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Abstract

The computation of point-to-point shortest paths on time-dependent
road networks has a large practical interest, but very few works propose
efficient algorithms for this problem. We propose a novel approach which
tackles one of the main complications of route planning in time-dependent
graphs, which is the difficulty of using bidirectional search: since the exact
arrival time at the destination is unknown, we start a backward search
from the destination node using lower bounds on arc costs in order to
restrict the set of nodes that have to be explored by the forward search.
Our algorithm is based on A

∗ with landmarks (ALT); extensive compu-
tational results show that it is very effective in practice if we are willing
to accept a small approximation factor, resulting in a speed-up of several
times with respect to Dijkstra’s algorithm while finding only slightly sub-
optimal solutions. The main idea presented here can also be generalized
to other types of search algorithms.
Keywords. Shortest paths, time-dependent costs, large-scale road net-
works, goal directed search.

1 Introduction

Route planning in road networks is a practical application that, in recent years,
has attracted a lot of attention to paths on large graphs. In particular, since
in several countries there are now road segments covered with traffic sensors, it
is possible to generate speed profiles based on historical data. It thus becomes
feasible to model the dependence of travelling speed on the time of the day;
consequently, situations like rush hours traffic peaks can be taken into account
during the calculation, giving much more meaningful results with respect to
the static case (i.e. arc costs are always fixed) from the users point of view.
In a typical application scenario, e.g. a server machine which provides a route
planning web server, one would like to answer several shortest path queries in
less than one second of CPU time, on graphs with several millions nodes. This
means that we are interested in an algorithm which is able to quickly find good
solutions to the Time-Dependent Shortest Path Problem, which we de-
fine as follows.
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Time-Dependent Shortest Path Problem (TDSPP): Given a directed
graph G = (V,A), a source node s ∈ V , a destination node t ∈ V , an interval
of time instants T , a starting time τ0 ∈ T and a time-dependent arc weight
function c : A× T → R+, find a path p = (s = v1, . . . , vk = t) in G such that
its time-dependent cost γτ0

(p), defined recursively as follows:

γτ0
(v1, v2) = c(v1, v2, τ0) (1)

γτ0
(v1, . . . , vi) = γτ0

(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0
(v1, . . . , vi−1))(2)

for all 2 ≤ i ≤ k, is minimum.

We assume that a function λ : A→ R+ with the following property:

∀(u, v) ∈ A, τ ∈ T (λ(u, v) ≤ c(u, v, τ)),

is known. In other words, λ(u, v) is a lower bound on the travelling time of
arc (u, v) for all time instants in T . In practice, this can easily be computed,
given an arc length and the maximum allowed speed on that arc. We naturally
extend λ to be defined on paths, i.e. λ(p) =

∑
(vi,vj)∈p λ(vi, vj).

In this paper, we propose a novel algorithm for the TDSPP based on a
bidirectional A∗ algorithm. Since the arrival time is not known in advance (so c
cannot be evaluated on the arcs adjacent to the destination node), our backward
search occurs on the graph weighted by the lower bounding function λ. This is
used for bounding the set of nodes that will be explored by the forward search.

1.1 Related Work

Many ideas have been proposed for the computation of point-to-point shortest
paths on static graphs (see [22, 21] for a review), and there are algorithms
capable of finding the solution in a matter of a few microseconds [1]; adaptations
of those ideas for dynamic scenarios, i.e. where arc costs are updated at regular
intervals, have been tested as well [7, 20, 23, 17].

Much less work has been undertaken on the time-dependent variant of the
shortest paths problem; we refer to [17] for a survey. The TDSPP was first
addressed in [4]: a recursive formula is given to establish the minimum time to
travel to a given target starting from a given source at a certain time τ . In [9],
Dijkstra’s algorithm [8] is extended to the dynamic case, but the FIFO property,
which is necessary to prove that Dijkstra’s algorithm terminates with a correct
shortest paths tree on time-dependent networks, is not mentioned. The FIFO
property states that for each pair of time instants τ, τ ′ with τ < τ ′:

∀ (u, v) ∈ A c(u, v, τ) + τ ≤ c(u, v, τ ′) + τ ′,

The FIFO property is also called the non-overtaking property, because it basi-
cally says that if T1 leaves u at time τ and T2 at time τ ′ > τ , T2 cannot arrive
at v before T1 using the arc (u, v). For the TDSPP, the FIFO assumption is
usually necessary in order to mantain polynomial complexity: the SPP in time-
dependent FIFO networks is polynomially solvable [15], while it is NP-hard in
non-FIFO networks [18]. Given source and destination nodes s and t, the prob-
lem of maximizing the departure time from node s with a given arrival time at
node t is equivalent to the TDSPP (see [5]).
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Goal-directed search, also called A∗ [13], has been adapted to work on all the
previously described scenarios; an efficient version for the static case has been
presented in [10], and then developed and improved in [11]. Those ideas have
been used in [7] on dynamic graphs as well, while the time-dependent case on
graphs with the FIFO property has been addressed in [3] and [7].

