
Digital Object Identifier (DOI) 10.1007/s10107990053a

Math. Program. 85: 277–311 (1999)  Springer-Verlag 1999

Boris V. Cherkassky· Andrew V. Goldberg

Negative-cycle detection algorithms

Received June 14, 1996 / Revised version received June 22, 1998
Published online January 20, 1999

Abstract. We study the problem of finding a negative length cycle in a network. An algorithm for the
negative cycle problem combines a shortest path algorithm and a cycle detection strategy. We survey cycle
detection strategies, study various combinations of shortest path algorithms and cycle detection strategies
and find the best combinations. One of our discoveries is that a cycle detection strategy of Tarjan greatly
improves computational performance of a classical shortest path algorithm, making it competitive with the
fastest known algorithms on a wide range of problems. As a part of our study, we develop problem families
for testing negative cycle algorithms.

Key words. algorithms – graph theory – computational evaluation – shortest paths – negative-length cycles

1. Introduction

Thenegative cycle problemis to find a negative length cycle in a network or to prove
that there are none (seee.g.[22]). The problem is closely related to the shortest path
problem (seee.g.[1,10,23,25–27]) of finding shortest path distances in a network with
no negative cycles. The negative cycle problem comes up both directly, for example in
currency arbitrage, and as a subproblem in algorithms for other network problems, for
example the minimum-cost flow problem [20].

The best theoretical time bound,O(nm), for the shortest path problem is achieved
by the Bellman–Ford–Moore algorithm [1,10,25]. Heren andm denote the number
of vertices and arcs in the network, respectively. With the additional assumption that
arc lengths are integers bounded below by−N ≤ −2, theO(

√
nmlog N) bound of

Goldberg [14] improves the Bellman–Ford–Moore bound unlessN is very large. Better
expected time bounds hold over a wide class of input distributions; seee.g.[21]. The
same bounds hold for the negative cycle problem.

All known algorithms for the negative cycle problem combine a shortest path algo-
rithm and a cycle detection strategy. We study combinations of shortest path algorithms
and cycle detection strategies to determine the best combination. The shortest path
algorithms we study are based on the labeling method of Ford [9,10].

Most cycle detection strategies for the labeling method look for cycles in the graph
of parent pointers maintained by the method, which correspond to negative cycles in

B.V. Cherkassky: Central Economics and Mathematics Institute, Krasikova St. 32, 117418, Moscow, Russia
e-mail: cher@cher.msk.su . This work was done while the author worked for NEC Research Institute,
Inc.

A.V. Goldberg: NEC Research Institute, 4 Independence Way,Princeton, NJ 08540, USA.
Current address:InterTrust Technology Corp., 460 Oakmead Parkway, Sunnyvale, CA 94086, USA,
e-mail:goldberg@intertrust.com , URL: http://www.intertrust.com/star/goldberg/index.html

278 Boris V. Cherkassky, Andrew V. Goldberg

the input graph. These parent graph cycles, however, can appear and disappear. Some
cycle detection strategies depend on the fact that after a finite number of steps of the
labeling method, the parent pointer graph always has a cycle. Another cycle detection
strategy is based on the fact that if the input graph has a negative cycle, the distance
labels maintained by the labeling method (with no cycle detection) will get arbitrarily
negative. The latter two cycle detection strategies are well-known and their correctness
is easy to prove for integral lengths. However, the real-valued case is much harder and
we were unable to find the proofs in the literature. We give correctness proofs for these
cycle detection strategies in the real-valued case.

Other cycle detection strategies are based on levels of the parent pointer graph [16,
28] and on admissible graph search [15]. (See Section 4 for details.)

Most experimental studies of shortest path algorithms, such as [5,7,11,12,18,24],
were conducted on graphs with no negative cycles. The study of [16] investigates
a limited number of algorithms on graphs with and without negative cycles. In this paper
we survey cycle detection strategies and study the practical performance of algorithms
for the negative cycle problem. We attempted to make our study as complete as possible,
and this lead us to interesting results. In particular, our data shows that a cycle detection
strategy of Tarjan [30] leads to improved algorithms for the shortest path problem.
These algorithms are often competitive with the fastest previous codes and are worth
considering for many practical situations. We introduce the notion of acurrent distance
label and use it to explain good practical performance of algorithms that incorporate
Tarjan’s cycle detection strategy.

