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Considering time-varying demand of online retail industry, the traditional static storage location assignment is converted into a
multistage storage location assignment process based on the idea of gradual and small-step-forward optimization, which can
respond to rapid changes in demand by adjusting the storage location of SKUs in the warehouse in real time and dynamically.
First, the study formulates the framework dynamic storage location assignment. )en, the adjustment gain model of dynamic
storage location assignment is built, and a genetic algorithm is designed to find the final adjustment solution. Finally, the computer
program is developed to simulate the whole process. Simulation and data analysis results show that dynamic storage location
assignment can effectively improve picking efficiency when the average order size is small and large demand correlation strength.
Dynamic storage location assignment simplifies the warehouse operation process by combining the picking operation and storage
location assignment into one without changing the picker’s current walking route, which can offer some theoretical guidance for
online retail enterprises implementing dynamic storage location assignment.

1. Introduction

Online retail enterprises should deliver commodities at a
lower cost and a faster speed, and order picking is an im-
portant part of customer order delivery, which becomes the
key to success for online retail enterprises. Picking systems
can be divided into three classes: the picker-to-parts picking
systems, the put systems, and the parts-to-picker systems [1].
Warehouses and distribution centers of large online retailers
have begun to adopt the latter two picking systems, such as
Jingdong and Amazon; however, most of small- and me-
dium-sized retailing and logistics companies still use picker-
to-parts picking systems. Order picking is in general the
most laborious work of picker-to-parts picking systems, and
its work labor accounts for more than 60% of the warehouse
work [1, 2]. Storage location assignment is one of the im-
portant ways to improve the efficiency of picker-to-parts
picking systems. Many studies research the problem of

storage location assignment based on SKU’s popularity,
turnover, and demand correlation [3–7], analyzing the
demand pattern of SKUs by statistics, mathematical pro-
gramming, or data mining-based method and optimizing
the storage structure of SKUs once the SKUs are put away
into shelves in the warehouse, which is a static storage lo-
cation assignment problem and can be acceptable for the
traditional warehouse picking systems of retail and indus-
trial enterprises.

Online retail enterprises have the characteristics of short
product life cycle, diversity of marketing strategy, and ob-
vious seasonal demand.)e SKUs’ demand is high volatility,
and their quantities and demand correlations change rap-
idly. )us, the historical data of popularity and demand
correlation of SKUs cannot reflect their dynamic demand in
real time, which means the traditional storage location as-
signment method will lead to a sharp decrease in warehouse
picking efficiency with the change of demands. In Dynamic
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Storage Location Assignment (DSLA), SKU’s demand is
rapidly changing, and the location of SKUs in the warehouse
should be adjusted in real time to adapt to this change [8].
DSLA transfers the traditional storage location assignment
into multistage dynamic storage location assignment based
on the step-by-step way, which optimizes SKU’s storage
location gradually instead of the traditional one-time op-
timization. It moves a small part of SKUs to meet the de-
mand from one area of the warehouse to another
periodically and gradually improve and optimize the storage
structure of the warehouse.

Based on this, we propose DSLA framework, which
considers the commonly time-varying demand in the online
retail industry and transforms the traditional storage loca-
tion assignment into a multistage, dynamic storage location
assignment. DSLA considers both popularity and demand
correlation of SKUs and makes small assignment of storage
location of some SKUs to gradually improve and optimize
the storage structure of the warehouse. Moreover, DSLA
does not change the current picker’s picking route of the
picker-to-parts system, and it adjusts the storage location of
SKUs while picking orders to respond to change of demands,
which can reduce the picking cost and improve the customer
purchasing experience.

)e remainder of the paper is organized as follows. In
Section 2, a review of relevant literature pertaining to DSLA
is presented. We present the main description and introduce
the assignment strategy of DSLA in Sections 3 and 4. )e
variable definition and indicators are constructed in Section
5. In Section 6, we build the dynamic adjustment plan and
describe the proposed heuristic solution for DSLA. Exper-
imental analyses and results are provided in Section 7. Fi-
nally, the main conclusions and future research are given in
Section 8.

2. Literature Review

)e research by Moon and Kim [9] showed that the location
optimization effect was sensitive enough to the demand
volatility. Under the random storage policy, the storage
structure of SKU cannot match its demand when the de-
mand volatility exceeded 60%, and the storage location must
be adjusted. Kofler et al. [10] pointed out that if the storage
location assignment was not carried out in real time when
the demand changed rapidly, the storage location of all SKUs
in the entire warehouse must be updated periodically (week/
month) to meet the requirements of the change of SKUs.
)ese research studies show that the traditional static storage
location assignment cannot achieve the desired effect in a
dynamic environment with rapid change. Ho [11] pointed
out that DSLA was simpler and more effective than one-time
long-term planning of storage location assignment in the
case of frequent demand changes, which can not only im-
prove the efficiency of picking but also improve customer
response speed. Due to the high idle cost of the aisle-bound
cranes of the AS/RS system, Christofides and Colloff [12]
studied the DSLA problem of the AS/RS system very early,
and many other studies carried out related research, but

there were few DSLA studies of picker-to-parts picking
systems.