Moreover, the recently developed SHARC-algorithm [2] allows fast unidirec-
tional shortest-path calculations in large scale networks. Due to its unidirec-
tional nature, it can easily be used in a time-dependent scenario. While orig-
inally the SHARC-algorithm was able to deal only with approximative queries
on time-dependent graphs, it has recently been extended [6] to compute optimal
solutions. However, as this new version was not available at the time of writing
this paper, we compare our results to [2].

1.2 Overview

The rest of this paper is organised as follows. In Section 2 we describe A∗

search and the ALT algorithm, which are needed for our method. In Section 3
we describe the foundations of our idea, and present an adaptation of the ALT
algorithm based on it. In Section 4 we formally prove our method’s correctness.
In Section 5 we propose some modifications that improve the performance of our
algorithm, and prove their correctness. In Section 6 we discuss computational
experiments and provide computational results.

2 A
∗ with Landmarks

A∗ is an algorithm for goal-directed search, similar to Dijkstra’s algorithm, but
which adds a potential function to the priority key of each node in the queue.
The potential function on a node v is an estimate of the distance to reach the
target from v; A∗ then follows the same procedure as Dijkstra’s algorithm, but
the use of this potential function, summed to the priority key of each node,
has the effect of prioritizing nodes that are likely to be closer to the target
node t. If the potential function π is such that π(v) ≤ d(v, t)∀v ∈ V , where
d(v, t) is the distance from v to t, then A∗ always finds shortest paths. A∗ is
guaranteed to explore no more nodes than Dijkstra’s algorithm: if π(v) is a
good approximation from below of the distance to target, A∗ efficiently drives
the search towards the destination node, and it explores considerably fewer
nodes than Dijkstra’s algorithm; if π(v) = 0∀v ∈ V , A∗ behaves exactly like
Dijkstra’s algorithm, i.e. it explores the same nodes. In [14] it is shown that A∗

is equivalent to Dijkstra’s algorithm on a graph with reduced costs wπ(u, v) =
w(u, v) − π(u) + π(v); as the length of each path between s and t changes by
the same amount π(t)− π(s), the shortest path is invariant.

One way to compute the potential function, instead of using Euclidean dis-
tances, is to use the concept of landmarks. Landmarks were first proposed in
[10]; they are a preprocessing technique which is based on the triangular inequal-
ity. The basic principle is as follows: suppose we have selected a set L ⊂ V of
landmarks, and we have precomputed distances d(v, ℓ), d(ℓ, v)∀v ∈ V, ℓ ∈ L;
the following triangle inequalities hold: d(u, t) + d(t, ℓ) ≥ d(u, ℓ) and d(ℓ, u) +
d(u, t) ≥ d(ℓ, t). Therefore πt(u) = maxℓ∈L{d(u, ℓ) − d(t, ℓ), d(ℓ, t) − d(ℓ, u)} is
a lower bound for the distance d(u, t), and it can be used as a potential func-
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tion which preserves optimal paths. On static (i.e. non time-dependent) graphs,
landmarks can be used to implement bidirectional search, using some care in
modifying the potential function so that it is consistent for both forward and
backward search [11]. The consistency condition requires that wπf

(u, v) in G

should be equal to wπb
(v, u) in the reverse graph G, where πf and πb are the

potential functions for the forward and the backward search, respectively. Bidi-
rectional A∗ with the potential function described above is called ALT. It is
straightforward to note that, if arc costs can only increase with respect to their
original value, i.e. the value used in the precomputation of landmark distances,
then the potential function associated to landmarks is still a valid lower bound,
even on a time-dependent graph. In [7] this idea is applied to a real road net-
work in order to analyse algorithmic performances, but with a unidirectional
search. On road networks, the initial arc cost, which should be a lower bound
on the time-dependent cost on that arc, can be easily computed by dividing the
arc’s length by the maximum allowed speed on that arc’s road category.

The choice of landmarks has a great impact on the size of the search space, as
it severely affects the quality of the potential function. Several selection strate-
gies exist, although none of them is optimal with respect to random queries, in
the sense that none is guaranteed to yield the smallest search space for random
source-destination pairs. The best known heuristics are avoid and maxCover
[12].

3 Bidirectional Search on Time-Dependent Graphs

Our algorithm is based on restricting the scope of a time-dependent A∗ search
from the source using a set of nodes defined by a time-independent A∗ search
from the destination, i.e. the backward search is a reverse search in Gλ, which
corresponds to the graph G weighted by the lower bounding function λ.

Given a graph G = (V,A) and source and destination vertices s, t ∈ V ,
the algorithm for computing the shortest time-dependent cost path p∗ works in
three phases.

1. A bidirectional A∗ search occurs on G, where the forward search is run
on the graph weighted by c with the path cost defined by (1)-(2), and
the backward search is run on the graph weighted by the lower bounding
function λ. All nodes settled by the backward search are included in a set
M . Phase 1 terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is the first vertex in the intersection of the heaps of the
forward and backward search; then the time dependent cost µ = γτ0

(pv)
of the path pv going from s to t passing through v is an upper bound to
γτ0

(p∗). In the second phase, both search scopes are allowed to proceed
until the backward search queue only contains nodes whose associated key
exceeds µ. In other words: let β be the key of the minimum element of
the backward search queue; phase 2 terminates as soon as β > µ. Again,
all nodes settled by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that
only nodes in M can be explored. The forward search terminates when t
is settled.
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The pseudocode for this algorithm is given in Algorithm 1. Note that we use the
symbol↔ to indicate either the forward search (↔=→) or the backward search

(↔=←). We denote by
−→
A the set of arcs for the forward search, i.e.