The previously known shortest path algorithms we study are the classical Bellman–
Ford–Moore algorithm; the Goldberg–Radzik algorithm [15], which on shortest path
problems performed very well in a previous study [2]; an incremental graph algorithm
of Pallottino [26], which performs well on some classes of shortest path problems; an
algorithm of Tarjan [30], which is a combination of the Bellman–Ford–Moore algorithm
and a subtree-disassembly strategy for cycle detection; and a level-based algorithm that
compared well with the Bellman–Ford–Moore algorithm in a previous study [16].

Our study leads us to a better understanding of computational behavior of shortest
path algorithms and suggests new algorithm variations. We develop a version of the
network simplex method [4] optimized specifically for the negative cycle problem. We
note that a simple modification of Tarjan’s algorithm gives the “ideal” version of the
Bellman–Ford–Moore algorithm and study this version. We also study another variation
of Tarjan’s algorithm and an incremental graph algorithm that is similar to Pallottino’s
but uses Tarjan’s algorithm in the inner loop. In the follow-up study, we compare the
best previous shortest path algorithms with the most promising new algorithms.

Performance of algorithms for the negative cycle problem depends on the number
and the size of the negative cycles. In general, problems with many small negative cycles
are the simplest. We develop a collection of problem families for testing negative cycle
algorithms. Our problem families combine several network types with several negative
cycle structures.

Our shortest path codes and problem generators are publically available. This should
facilitate further research in the area as well as the process of selecting algorithms for
practical applications.

Negative-cycle detection algorithms 279

This paper consists of three parts: a survey of negative cycle detection strategies,
a computational study of the cycle detection algorithms, and a study of computa-
tional improvements certain cycle detection strategies bring to some shortest path
algorithms. Section 2 gives basic definitions and notation. Section 3 reviews the la-
beling method. Section 4 describes theoretical results on negative cycle detection in
the labeling method context. Section 5 describes shortest path algorithms relevant to
our study, and Section 6 discusses cycle detection strategies and their incorporation
in the shortest path algorithms. Section 7 summarizes the negative cycle algorithms
used in our study. We describe our experimental setup in Section 8. Section 9 de-
scribes a preliminary experiment that motivates our main experiment and filters out
uncompetitive codes. Section 10 describes problem generators and families used in
our study. Section 11 gives results of our main experiment. This experiment suggests
that some of the new negative cycle algorithms may be good shortest path algorithms.
This motivates a follow-up experiment, described in Section 12, that evaluates these
as shortest path algorithms. We present concluding remarks in Section 13.

2. Definitions and notation

The input to the single-source shortest path problem is(G, s, `), whereG = (V, E)
is a directed graph,̀ : E→ R is a length function, ands ∈ V is the source vertex.
The goal is to find shortest paths froms to all vertices ofG reachable froms if
no negative length cycle inG is reachable froms. We refer to a negative length
cycle as anegative cycle. We say that the problem isfeasible if G does not have
a negative length cycle reachable froms. Thenegative cycle problemis to determine
if the problem is feasible, and to compute the distances if it is and a negative cycle
if it is not. We denote|V| by n, |E| by m, and the biggest absolute value of an arc
length byC.

A distance labelingis a function on vertices with values inR ∪ {∞}. Given
a distance labelingd, we define thereduced cost functioǹd : E→ R ∪ {∞} by

`d(v,w) = `(v,w)+ d(v)− d(w).

We say that an arca is admissibleif `d(a) ≤ 0, and denote the set of admissible arcs
by Ed. The admissible graphis defined byGd = (V, Ed). Note that if d(v) < ∞
and d(w) = ∞, the arc (v,w) is admissible. Ifd(v) = d(w) = ∞, we define
`d(v,w) = `(v,w).

A shortest path treeof G is a spanning tree rooted ats such that for anyv ∈ V,
the s to v path in the tree is a shortest path froms to v. Given a tree and a vertexv
in the tree, by thedepthof v we mean the number of arcs on the path from the root
to v.

We say thatd(v) is exact if the distance froms to v in G is equal tod(v), and
inexactotherwise.

Given a path0 and a vertexv, we denote by0 · v the path obtained by concate-
natingv to the end ofA.

280 Boris V. Cherkassky, Andrew V. Goldberg

3. Labeling method

In this section we briefly outline the generallabeling method[9,10] for solving the short-
est path problem. (Seee.g.[3,11,31] for more detail.) Most shortest path algorithms,
and all those which we study in this paper, are based on the labeling method.