Both picker-to-parts picking and AS/RS systems opti-
mize the storage structure of a warehouse by regularly
adjusting the storage location of a small number of SKUs
gradually, but the picker-to-parts picking system differs
from the AS/RS system in the following aspects. First, the
AS/RS system only adjusts SKUs within-aisle, while picker-
to-parts picking system can adjust SKUs across-aisle even in
the entire warehouse. Secondly, the AS/RS system only
adjusts SKUs in idle time, but picker-to-parts picking system
can adjust during the whole picking process. Finally, the AS/
RS system only can reassign one pallet in one adjustment,
while picker-to-parts picking system can assign multiple
SKUs during the picking process. So, DSLA in the picker-to-
parts picking systems could achieve better storage location
optimization results.

3. DSLA Framework

Traditional warehouse slotting is performed when the SKUs
are put on the shelves, and the storage location of the SKUs
never changes until they are picked out. Different from that,
the DSLA features the following two aspects. First, the
storage location of the SKUs in the warehouse can be
changed constantly and periodically, the SKUs with high
popularity can be adjusted to a storage area near the depot,
and the SKUs with correlation can be adjusted to the same
storage location, which means the storage structure of the
SKUs in the warehouse can dynamically respond to their
demand variations in real time. Moreover, the slotting of
DSLA is performed during the order picking process. )e
workflow of DSLA is described as follows.

At each picking wave time t,

(1) Route generation: the warehouse management sys-
tem generates the wave picking list and the picker’s
walking route according to the preset routing
method.

(2) Candidate adjustment solution generation: find the
candidate adjustment SKUs along the picker’s
walking route, which includes the SKUs that need to
be adjusted, and the source and target storage lo-
cations of the adjustment based on the storage policy,
the assignment strategy, and the demand pattern of
SKUs.

(3) Final adjustment solution generation: in picking
wave time t, only a small part of the SKUs are se-
lected to form the final adjustment solution by
evaluating the candidate adjustment solutions. Final
adjustment solution contains the SKUs to be ad-
justed and their source/target storage locations.

(4) Perform adjustment: the final adjustment solution is
merged into the picking task of the wave t and
assigned to the picker. So, the task of the picker in the
wave t includes order picking and storage adjust-
ment. )e picker adjusts the storage locations and
picks orders simultaneously.
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(5) Information update: after the task of the wave t is
completed, the warehouse management system up-
dates the storage location and rolling popularity of
the SKUs and then it enters the next picking wave
time.

)e whole process of DSLA is shown in Figure 1.
We can see from Figure 1 that DSLA requires picker to

move SKUs between shelves during order picking, which
brings additional working time to the picker (the walking
distance is not changed because DSLA does not change the
picker’s walking route).

)e guiding principle of DSLA is to obtain the maximum
adjustment gain with the minimum adjustment costs. To be
specific, the two key correlated issues that are involved in
DSLA are “how to adjust” and “what to adjust.” )e former
issue concerns the assignment strategy, that is, warehouse
storage area planning and the way of moving SKUs. )e
latter issue studies how to build candidate adjustment so-
lutions and find the final adjustment solution from them.

4. Assignment Strategy

)e assignment strategy guarantees how these SKUsmove in
a rectangular one-block warehouse, as shown in Figure 2(a),
and the strategy is closely related to the walking route of the
picker. Here, we consider the most commonly used tra-
versing (S-shaped) routing method in picker-to-parts
picking system. When taking an S-shaped routing method,
the picker enters from one end of the aisle where the SKUs
are to be picked, picks up SKUs from the shelves on both
sides of the aisle, and then leaves the aisle from the other end.
Before returning to pickup/dropoff (P/D), the picker will
traverse all the aisles where SKUs need to be picked.
Considering that DSLA needs to move the SKUs with high
popularity from areas far away from P/D to the area close to
P/D, we propose a backward-traversing routing method, in
which the picker first walks along the north cross to the last
aisle containing SKUs to be picked and then picks SKUs
from east to west under the S-shaped routing method. By
taking the backward-traversing routing method, the picker
can move the high popularity SKUs to the area near P/D in
the warehouse during order picking, as shown in Figure 2(a).

In a popularity-based storage policy, SKUs are assigned
to storage areas according to their popularity, which can
reduce the picker’s traveling time during order picking.
Diagonal, within-aisle, across-aisle, and perimeter are the
most commonly used warehouse storage policies in picker-
to-parts picking systems, and the warehouse storage policy is
correlated with the routing method, which was extensively
studied by Petersen and Schmenner [13], and they found the
within-aisle storage policy is the best storage policy together
with the traversing routing method. Under the within-aisle
storage policy, the SKUwith highest popularity is assigned to
the first storage of the first aisle, and the SKU with second
highest popularity is assigned to the second storage of the
first aisle, until the first aisle is completely assigned. )e
SKUs left will be assigned to the second aisle in the same
way. )e order of the storage assignment is shown in

Figure 2(c). )e traversing routing method is taken by the
picker in this paper, so within-aisle storage policy is the best
choice for warehouse storage policy. )e entire warehouse is
divided into three zones: A-zone, B-zone, and C-zone
according to the distance to P/D, A-zone near P/D stores the
high popularity SKUs, and the low popularity SKUs are
stored in the C-zone far away from P/D, as shown in
Figure 2(b). )e goal of DSLA is to move the high popularity
SKUs from B-zone or C-zone to A-zone periodically when
the SKUs’ demand changes rapidly.