−→
A = A,

and by
←−
A the set of arcs for the backward search, i.e.

←−
A = {(u, v)|(v, u) ∈ A}.

A typical choice is to alternate between the forward and the backward search
at each iteration of the algorithm during the first two phases.

Algorithm 1 Compute the shortest time-dependent path from s to t with
departure time τ0

1:
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; µ := +∞; done := false; phase := 1.

2: while ¬done do

3: if (phase = 1) ∨ (phase = 2) then

4: ↔∈ {→,←}
5: else

6: ↔:=→
7: u :=

←→
Q .extractMin()

8: if (u = t) ∧ (↔=→) then

9: done := true

10: continue

11: if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then

12: µ := u.dist→ + u.dist←

13: phase := 2
14: if (phase = 2) ∧ (↔=←) ∧ (µ < u.key←) then

15: phase := 3
16: continue

17: for all arcs (u, v) ∈
←→
A do

18: if ↔=← then

19: M.insert(u)
20: else if (phase = 3) ∧ (v /∈M) then

21: continue;

22: if (v ∈
←→
Q ) then

23: if u.dist↔ + c(u, v, u.dist↔) < v.dist↔ then

24:
←→
Q .decreaseKey(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

25: else

26:
←→
Q .insert(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

27: return t.dist→

4 Correctness

We denote by d(u, v, τ) the length of the shortest path from u to v with departure
time τ , and by dλ(u, v) the length of the shortest path from u to v on the graph
Gλ. We have the following theorems.

4.1 Theorem

Algorithm 1 computes the shortest time-dependent path from s to t for a given
departure time τ0.
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Proof. The forward search of Algorithm 1 is exactly the same as the unidi-
rectional version of the A∗ algorithm during the first 2 phases, and thus it is
correct; we have to prove that the restriction applied during phase 3 does not
interfere with the correctness of the A∗ algorithm.

Let µ be an upper bound on the cost of the shortest path; in particular, this
can be the cost γτ0

(pv) of the s→ t path passing through the first meeting point
v of the forward and backward search. Let β be the smallest key of the backward
search priority queue at the end of phase 2. Suppose that Algorithm 1 is not
correct, i.e. it computes a sub-optimal path. Let p∗ be the shortest path from s
to t with departure time τ0, and let u be the first node on p∗ which is not explored
by the forward search; by phase 3, this implies that u /∈M , i.e. u has not been
settled by the backward search during the first 2 phases of Algorithm 1. Hence,
we have that β ≤ πb(u) + dλ(u, t); then we have the chain γτ0

(p∗) ≤ µ < β ≤
πb(u) + dλ(u, t) ≤ dλ(s, u) + dλ(u, t) ≤ d(s, u, τ0) + d(u, t, d(s, u, τ0)) = γτ0

(p∗),
which is a contradiction. 2

4.2 Theorem

Let p∗ be the shortest path from s to t. If the condition to switch to phase 3 is
µ < Kβ for a fixed parameter K, then Algorithm 1 computes a path p from s
to t such that γτ0

(p) ≤ Kγτ0
(p∗) for a given departure time τ0.

Proof. Suppose that γτ0
(p) > Kγτ0

(p∗). Let u be the first node on p∗ which
is not explored by the forward search; by phase 3, this implies that u /∈ M ,
i.e. u has not been settled by the backward search during the first 2 phases
of Algorithm 1. Hence, we have that β ≤ πb(u) + dλ(u, t); then we have the
chain γτ0

(p) ≤ µ < Kβ ≤ K(πb(u) + dλ(u, t)) ≤ K(dλ(s, u) + dλ(u, t)) ≤
K(d(s, u, τ0) + d(u, t, d(s, u, τ0))) = K(γτ0

(p∗)) < γτ0
(p), which is a contradic-

tion. 2

5 Improvements

Performance of the basic version of the algorithm can be improved with the
results that we describe in this section.

5.1 Theorem

Let p be the shortest path from s to t with departure time τ0. If all nodes u
on p settled by the backward search are settled with a key smaller or equal to
d(s, u, τ0) + d(u, t, d(s, u, τ0)), then Algorithm 1 is correct.

Proof. Let Q be the backward search queue, let key(u) be the key for the
backward search of node u, let β = key(v) be the smallest key in the backward
search queue, which is attained at a node v, and let µ the best upper bound
on the cost of the solution currently known. To prove correctness, using the
same arguments as in the proof of Thm. 4.1 we must make sure that, when the
backward search stops at the end of phase 2, then all nodes on the shortest path
from s to t that have not been explored by the forward search have been added
to M . The backward search stops when µ < β.

In an A∗ search, the keys of settled nodes are non-decreasing. So every
node u which at the current iteration has not been settled by the backward
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search will be settled with a key key(u) ≥ key(v), which yields d(s, u, τ0) +
d(u, t, d(s, u, τ0) ≥ key(v) = β > µ ∀u ∈ Q. Thus, every node which has not
been settled by the backward search cannot be on the shortest path from s to
t, and Algorithm 1 is correct. 2

This allows the use of larger lower bounds during the backward search: the
backward A∗ search does not have to compute shortest paths on the graph Gλ,
but it should in any case guarantee that when a node u is settled then its key is
an underestimation of the time-dependent cost of the time-dependent shortest
path between s and t passing through u. The next proposition is of fundamental
practical importance.

