i∈N

ciai −
∑

p∈P

βpαp − µminhmin − µmaxhmax

s.t. ai <= Midi ∀i ∈ N

au + av = αp ∀[u, v] ∈ P

αp ≤ Mp ∀p ∈ P

hidi ≤ hmin ∀i ∈ N

hmax ≤ H − (H − hi − δH)di ∀i ∈ N
∑

i∈N

wiai ≤ W

∑

i∈N

(wi + δW )ai ≥ W

ai ∈ Z+ ∀i ∈ N

di ∈ {0, 1} ∀i ∈ N

αp ∈ Z+ ∀p ∈ P

hmin ≥ 0

hmax ≥ 0

We can reformulate the model, getting rid of variables α.

minimize r =
∑

i∈N

(ci − βp(i))ai − µminhmin − µmaxhmax (28)

s.t. ai <= Midi ∀i ∈ N (29)

au + av =≤ Mp ∀p = [u, v] ∈ P (30)

hidi ≤ hmin ∀i ∈ N (31)

hmax ≤ H − (H − hi − δH)di ∀i ∈ N (32)
∑

i∈N

wiai ≤ W (33)

∑

i∈N

(wi + δW )ai ≥ W (34)

ai ∈ Z+ ∀i ∈ N (35)

di ∈ {0, 1} ∀i ∈ N (36)

hmin ≥ 0 (37)

hmax ≥ 0 (38)

By p(i) we indicate the pair p ∈ P corresponding to type i ∈ N . This pricing problem is a variation of
the bounded integer knapsack problem with demand constraints and with additional penalties depending
on the minimum and maximum item size (patch height).

Observation. For each given set of patches (i.e. for each feasible choice of a), the optimal values of
hmin and hmax are given by hmin = maxi∈N :ai=1{hi} and hmax = δH +mini∈N :ai=1{hi}.

Hence, we can solve the pricing sub-problem for each choice of the minimum and maximum patch
height. In the remainder we indicate these two values by h and h. For each instance of the pricing
subproblem all patch types j ∈ N such that hj does not fall in the range [h, h] are disregarded (i.e. aj is

fixed to 0). We indicate by N̂ ⊆ N the subset of types that are compatible with the choice of h and h

4



and we indicate the resulting pricing sub-problem as restricted pricing sub-problem:

minimize r =
∑

i∈N̂

(ci − βp(i))ai − µminh− µmax(h+ δH) (39)

s.t. au + av =≤ Mp ∀p = [u, v] ∈ P (40)
∑

i∈Nj

wiai ≤ W (41)

∑

i∈Nj

(wi + δW )ai ≥ W (42)

ai ∈ Z+ ∀i ∈ N (43)

This reformulation allows to get rid of binary variables d. The terms −µminh − µmax(h + δH) do not
affect the optimal solution since they are constant. We indicate them as γ(µmin, µmax, h, h). We also
indicate by ci = ci − βp(i) the reduced cost of patch type i ∈ N . Hence the objective function can be
rewritten as

minimize r =
∑

i∈N̂

ciai + γ(µmin, µmax, h, h).

We are left with an integer knapsack problem with items partitioned into types and a limit on the number
of available items for each pair of types.

If a solution exists with a negative value of r, then a new column can be generated and inserted in
the restricted master problem.

5