5. Adjustment Solution Construction

)e goal of adjustment solution construction is to find the
SKUs that need to be adjusted and the source/target loca-
tions of the adjustment, which includes two steps: candidate
adjustment solution generation and finding the final ad-
justment solution from them.

5.1. Candidate Adjustment Solution Generation. In DSLA,
the picker adjusts the storage locations of SKUs during order
picking without changing his/her walking route, so the
candidate adjustment SKUs should satisfy the following. (1)
)e storage locations of the candidate adjustment SKUs are
on the picker’s walking route; (2) the storage zones of the
candidate adjustment SKUs do not match demand patterns
(high popularity SKUs being stored in B-zone or C-zone).

)e candidate target storage locations should meet the
following three criteria. (1) Target storage locations are on
the picker’s walking route; (2) target storage locations are
not full; and (3) target storage locations are in A-zone.

5.2. Final Adjustment Solution

5.2.1. Variable Definition. We use the following notations in
this paper:

Indices:

k: for storage location
i, j: for SKU
t: for picking wave
r: for order
s: for item set size

Parameters:

Φ� set of candidate adjustment SKUs
Ω� set of target storage locations
Φk � set of SKUs currently stored in location k

Currk � total number of SKUs currently stored in
location k

Currj

k � number of SKU j currently stored in location
k

Capk � capacity of location k

Vt � remaining capacity of the picking cart
Popi(t) � popularity of SKU i in wave time t

Rolling Popi � rolling popularity of SKU i

f(i) � demand frequency of SKU i
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r(i, j) � strength of demand correlation between SKU
i and SKU j

d(i, k) � saving distance of adjusting SKU i to the
target location k

Ni � adjustment quantity of SKU i

zi,k � adjustment gain of adjusting SKU i from its
current storage location to target location k

R � set of orders, where each order r is a set of SKUs
σ(i) � number of orders which contains SKU i

Cs � candidate item set of size s

Ls � frequent item set of size s

5.2.2. Rolling Popularity and Strength of Demand
Correlation. DSLA not only adjusts the SKUs with high
popularity to the storage zone near the P/D, and it also
adjusts the SKUs with demand correlation to the same or
adjacent storage locations. Considering the variation of
SKU’s popularity, we define the rolling popularity of an SKU
as the moving average of its demand within a given period,
which is calculated accordingly to

Rolling Popi � 􏽘
t−1

t′�t−Δt

Popi t′( 􏼁. (1)

Considering the cold start of the DSLA, we do not adjust
the storage location in the first 99 picking waves, but only
calculate the popularity of SKU i (Popi(t)) in each picking
wave t. We begin adjust and calculate the rolling popularity

of SKUs according to formula (1) from the 100th picking
wave. After calculating the rolling popularity of all candidate
SKUs, we also calculate the demand frequency of all can-
didate SKUs. )e demand frequency of the candidate SKU i

(f(i)) is calculated by

f(i) �
Rolling Popi

􏽐j∈ΦRolling Popj

. (2)

In addition to adjusting the SKUs with high popularity,
DSLA also adjusts the SKUs with demand correlation to the
same or adjacent storage locations. )e demand correlation
between SKUs is generated by the Apriori algorithmwhich uses
support and confidence to measure the demand correlation of
SKUs [14], and SKUs with support and confidence greater than
the minimum support and confidence have strong demand
correlation. )e workflow of Apriori is described as follows:

(1) Scan each order r in R, count SKUs to generate the
candidate item sets C1

(2) New frequent item set L1 is generated by SKUs from
C1 with support greater than the minimum support

(3) Set s � 1
(4) Candidate item set Cs+1 is obtained by Ls self-

connection
(5) Count all candidates SKUs in Cs+1 that are contained

in R, and frequent item set Ls+1 is generated from
Cs+1 with support greater than theminimum support
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Figure 1: Model of DSLA.
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(6) If Ls+1! � ∅, s � s + 1, go to (4); otherwise, return
frequent item set Ls+1.