5.2 Proposition

During phase 2 the backward search does not need to explore nodes that have
already been settled by the forward search.

Proof. Let db(v) be the distance from a node v to node t computed by the
backward search if we do not explore any node already explored by the for-
ward search. We will prove that, when a node v on the shortest path from s
to t with departure time τ0 is settled by the backward search, then db(v) ≤
d(v, t, d(s, v, τ0)) ∀τ0 ∈ T . By Thm. 5.1, this is enough to prove our statement.

Consider a node v settled by the backward search, but not by the forward
search; let q be the shortest path from s to v with departure time τ0, let q∗ be
the shortest path from v to t with departure time τv = γτ0

(q). Suppose that
q∗ does not pass through any node already settled by the forward search. Then
db(v) ≤ λ(q∗) ≤ d(v, t, d(s, v, τ0)).

Suppose now that q∗ passes through a node w already settled by the forward
search. Let p be the shortest path from s to w with departure time τ0, and let
p∗ be the shortest path from w to t with departure time τw = γτ0

(p); clearly
v cannot be on p, because otherwise it would have been settled by the forward
search. So we have, by the FIFO property and by optimality of p, that γτ0

(p)+
γτw

(p′) ≤ γτ0
(q)+γτv

(q′), which means that v does not have to be explored and
added to the set M by the backward search, because we already have a better
path passing through w. Thus, even if key(v) > d(s, v, τ0) + d(v, t, d(s, v, τ0))
Algorithm 1 is correct. 2

By Thm. 5.1, we can take advantage of the fact that the backward search is
used only to bound the set of nodes explored by the forward search. This means
that we can tighten the bounds used by the backward search, even if doing so
would result in an A∗ backward search that computes suboptimal distances. To
derive some valid lower bounds we need the following lemma and propositions.

5.3 Lemma

Let v be a node, and u its parent node in the shortest path from s to v with
departure time τ0. Then d(s, u, τ0) + πf (u) ≤ d(s, v, τ0) + πf (v).

Proof. Suppose that ℓ is the active landmark, i.e. the landmark in our land-
marks set that currently gives the best bound; we have that either πf (u) =
dλ(u, ℓ)− dλ(t, ℓ) or πf (u) = dλ(ℓ, t)− dλ(ℓ, u).
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First case: πf (u) = dλ(u, ℓ) − dλ(t, ℓ). We have d(s, u, τ0) + πf (u) =
d(s, u, τ0) + dλ(u, ℓ) − dλ(t, ℓ) ≤ d(s, u, τ0) + dλ(u, v) + dλ(v, ℓ) − dλ(t, ℓ) ≤
d(s, u, τ0) + λ(u, v) + dλ(v, ℓ)− dλ(t, ℓ) ≤ d(s, v, τ0) + πf (v).

Second case: πf (u) = dλ(ℓ, t) − dλ(ℓ, u). We have d(s, u, τ0) + πf (u) =
d(s, u, τ0) + dλ(ℓ, t) − dλ(ℓ, u); by triangular distance, dλ(ℓ, v) ≤ dλ(ℓ, u) +
dλ(u, v) ≤ dλ(ℓ, u) + λ(u, v), which yields −dλ(ℓ, u) ≤ −dλ(ℓ, v) + λ(u, v).
So d(s, u, τ0) + dλ(ℓ, t) − dλ(ℓ, u) ≤ d(s, u, τ0) + dλ(ℓ, t) − dλ(ℓ, v) + λ(u, v) ≤
d(s, v, τ0) + πf (v). 2

5.4 Proposition

At a given iteration, let v be the last node settled by the forward search. Then,
for each node w which has not been settled by the forward search, d(s, v, τ0) +
πf (v)− πf (w) ≤ d(s, w, τ0).

Proof. There are two possibilities for w: either it has been explored (but not
settled) by the forward search, or it has not been explored. Let Q be the set of
nodes in the forward search queue. If w has been explored, then w ∈ Q, and
clearly d(s, v, τ0) + πf (v) ≤ d(s, w, τ0) + πf (w) because v has been extracted
before w, which proves our statement. Otherwise, there is a node u ∈ Q on the
shortest path from s to w with departure time τ0 which has been explored but
not settled. We have that d(s, v, τ0) + πf (v) ≤ d(s, u, τ0) + πf (u) because v has
been extracted while u is still in the queue, and by Lemma 5.3, if we examine the
nodes u = u1, u2, . . . , uk = w on the shortest path from s to w with departure
time τ0, we have that d(s, u1, τ0) + πf (u1) ≤ · · · ≤ d(s, uk, τ0) + πf (uk), from
which our statement follows. 2

Let v be as in Prop. 5.4, and w a node which has not been settled by the
forward search. Prop. 5.4 suggests that we can use

π∗b (w) = max{πb(w), d(s, v, τ0) + πf (v)− πf (w)} (3)

as a lower bound to d(s, w, τ0) during the backward search. However, we have
to make sure that the bound is valid at each iteration of Algorithm 1.

5.5 Lemma

If the key of the forward search used to compute the potential function π∗b defined
by (3) is fixed, then we have π∗b (v) ≤ π∗b (u) + λ(u, v) for each arc (u, v) ∈ A.

Proof. By definition we have π∗b (v) = max{πb(v), α − πf (v)}, where with α
we denoted the key of a node settled by the forward search, which is fixed by
hypothesis. Consider the case π∗b (v) = πb(v); then, since the landmark potential
functions πb and πf are consistent, we have π∗b (v) = πb(v) ≤ πb(u) + λ(u, v) ≤
π∗b (u) + λ(u, v). Now consider the case π∗b = α − πf (v); then we have π∗b (v) =
α− πf (v) ≤ α− πf (u) + λ(u, v) ≤ π∗b (u) + λ(u, v), which completes the proof.2

This is enough to prove correctness of our algorithm with tightened bounds,
as stated in the next theorem.
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5.6 Theorem

If we use the potential function π∗b defined by (3) as potential function for the
backward search, with a fixed value of the forward search key, then Algorithm
1 is correct.

Proof. Let db(u) be the distance from a node u to node t computed by the
backward search. We will prove that, when a node u on the shortest path from
s to t is settled by the backward search, db(u) ≤ d(u, t, d(s, u, τ0)) ∀τ0 ∈ T . By
Prop. 5.4 and Thm. 5.1, this is enough to prove our statement.

Let q∗ = (v1 = u, . . . , vn = t) be the shortest path from u to t on Gλ. We
proceed by induction on i : n, . . . , 1 to prove that each node vi is settled with the
correct distance on Gλ, i.e. db(vi) = dλ(vi, t). It is trivial to see that the nodes
vn and vn−1 are settled with the correct distance on Gλ. For the induction step,
suppose vi is settled with the correct distance db(vi) = dλ(vi, t). By Lemma 5.5,
we have db(vi)+π∗b (vi) ≤ db(vi)+λ(vi−1, vi)+π∗b (vi−1) = dλ(vi−1, t)+π∗b (vi−1) ≤
db(vi−1)+π∗b (vi−1), hence vi is extracted from the queue before vi−1. This means
that vi−1 will be settled with the correct distance db(vi−1) = dλ(vi−1, t), and
the induction step is proven.

Thus, u will be settled with distance db(u) = dλ(u, t) ≤ d(u, t, d(s, u, τ0)),
which proves our statement. 2

By Thm. 5.6, Algorithm 1 is correct when using π∗b only if we assume that
the node v used in (3) is fixed at each backward search iteration. Thus, we
do the following: we set up 10 checkpoints during the query; when a check-
point is reached, the node v used to compute (3) is updated, and the backward
search queue is flushed and filled again using the updated π∗b . This is enough
to guarantee correctness. The checkpoints are computed comparing the initial
lower bound ∆ = πf (t) and the current distance from the source node, both for
the forward search: the initial lower bound is divided by 10 and, whenever the
current distance from the source node exceeds k∆/10 with k ∈ {1, . . . , 10}, π∗b
is updated.

6 Computational Results

In this section, we present an extensive experimental evaluation of our time-
dependent ALT algorithm. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on
one core of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.1, using optimization level 3.

Unless otherwise stated, we use 16 maxCover landmarks [10], computed on
the input graph using the lower bounding function λ to weight edges, and we
use (3) as potential function for the backward search, with 10 checkpoints (see
Section 5). When performing random s-t queries, the source s, target t, and
the starting time τ0 are picked uniformly at random and results are based on
10 000 queries.

Inputs. We tested our algorithm on two different road networks: the road
network of Western Europe provided by PTV AG for scientific use, which has
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approximately 18 million vertices and 42.6 million arcs, and the road network of
the US, taken from the TIGER/Line Files, with 23.9 million vertices and 58.3
million arcs. A travelling time in uncongested traffic situation was assigned
to each arc using that arc’s category (13 categories for Europe, 4 for US) to
determine the travel speed.

Modeling Traffic. Unfortunately, we are not aware of a large publicly avail-
able real-world road network with time-dependent arc costs. We therefore used
artificially generated costs. In order to model the time-dependent costs on
each arc, we developed a heuristic algorithm, based on statistics gathered us-
ing real-world data on a limited-size road network; we used piecewise linear
cost functions, with one breakpoint for each hour over a day. Arc costs are
generated assigning, at each node, several random values that represent peak
hour (i.e. hour with maximum traffic increase), duration and speed of traffic in-
crease/decrease for a traffic jam; for each node, two traffic jams are generated,
one in the morning and one in the afternoon. Then, for each arc in a node’s arc
star, a speed profile is generated, using the traffic jam’s characteristics of the
corresponding node, and assigning a random increase factor between 1.5 and 3
to represent that arc’s slowdown during peak hours with respect to uncongested
hours. We do not assign speed profile to arcs that have both endpoints at nodes
with level 0 in a pre-constructed Highway Hierarchy [19], and as a result those
arcs will have the same travelling time value throughout the day; for all other
arcs, we use the traffic jam values associated with the endpoint with smallest
ID. The breakpoints of these speed profiles are stored in memory as a multipli-
cation factor with respect to the speed in uncongested hours, which allows us to
use only 7 bits for each breakpoint. We assume that all roads are uncongested
between 11PM and 4AM, so that we do not need to store the corresponding
breakpoints; as a result, we store all breakpoints using 16 additional bytes per
edge. The travelling time of an arc at time τ is computed via linear interpolation
of the two breakpoints that precede and follow τ .