)e support represents the frequency at which both
SKUs i and jappear simultaneously in one order, and the
support degree Sup(i, j) is calculated as

Sup(i, j) �
σ(i∪ j)

|R|
, (3)

where σ(i∪ j) is the number of orders that contain SKU i

and j, R is the number of all orders, and the confidence
Conf(i, j)measures the frequency at which SKU j appears in
orders containing SKU i, which is calculated as

Conf(i, j) �
σ(i∪ j)

σ(i)
. (4)

Here also introduce lift to measure the strength of de-
mand correlation between SKUs, and if lift is greater than 1,
it means SKUs are positively correlated, that is, the demands
between the two SKUs are mutually promoted. )e greater
the lift, the stronger the demand correlation between SKUs.
)e lift is equal to 1 means the demands of the SKUs are
independent of each other, and lift is less than 1 means the
demands of the SKUs are complementary. In view of this, we
combine support and lift to describe the strength of demand
correlation between SKUs.

Once the support degree Sup(i, j) and the lift
degreeLift(i, j) between candidate SKU i and j are calculated
by the Apriori algorithm, the strength of demand correlation
r(i, j) between SKU i and j is calculated by

r(i, j) � Lw(i, j) × Sup(i, j),

Lw(i, j) � Lift(i, j), if Lift(i, j)> 1,

Lw(i, j) � 0, if Lift(i, j) � 1,

Lw(i, j) � −Lift(i, j), if Lift(i, j)< 1.

⎧⎪⎪⎨

⎪⎪⎩
(5)

When Lift(i, j)> 1, the greater r(i, j) is, the greater the
optimization effect can be obtained if both SKU i and j are
adjusted to the same or adjacent storage locations.

)e random storage policy is widely used in warehouses
of online retail companies, which means there is more than
one category of SKUs stored in the same location. So, if we
move SKU i to the target location k, all SKUs stored in target
location k may have demand correlation with SKU i and can
benefit from the adjustment. Considering this, we propose
SKU-to-Bin Affinity (Sba) to calculate the benefit of the
adjustment of moving SKU i to target location k. We define
Sbai,k as the average strength of demand correlation of SKU
i, and all SKUs are stored in target location k (Φk), which is
calculated as

Sbai,k � 􏽘
j∈Φk

r(i, j)∗ min Ni,Curr
j

k􏼐 􏼑/Ni􏼐 􏼑

Φk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (6)

where Ni is the adjustment quantity of SKU i,Φk is the set of
SKUs currently stored in location k, and Currj

k is the number
of SKU j stored in location k.

5.2.3. Route-Based Saving Distance. DSLA can save picker’s
walking distance, since the picker in picker-to-parts ware-
house systems may take different routing methods while
picking, such as traversing, return, midpoint, and the largest
gap [15].)e saving distance of DSLA is closely related to the
routing methods, which means that even if the SKU is
moved from the same source location to the same target
location, the saved walking distance under different routing
methods may be different. Considering this, the Route-
Based Saving Distance (Rbsd) is proposed to represent the
saved walking distance of DSLA, where Rbsd(i, k) is pro-
posed to represent the walking distance saved by moving
SKU i from its current storage location to the target location

North cross

South cross

N

S
EW

P/D

(a)

B CA 

(b)

B CA

(c)

Figure 2: Assignment strategy of DSLA: (a) traversing routing method, (b) within-aisle storage, and (c) order of the storage assignment.
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k. Rbsd(i, k) with the traversing routing method is shown in
Figure 3.

)e locations marked with black in Figure 3 indicate the
storage locations of the SKUs to be picked. When picker
picks up these SKUs using the backward-traversing routing
method, DSLA first generates the walking route of the
picker and calculates the rolling popularity. If DSLA finds
that SKU i (marked with the black grid line) on the current
walking route is a high popularity SKU but it is stored in an
area far away from P/D, then it needs to be moved to the
location k (marked with the white grid line) in the storage
zone near P/D. Since the picker will traverse all aisles
containing the SKUs to be picked, moving SKU i can save
picker’s walking distance in the horizontal direction. )e
calculation of Rbsd(i, k) is

Rbsd(i, k) � (u − v)∗Wa, (7)

where u is the number of the aisle where SKU i is currently
stored, v is the number of the aisle of the target location k,
and Wa is the distance between the center lines of adjacent
aisles.

5.2.4. Adjustment Gain. )e adjustment gain is calculated
based on the following aspects. (1) )e demand frequency of
SKU: the greater it is, the greater the adjustment gain can be
obtained when the SKU is adjusted from B-zone or C-zone
to A-zone. (2) )e strength of demand correlation between
SKUs: greater adjustment gain can be obtained when highly
correlated SKUs are adjusted to the same or adjacent storage
locations because they can be picked up together. (3) Rbsd:
larger Rbsd means more walking distance can be saved by
the adjustment, so greater adjustment gain can be obtained.

Taking the three aspects above into consideration, we
define zi,k as the adjustment gain of moving SKU i from its
current location to target location k, which is calculated as

zi,k � 􏽘
k∈Ω

ζ ∗ (1 − z)∗ Sbai,k + z∗f(i)􏽨 􏽩∗Ni ∗Rbsd(i, k).