This method was developed to ensure spatial coherency between traffic in-
creases, i.e. if a certain arc is congested at a given time, then it is likely that
adjacent arcs will be congested too. This is a basic principle of traffic analy-
sis [16].

Random Queries. Table 1 reports the results of our bidirectional ALT vari-
ant on time-dependent networks for different approximation values K using the
European and the US road network as input. For the European road network,
preprocessing takes approximately 75 minutes and produces 128 additional bytes
per node (for each node we have to store distances to and from all landmarks);
for the US road network, the corresponding figures are 92 minutes and 128
bytes per node. For comparison, we also report the results on the same road
network for the time-dependent versions of Dijkstra, unidirectional ALT, and
the SHARC algorithm [2].

As the performed ALT-queries compute approximated results instead of op-
timal solutions, we record three different statistics to characterize the solution
quality: error rate, average relative error, maximum relative error. By error rate
we denote the percentage of computed suboptimal paths over the total num-
ber of queries. By relative error on a particular query we denote the relative
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Table 1: Performance of the time-dependent versions of Dijkstra, unidirectional
ALT, SHARC, and our bidirectional approach. For SHARC, we use approxi-
mation values of 1.001 and 1.002 (cf. [2] for details).

Error Query

relative # settled nodes time
input method K rate avg max phase 1 phase 2 phase 3 [ms]

EUR

Dijkstra - 0.0% 0.000% 0.00% - - 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% - - 2 192 010 1 775.8
1.001-SHARC - 57.1% 0.686% 34.31% - - 140 945 60.3
1.002-SHARC - 42.8% 0.583% 34.31% - - 930 251 491.4
ALT 1.00 0.0% 0.000% 0.00% 125 068 2 744 010 3 117 160 3 342.0

1.02 1.0% 0.003% 1.13% 125 068 2 154 900 2 560 370 2 668.7
1.05 4.0% 0.029% 4.93% 125 068 1 333 220 1 671 630 1 665.5
1.10 18.7% 0.203% 8.10% 125 068 549 916 719 769 646.5
1.13 30.5% 0.366% 12.63% 125 068 340 787 447 681 376.2
1.15 36.4% 0.467% 13.00% 125 068 265 328 348 325 281.1
1.20 44.7% 0.652% 18.19% 125 068 183 899 241 241 180.9
1.30 48.2% 0.804% 23.63% 125 068 141 358 186 267 131.2
1.40 48.7% 0.835% 25.70% 125 068 133 120 175 754 121.9
1.50 48.8% 0.844% 25.70% 125 068 130 144 172 157 118.6
1.75 48.9% 0.886% 48.86% 125 068 125 268 165 925 113.0
2.00 48.9% 0.886% 48.86% 125 068 125 071 165 650 113.0

USA

Dijkstra - 0.0% 0.000% 0.00% - - 12 435 900 8 020.6
uni-ALT - 0.0% 0.000% 0.00% - - 2 908 170 2 403.9
ALT 1.00 0.0% 0.000% 0.00% 272 790 4 091 050 4 564 030 4 534.2

1.10 21.5% 0.135% 7.02% 272 790 633 758 829 176 656.3
1.15 54.4% 0.402% 9.98% 272 790 312 575 405 699 289.6
1.20 62.0% 0.482% 9.98% 272 790 278 345 359 190 251.1
1.50 64.8% 0.506% 13.63% 272 790 272 790 351 865 247.5
2.00 64.8% 0.506% 16.00% 272 790 272 791 351 854 246.8

percentage increase of the approximated solution over the optimum, computed
as ω/ω∗ − 1, where ω is the cost of the approximated solution computed by
our algorithm and ω∗ is the cost of the optimum computed by Dijkstra’s algo-
rithm. We report average and maximum values of this quantity over the set of
all queries. We also report the number of nodes settled at the end of each phase
of our algorithm, denoting them with the labels phase 1, phase 2 and phase 3.

As expected, we observe a clear trade-off between the quality of the computed
solution and query performance. If we are willing to accept an approximation
factor of K = 2.0, on the European road network queries are on average 55
times faster than Dijkstra’s algorithm, but almost 50% of the computed paths
will be suboptimal and, although the average relative error is still small, in the
worst case the approximated solution has a cost which is 50% larger than the
optimal value. The reason for this poor solution quality is that, for such high
approximation values, phase 2 is very short. As a consequence, nodes in the
middle of the shortest path are not explored by our approach, and the meeting
point of the two search scopes is far from being the optimal one. However, by
decreasing the value of the approximation constant K we are able to obtain
solutions that are very close to the optimum, and performance is significantly
better than for unidirectional ALT or Dijkstra. In our experiments, it seems
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Table 2: Performance of the time-dependent versions of Dijkstra, unidirectional
ALT and our bidirectional approach without the tightened potential function
π∗b defined as in (3).