(8)

)e first part in formula (8) (1 − z)∗ Sbai,k ∗Ni ∗
Rbsd(i, k) represents the walking distance saved by adjusting
demand-correlated SKUs together, and the second part
z∗f(i)∗Ni ∗Rbsd(i, k) represents the walking distance
saved by adjusting high popularity SKUs to A-zone. )e two
parts are combined into zi,k by the weight z(0≤ z≤ 1) be-
tween [0, 1]. ζ is a coefficient used for normalizing the two
parts according to [16], which is calculated as

ζ �
􏽐i∈Φ􏽐k∈ΩSbai,k

􏽐i∈Φf(i)
. (9)

5.2.5. Final Adjustment Solution Model. )ere are many
candidate adjustment solutions in each picking wave,
considering the remaining capacity of the picking cart and
rapid change of online retailer’s demand. DSLA only selects
a small number of SKUs from the candidate adjustment
solutions to adjust locations. So, the final adjustment so-
lution can be obtained by solving the model formulated as
(10)–(14):

Z � 􏽘
i∈Φ

􏽘
k∈Ω

ζ ∗ (1 − z)∗ Sbai,k + z∗f(i)􏽨 􏽩∗Xi,k ∗Rbsd(i, k),

(10)

Max(Z)

subject to 􏽘
k∈Ω

Xi,k ≤ 1, ∀i, (11)

􏽘
i∈Φ

Xi,k ≤Capk − Currk, ∀k, (12)

􏽘
i∈Φ

􏽘
k∈Ω

Xi,k ≤Vt, (13)

Xi,k ∈ 0, 1, ∀i, k. (14)

)e objective of DSLA is to maximize total adjustment
gain Z in formula (10) by selecting appropriate SKUs from
candidate adjustment solutions. Constraint (11) represents
that the SKU i can only be adjusted to one target location at
most. Constraint (12) guarantees that the capacity of the
target storage location k does not exceed its maximum
capacity. Constraint (13) ensures that the total of SKUs to be
adjusted in a picking wave does not exceed the remaining
capacity of the picking cart. )e Xi,k in formula (14) is a
binary variable indicating whether the SKU i is adjusted to
the target location k or not. By solving the model described
by formulae (10)–(14), the final storage adjustment solution
of each picking wave can be found by DSLA.

6. Algorithm

)e candidate adjustment solutions are combinations of the
set of all candidate SKUs Φ and the set of target storage
locations Ω, and the number of combinations is huge, and
finding the final adjustment solution described by formulae
(10)–(14) can be NP-hard. Metaheuristics algorithm can be
used to find the best adjustment solution in an acceptable
time, where we use the genetic algorithm to solve the model
described by formulae (10)–(14).

In the proposed genetic algorithm, each candidate ad-
justment solution is represented by a chromosome χ and its
gene is a triple (i, k, u), which is shown in the following:

χ � (2, 4, 1), (18, 6, 1), (2, 8, 1), (2, 6, 1), (34, 8, 0), (2, 12, 1), . . . , (50, 6, 1). (15)

In each gene triple (i, k, u), index i is SKU to be adjusted,
k is the target storage location to be adjusted to, and u is

binary variable indicating whether the SKU is to bemoved to
storage location k or not; if u is 1, SKU i will be moved to the
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target storage location k; otherwise, SKU i stays in the lo-
cation where it is currently located.

)e length of the chromosome is calculated as |χ|, and
genetic operators such as crossover and mutation are carried
out flowing the idea of multiple bin-size bin packing
problem (MBSBPP) [17]. )e SKU i and the target storage
location k to be adjusted are regarded as item and bin in
MBSBPP, respectively, while crossover and mutation only
change the target location k, which is described as follows.

Firstly, the fitness values of all chromosomes are cal-
culated by formula (16); then, the roulette selection algo-
rithm is used to select two parent chromosomes according to
their fitness values and target storage location k in each triple
(i, k, u) of the two parent chromosomes is extracted to form
two target location sequences. After that, a random number
is generated between [0, 1] as the crossover probability Pc; if
the random probability is greater thanPc, an integer between
(0, |χ|) is randomly generated as the crossover point and two
new target storage locations are generated by exchanging
gene section after the crossover. Mutation of two new target
storage locations is performed by two-point inversion: a
random number is generated between [0, 1] as the mutation
probability Pm; if the random probability is greater than Pm,
two integers between (0, |χ|) are randomly generated as the
mutation points, and the target storage locations between
these two variation points are reversed.

Finally, the two target location sequences obtained after
the crossover and mutation are assigned to the original
parent chromosomes, respectively, and obtaining two
children chromosomes.

Considering constraints (11)–(13) in the adjustment gain
model, many infeasible adjustment solutions may be gen-
erated after the crossover and mutation. For example, a
chromosome containing gene triples (2, 4, 1), (2, 8, 1), and
(2, 12, 1) is not feasible because SKU 2 cannot be moved the
target locations 4, 8, and 12 simultaneously, which violates
constraint (11). In addition, a chromosome containing gene
triples (18, 6, 1), (2, 6, 1), and (50, 6, 1) is not feasible because
moving SKUs 18, 2, and 50 to the same target storage

location 6 may exceed the remaining capacity of the storage
location 6, which violates constraint (12). Moreover, the pick
cart capacity limitation should be considered (the constraint
condition (13) is satisfied), so we should do some extra work
after crossover and mutation:

(1) Making all chromosomes feasible: enumerate all the
genes in the chromosomes including the SKU i to be
adjusted. Calculate the adjustment gain according to
formula (8). Set u of the gene with the largest ad-
justment gain as 1 and all the others as 0 so that
constraint (11) is satisfied.