Error Query

relative # settled nodes time
input method K rate avg max phase 1 phase 2 phase 3 [ms]

EUR

Dijkstra - 0.0% 0.000% 0.00% - - 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% - - 2 192 010 1 775.8
ALT 1.00 0.0% 0.000% 0.00% 697 810 3 917 900 3 817 100 3 764.5

1.02 0.9% 0.002% 1.93% 697 810 3 674 520 3 671 220 3 550.7
1.05 3.3% 0.022% 4.94% 697 810 3 042 370 3 287 630 3 081.1
1.10 11.1% 0.110% 9.86% 697 810 1 946 720 2 343 430 1 999.1
1.13 21.5% 0.262% 12.63% 697 810 1 390 560 1 747 560 1 376.2
1.15 29.5% 0.420% 14.93% 697 810 1 135 990 1 454 800 1 086.2
1.20 43.5% 0.800% 17.94% 697 810 852 142 1 111 690 757.8
1.30 53.6% 1.141% 27.40% 697 810 731 319 965 749 619.7
1.40 56.1% 1.248% 27.40% 697 810 709 835 939 854 600.2
1.50 56.9% 1.282% 38.10% 697 810 703 629 932 212 592.3
1.75 57.4% 1.339% 46.88% 697 810 698 238 925 770 586.1
2.00 57.5% 1.351% 48.86% 697 810 697 816 925 247 584.2

as if the best trade-off between quality and performance is achieved with an
approximation value of K = 1.15, which yields average query times smaller
than 300 ms on both road neworks with a maximum recorded relative error of
13% (on the European road network, while the corresponding figure is 9.98% for
the US instance). As in road networks the speed profiles that weight arcs cannot
be completely accurate, settling for a slightly suboptimal solution (on average,
less than 0.5% over the optimum for K = 1.15) usually is not a problem. By
decreasing K to values < 1.05 it does not pay off to use the bidirectional variant
any more, as the unidirectional variant of ALT is faster and is always correct.

Comparing results for K > 1.15 for the US with those for Europe, we observe
that the number of queries that return suboptimal paths increases, but the
average and maximum error rates are smaller than the corresponding values on
the European road network with the same values of K. Moreover, the speed-ups
of our algorithm with respect to plain Dijkstra are lower on the US instance: the
maximum recorded speed-up (for K = 2.0) is only of a factor 33. This behaviour
has also been observed in the static scenario [7]. However, with K = 1.15, which
is a good trade-off between quality and speed, query performance is very similar
on both networks.

An interesting observation is that for K = 2.0 switching from a static to a
time-dependent scenario increases query times only of a factor of ≈ 2: on the
European road network, in a static scenario, ALT-16 has query times of 53.6
ms (see [7]), while our time-dependent variant yields query times of 113 ms.
We also note that for our bidirectional search there is an additional overhead
which increases the time spent per node with respect to unidirectional ALT: on
the European road network, using an approximation factor of K = 1.05 yields
similar query times to unidirectional ALT, but the number of nodes settled by
the bidirectional approach is almost 30% smaller. We suppose that this is due
to the following facts: in the bidirectional approach, one has to check at each
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iteration if the current node has been settled in the opposite direction, and
during phase 2 the upper bound has to be updated from time to time. The cost
of these operations, added to the phase-switch checks, is probably not negligible.

Comparing the time-dependent variant of SHARC with our approach, we ob-
serve that SHARC with an approximation value of 1.001 settles as many nodes
as ALT with K = 2.0. However, query performance is better for SHARC due
to its small computational overhead. By increasing the approximation value,
computational times are slowed by almost one order of magnitude, but the
solution quality merely improves. The reason for this poor performance is
that SHARC uses a contraction routine which cannot bypass nodes incident
to time-dependent edges. As in our scenario about half of the edges are time-
dependent, the preprocessing of SHARC takes quite long (≈ 12 hours) and
query performance is poor. Summarizing, ALT seems to work much better in a
time-dependent scenario.

We also report, for comparison, the results obtained on the European road
network using the unmodified ALT potential function πb for the backward
search, instead of the tightened one π∗b defined as in (3). These can be found in
Table 2, which has the same column labels as Table 1. Comparing query times
with the same value of the approximation constant K, we see that using the
potential function π∗b yields a significant improvement over πb. The difference
in performance is larger as K increases. For K = 1 the difference is very small;
for K = 1.05 the algorithm with πb is 85% slower than the one with π∗b , and
the slowdown increases to 209% for K = 1.10 and to 286% for K = 1.15. With
the largest approximation factor that we tested in our experiments, K = 2, the
algorithm without the tightened potential function is more than 5 times slower.
The same behaviour is observed in terms of the number of settled nodes: while
for K = 1 the number is very similar (only a 22% increase when not using π∗b ),
the ratio rapidly grows until it reaches a 460% increase for K = 2. Thus, a great
deal of the significant improvement that we are able to obtain over Dijkstra’s
algorithm and unidirectional ALT with our bidirectional variant is due to the
use of tightened bounds. If we use the standard ALT potential function πb for
the backward search then we do not manage to obtain a speed-up of more than
a factor 3 with respect to unidirectional ALT, but this comes at the price of
correctness. Summarizing, in our bidirectional approach one of the great advan-
tages is that we are able to derive better lower bounds for the time-dependent
search with respect to the original ALT bounds, and the new potential function
accounts for a large computational improvement.