(2) Making all target locations’ capacity feasible: sort the
adjusted chromosomes in the descending order
according to the adjustment gain, and select them
one by one until remaining capacity of the target
location is not enough. )e selected gene triples’ u

are set to 1, otherwise set to 0 so that constraint (12)
is satisfied.

(3) Making picking cart’s capacity feasible: we use a
penalty function to calculate the chromosome fitness
value. )e fitness value of chromosome χ is calcu-
lated by

F(χ) � p(χ)∗Z(χ), (16)

where Z(χ) is the gain of the adjustment solution described
by chromosome χ, which is calculated by formula (8), and
p(χ) is the penalty function of the infeasible chromosome χ,
which is calculated as

p(χ) � 1 −
􏽐

n
i�1 ui − Vt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
. (17)

Summation 􏽐
n
i�1 ui is the total number of adjustment

SKUs, Vt is the remaining capacity of the picking cart, and
the coefficient δ is calculated as

δ � max Vt, 􏽘
n

i�1
ui

⎛⎝ ⎞⎠. (18)

We can see from (17) and (18) that the candidate ad-
justment are not punished only when | 􏽐

n
i�1 ui − Vt| � 0

(p(χ) � 1), which means whether the total number of the
adjusted SKUs is greater or less than the remaining capacity
of the picking cart, and the candidate adjustment will be
punished. Its purpose is to make full use of the remaining
space of picking cart for storage location assignment.

7. Experimental Results

)is section presents the experimental analysis and results.
)e experimental factors and level values are shown in
Table 1, and our experiment has three factors, which are
average order size, strength of demand correlation, and
adjustment quantity of SKU. Average order size has four
levels, which are 5, 10, 15, and 20. Strength of demand
correlation measures the degree of demand correlation
between SKUs and has four levels, which are 2, 4, 8, and 10
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Figure 3: Calculation of route-based saving distance.
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representing the demand correlation between 2% to 10% of
SKUs, respectively. Adjustment quantity of SKU specifies
maximum number of SKU allowed to be adjusted in each
picking wave, including 2, 4, 8, and 12.)e warehouse has 10
two-sided aisles, and the shelves on both side of these aisles
consist of 3 floors, and each floor has 20 storage locations.
)e widths of the aisle and the storage location are 200 cm
and 80 cm, respectively. )e capacities of the storage loca-
tion and the picking cart are 60 and 30, respectively, that is,
the picking cart can accommodate up to 30 SKUs, including
the SKUs both for picking out and adjustment. )e system
generates an order every 12 seconds and works 10 hours a
day, so the total number of orders in one day is 3000. )e
order generation process is described as follows:

(1) Generate an empty order O � and a temporary
variable n � 0 to record the number of SKUs in O

(2) Generate order size: order size N is generated
according to the normal distribution model with
mean value of average order size and coefficient of
variation of 0.1

(3) Generate next SKU: generate an SKU i according to
the demand pattern of the experimental scenario

(4) If n + 1>N, return O; otherwise, add i to O and let
n � n + 1

(5) Generate correlated SKU: generate a SKU j related to
SKU i according to the strength of demand
correlation

(6) If n + 1>N, return O; otherwise, add j to O and let
n � n + 1, and go to (3)
Once order is generated, the DSLA will do the
following:

(1) Build the picker’s walking route
(2) Calculate the rolling popularity Rolling Pop
(3) Mine demand pattern and calculate strength of

demand correlation r by Apriori algorithm
(4) Calculate demand frequency f of SKUs
(5) Calculate SKU-to-Bin affinity Sba and saving dis-

tance Rbsd
(6) Obtain candidate adjustment SKUs Φ and candidate

target storage locations Ω

)en, DSLA’s adjustment gain optimization model is
built, and final adjustment solutions are solved through the
genetic algorithm. Final adjustment solutions are simulated
with agent-based model implement by Java. After all orders
within one day were picked out, DSLA automatically cal-
culates average walking distance and average working time

of all pickers (which represent the working intensity and
efficiency of all pickers, respectively). DSLA simulation
flowchart and software are shown in Figure 4.

)e total working time ttotal of the picker, including
walking time, picking time, and temporary pulling off time
and putting away time of the adjustment SKUs, is calculated
by

ttotal �
l

vw

+ tp ∗ np + td ∗ na + tu ∗ na, (19)

where vw is the walking speed of the picker, tp, td, and tu are
the times taken for picking, pulling off, and putting away of a
SKU, respectively, and np and na are the SKU quantities to be
picked and adjusted, respectively. )e walking speed of the
picker (vw) is 0.75m/s, and the picking time of one SKU (tp)
is 18 seconds, and we let td and tu be the same as the picking
time tp.

Our experiment has 64 (4∗4∗4) scenarios. In each sce-
nario, DSLA generated 3000 orders to simulate the demand
in one day, each experimental scenario was repeated 3 times
to reduce random error, and a total of 192 (64∗3) data points
were obtained. SPSS21.0 is used to analyze the experimental
data and obtained the ANOVA with the significance level
0.05, as shown in Table 2. Table 2 tells us the significance
values of the three principal factors (average order size,
strength of demand correlation, and adjustment quantity)
are all less than 0.05, which means three principal factors
affect the optimization effect directly. In addition, the sig-
nificance values of the interaction between the three prin-
cipal factors are also less than 0.05, indicating that the
interactions between them also affect the optimization effect
of DSLA.

Figure 5 shows the general optimization effect of DSLA,
including the saved walking distance and working time. We
can see from Figure 5 that average walking distance and
working time of all pickers in one day decreases by 7.67%
and 2.60%, respectively. It can be concluded that DSLA can
not only reduce the picker’s working intensity but also
improve the efficiency effectively.

)e ANOVA in Table 2 shows that average order size,
strength of demand correlation, and adjustment quantity are
the key factors affecting the optimization effect of DSLA.)e
three factors are taken as the main effects to further analyze
the optimization effect of DSLA in the following, as shown in
Figure 6.

Figure 6(a) represents the optimization effect of DSLA
under different order sizes. )e X-axis indicates the average
order size, and Y-axis indicates the adjustment gain. We can
see from Figure 6(a) that the optimization effect of DSLA
decreases with the increase of the average order size, that is,
the average walking distance and working time of the pickers
are saved by 10.48% and 3.96%, respectively. Particularly,
when the average order size is 20, the average walking
distance and working time of the pickers are saved by 5.0%
and 0.08%, respectively, and the effect of DSLA is not ob-
vious. )ere are two main reasons: the first one is the ca-
pacity limitation of the picking cart, and the smaller order
size means that more SKUs can be adjusted during order

Table 1: Summary of the factorial design of experiments.

Factors Level values
Average order size (Aos) 5, 10, 15, 20
Strength of demand correlation (Sdc) 2, 4, 8, 10
Adjustment quantity (Aq) 2, 4, 8, 12

8 Complexity



picking. Moreover, we find in simulation that SKUs to be
picked are almost distributed in all picking aisles, and
pickers need to transverse all aisles when the average order
size is larger; in this case, DSLA cannot reduce the number of
aisles that the picker needs to transverse when picking,
DSLA’s optimization is not obvious. So, it can be concluded
that the optimization effect of DSLA decreases with the
increase of the average order size when the pickers take the
traversing routing method to pick SKUs, and the optimi-
zation effect of DSLA is best when the average order size is
smaller.

Figure 6(b) describes the optimization effect of DSLA
under different strengths of demand correlation. )e X-axis

indicates the strength of demand correlation, and the Y-axis
indicates the adjustment gain. We can see from Figure 6(b)
that the optimization effect increases when the strength of
demand correlation increases. When strength of demand
correlation is equal to 10 (which means 10% SKUs’ demand
are correlated), the average walking distance and working
time of the pickers are reduced up to 10.93% and 3.78%,
respectively. )is is because the stronger the SKUs’ demand
correlation is, the more likely these SKUs will be adjusted to
the adjacent or same storage locations; moreover, SKUs with
high popularity are also adjusted to the storage area near P/D
together with their correlated SKUs, which further saves the
walking distance and working time of the pickers. So, it can
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Figure 4: DSLA simulation flowchart and software: (a) DSLA simulation flowchart and (b) DSLA simulation software.
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be concluded that the optimization effect of DSLA increases
with the increase of strength of demand correlation when the
pickers take the traversing routing method to pick SKUs.

Figure 6(c) shows the optimization effect of DSLA under
different adjustment quantities of SKUs. When the adjust-
ment quantity of SKUs is large (12), DSLA can save the
average walking distance and average working time up to
10.29% and 3.60%, respectively. On the contrary, when the
adjustment quantity of SKUs is small (2), DSLA can save the
average walking distance and average working time only by
3.93% and 1.21%. )e reason behind that is straightforward,
large adjustment quantity of SKUs can bring more candidate
adjustment solution, and DSLA can select optimal adjust-
ment solution to implement. So, it seems to be that the
optimization effect of DSLA increases with the increase of
the adjustment quantities of SKUs when the pickers take the
traversing routing method to pick SKUs. However, we must
keep in mind that the basic idea of DSLA is to dynamically
optimize the storage structure of the warehouse by regularly
adjusting the storage locations of a small number of SKUs, in
response to the rapid changes of SKUs’ demand in real time.
When SKUs’ demand changes rapidly, the optimization
effect is not obvious when the number of adjustment SKUs is

small enough, and if the number of adjustment SKUs is too
large, they will move back and forth periodically [18], so
DSLA must determine the optimal number of SKUs to be
adjusted under different demand patterns. )e significance
tests in Table 2 also show that the significance values of the
interactions between strength of demand correlation, av-
erage order size, and adjustment quantity of SKUs are also
less than 0.05, indicating that the interactions between them
have important impact on the optimization effect of DSLA.
In view of this, the interaction effects between the adjust-
ment quantity of SKUs and the other two factors are further
analyzed, as shown in Figures 7 and 8.