Local Queries. For random queries, on the European road network our bidi-
rectional ALT algorithm with K = 1.15 is roughly 6.5 times faster than uni-
directional ALT on average. In order to gain insight whether this speed-up
derives from small or large distance queries, Fig. 1 reports the query times with
respect to the Dijkstra rank1. These values were gathered on the European road
network instance. Note that we use a logarithmic scale due to the fluctuating
query times of bidirectional ALT. Comparing both ALT version, we observe that
switching from uni- to bidirectional queries pays off especially for long-distance
queries. This is not surprising, because for small distances the overhead for bidi-

1For an s-t query, the Dijkstra rank of node t is the number of nodes settled before t is

settled. Thus, it is some kind of distance measure.
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Figure 1: Comparison of uni- and bidirectional ALT using the Dijkstra rank
methodology [19]. The results are represented as box-and-whisker plot: each
box spreads from the lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omitting outliers, which
are plotted individually.

rectional routing is not counterbalanced by a significant decrease in the number
of explored nodes: unidirectional ALT is faster for local queries. For ranks of
224, the median of the bidirectional variant is almost 2 orders of magnitude lower
than for the unidirectional variant. Another interesting observation is the fact
that some outliers of bidirectional ALT are almost as slow as the unidirectional
variant.

Number of Landmarks. In static scenarios, query times of bidirectional
ALT can be significantly reduced by increasing the number of landmarks to
32 or even 64 (see [7]). In order to check whether this also holds for our
time-dependent variant, we recorded our algorithm’s performance using differ-
ent numbers of landmarks. Tab. 3 reports those results on the European road
network. We evaluate 8 maxcover landmarks (yielding a preprocessing effort of
33 minutes and an overhead of 64 bytes per node), 16 maxcover landmarks (75
minutes, 128 bytes per node) and 32 avoid landmarks (29 minutes, 256 bytes
per node). Note that we do not report error rates here, as it turned out that
the number of landmarks has almost no impact on the quality of the computed
paths. Surprisingly, the number of landmarks has a very small influence on
the performance of time-dependent ALT. Even worse, increasing the number of
landmarks even yields larger average query times for unidirectional ALT and for
bidirectional ALT with low K-values. This is due the fact that the search space
decreases only slightly, but the additional overhead for accessing landmarks in-
creases when there are more landmarks to take into account. However, when
increasing K, a larger number of landmarks yields faster query times: with
K = 2.0 and 32 landmarks we are able to perform time-dependent queries 70
times faster than plain Dijkstra, but the solution quality in this case is as poor
as in the 16 landmarks case. Summarizing, for K > 1.10 increasing the number
of landmarks has a positive effect on computational times, although switching



7 CONCLUSION AND FUTURE WORK 15

Table 3: Performance of uni- and bidirectional ALT with different number of
landmarks in a time-dependent scenario.

8 landmarks 16 landmarks 32 landmarks
K # settled time [ms] # settled time [ms] # settled time [ms]

uni-ALT - 2 321 760 1 739.8 2 192 010 1 775.8 2 111 090 1 868.5
ALT 1.00 3 240 210 3 270.6 3 117 160 3 342.0 3 043 490 3 465.1

1.10 863 526 736.5 719 769 646.5 681 836 669.7
1.15 495 649 382.1 348 325 281.1 312 695 280.0
1.20 389 096 286.3 241 241 180.9 204 877 170.1
1.50 320 026 228.4 172 157 118.6 133 547 98.3
2.00 313 448 222.2 165 650 113.0 126 847 91.1

from 16 to 32 landmarks does not yield the same benefits as from 8 to 16, and
thus in our experiments is not worth the extra memory. On the other hand, for
K ≤ 1.10 and for unidirectional ALT increasing the number of landmarks has a
negative effect on computational times, and thus is never a good choice in our
experiments.

7 Conclusion and Future Work

We have presented an algorithm which applies bidirectional search on a time-
dependent road network, where the backward search is used to bound the set of
nodes that have to be explored by the forward search; this algorithm is based
on the ALT variant of the A∗ algorithm. We have discussed related theoretical
issues, and we proved the algorithm’s correctness. Extensive computational ex-
periments show that this algorithm is very effective in practice if we are willing
to accept a small approximation factor: the exact version of our algorithm is
slower than unidirectional ALT, but if we can accept a decrease of the solu-
tion quality of a few percentage points with respect to the optimum then our
algorithm is several times faster. For practical applications, this is usually a
good compromise. We have compared our algorithm to existing methods, show-
ing that this approach for bidirectional search is able to significantly decrease
computational times.

Future research will include the possibility of an initial contraction phase for
a time-dependent graph, which would be useful for several purposes, and dealing
with dynamic time-dependent cost functions, in order to be able to take into
account unexpected changes such as those that are caused by unpredictable
events. The idea of bidirectional routing on time-dependent graphs, using a
time-dependent forward search and a time-independent backward search, may
be applied to other static routing algorithms, in order to generalize them in a
time-dependent scenario.
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