Figures 7 and 8 show the co-optimization effects between
adjustment quantity and strength of demand correlation and
adjustment quantity and average order size. In the case of
high strength of demand correlation or small average order
size, Figure 7 tells us that, although appropriately increasing
adjustment quantity of SKUs can significantly improve the
optimization effect of DSLA, the marginal utility of the
adjustment gain by adjusting the quantity of SKUs is de-
creasing. In other words, when the quantity of adjustment
SKUs increases to a certain extent, DSLA could not improve
the optimization effect anymore. Moreover, we can see from
Figure 7 that when the strength of demand correlation is
small, increasing the quantity of adjustment SKUs reduces
the optimization effect. Simulation results show that the
main reason for this is that an increase in the adjustment
quantity of SKUs leads to frequent movement of SKUs. So,
we can draw a conclusion that DSLA is suitable for opti-
mization under the circumstance of strong strength of de-
mand correlation or small average order size. Due to the
dynamic changes of demands, it is not advisable to increase
the adjustment quantity of SKUs unreasonably when im-
plement DSLA, and the principle of DSLA is gradual op-
timization in small steps.

In summary, simulation and numerical analysis show
that when the pickers perform dynamic storage location
assignment without changing the current picking route,

Table 2: Significance tests of optimization effect of DSLA.

Source III Df MSE F Sig.

Aos Saving distance 0.112 3 0.037 365.142 0.000
Saving time 0.026 3 0.009 372.428 0.000

Sdc Saving distance 0.110 3 0.037 359.680 0.000
Saving time 0.015 3 0.005 207.273 0.000

Aq Saving distance 0.114 3 0.038 372.606 0.000
Saving time 0.016 3 0.005 226.569 0.000

Aos∗Sdc Saving distance 0.008 9 0.001 8.785 0.000
Saving time 0.002 9 0.000 8.427 0.000

Aos∗Aq Saving distance 0.013 9 0.001 14.112 0.000
Saving time 0.003 9 0.000 14.239 0.000

Sdc∗Aq Saving distance 0.030 9 0.003 32.831 0.000
Saving time 0.004 9 0.000 20.245 0.000

Error Saving distance 0.013 128 0.000
Saving time 0.003 128 2.352E− 05

Sum Saving distance 1.532 192
Saving time 0.199 192
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2.60%
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Figure 5: General optimization effect of DSLA.
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the average walking distance and average working time of
all pickers can be effectively saved, thereby greatly im-
proving the efficiency of warehouse picking. DSLA is
most suitable for the picking system with smaller average
order size and stronger demand correlation; when the
order size is larger and the strength of demand

correlation is relatively higher, DSLA can save walking
distance and time of all pickers dramatically. If demand
changes rapidly, DSLA should follow the principle of
gradual optimization with multibatch and small-batch
adjustment. Online retailers often carry out marketing
strategies such as category promotion and cross-selling,
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Figure 7: Co-optimization effect of adjustment quantity and strength of demand correlation: (a) saving distance and (b) saving time.
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Figure 8: Co-optimization effect between adjustment quantity and average order size: (a) saving distance and (b) saving time.
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resulting in rapid changes in SKUs and their quantities,
which means stronger strength of demand correlation
and relatively smaller average order size is common
phenomenon in online retail enterprises, so the con-
clusions we found can offer certain guidance for im-
proving the warehouses picking efficiency of online
retailers.

8. Conclusions and Future Research

DSLA divides the traditional one-time storage location as-
signment into a dynamic, small-batch storage location as-
signment process by considering SKUs’ popularity and
demand correlation. Numerical experiments show that,
compared with the traditional storage location assignment
method, DSLA can effectively save the walking distance and
working time of the pickers, and the storage location op-
timization effect is obvious. It is especially suitable for the
optimization of the picking system of online retailers with
rapid changes of SKUs and high demand uncertainty, which
can bring improvement on online retailers’ logistics cost and
customer purchasing experience; in addition, DSLA com-
bines order picking and storage location assignment into one
working process and only adjusts the location of a small
quantity of SKUs while picking, and it is feasible and very
easy for online retailers’ picker-to-parts picking systems to
implement DSLA.

In addition to the traversing routing method, picker-to-
parts picking systems also have return, midpoint, largest gap,
and shortest methods. Different methods correspond to
different optimal storage policies. )e optimization effect of
storage location assignment is closely related to the routing
method, and further research can take these aspects into
consideration. Finally, we do not consider the walking route
changes of the pickers. Following research can study the
DSLA under the variable route, which allows the pickers to
change the current walking route appropriately for dynamic
storage location assignment.
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