For every vertexv, the method maintains its distance labeld(v) and parentp(v).
Initially for every vertexv, d(v) = ∞, p(v) = null . The method starts by setting
d(s) = 0. At every step, the method selects an arc(u, v) such thatd(u) < ∞ and
d(u) + `(u, v) < d(v) and setsd(v) = d(u) + `(u, v), p(v) = u. (We call this the
labeling operation.) If no such arcs exist, the algorithm terminates.

Lemma 1 (See e.g. [31]).The labeling method terminates if and only ifG contains no
negative cycle. If the method terminates, thend gives correct distances and the parent
pointers give a correct shortest path tree.

If the method terminates, the parent pointers define a correct shortest path tree and,
for any v ∈ V, d(v) is the shortest path distance froms to v. In the next section we
discuss how to modify the labeling method so that ifG has negative cycles, the method
finds such a cycle and terminates.

Thescanning methodis a variant of the labeling method based on the scan operation.
The method maintains for each vertexv thestatusS(v) ∈ {unreached, labeled, scanned}.
Initially every vertex excepts is unreached ands is labeled. TheSCAN operation applies
to a labeled vertexv. The operation is described in Figure 1. Note that ifv is labeled,
thend(v) <∞ andd(v)+ `(v,w) is finite. Vertex status is updated as follows: a vertex
becomes scanned while a scan operation is applied to it. A vertex whose distance label
decreases becomes labeled.1 After a SCAN operation, some unreached and scanned
vertices may become labeled. The scanning method is correct because if there are no
labeled vertices, thend gives the shortest path distances.

Given a scanning algorithm, we definepassesinductively. Pass zero consists of the
initial scanning of the sources. Passi starts as soon as passi − 1 ends, and ends as
soon as the scan operation has been applied to all vertices which were labeled at the
end of passi − 1 and had exact distance labels at that time. Note that we allow vertices
marked labeled during a pass to be scanned during this pass. We also allow vertices to
be scanned several times during a pass.

procedure SCAN(v);
for all (v,w) ∈ E do

if d(v)+ `(v,w) < d(w) then
d(w)← d(v)+ `(v, w);
S(w)← labeled;
p(w)← v;

S(v)← scanned;
end.

Fig. 1. TheSCAN operation

1 As we shall see later, Tarjan’s subtree disassembly strategy may declare a labeled or scanned vertex
unreached.

Negative-cycle detection algorithms 281

This definition of a pass is more general than the one used in the context of the
Bellman–Ford–Moore algorithm2. (seee.g. [31]). For this algorithm, a pass consists of
scanning vertices that are labeled at the end of the previous pass. The general definition
allows scans of other labeled vertices (as in the Goldberg–Radzik algorithm).

Under our definition of a pass, there is no polynomial time bound on a pass in general.
An efficient passis a pass such that each vertex is scanned at most once. Passes of the
Bellman–Ford–Moore, the Goldberg–Radzik, and Tarjan’s algorithms are efficient and
take O(m) time. The following lemma is the key to the analysis of these algorithms.
Its proof is similar to the corresponding result for the Bellman–Ford–Moore algorithm
(e.g.[31]).

Lemma 2. If there is a shortest path froms to v containingk arcs, then after at most
k passesd(v) is exact. Thus in the absence of negative cycles, the labeling method
terminates after at mostn− 1 passes.

4. Labeling method and negative cycles

In this section we study the labeling method in the presence of negative cycles. By
Lemma 1, in this case the labeling method does not terminate. Acycle detection strategy
is used to stop the method in this case. Most cycle detection strategies are based on the
facts that cycles in the parent graph (defined below) correspond to negative cycles in the
input graph and that if the input graph has a negative cycle then after a finite number of
labeling operations the parent graph always has a cycle. Another cycle detection strategy
is based on the following two facts. First, if the input graph has a negative cycle and the
labeling method is applied with no cycle detection strategy, the distance label of some
vertex will get arbitrarily negative. Second, if the distance label of a vertexv is smaller
than the length of a shortest simple path froms to v, then the input graph has a negative
cycle.

To discuss cycle detection strategies, we need the following definition. Theparent
graph Gp is the subgraph ofG induced by the arcs(p(v), v) for all v : p(v) 6= null .
This graph has the following properties.

Lemma 3 (See e.g. [31]).Arcs ofGp have nonpositive reduced costs. Any cycle inGp

is negative. IfGp is acyclic, then its arcs form a tree rooted ats.

In the presence of negative cycles, it is relatively easy to show that after a finite
number of labeling operations,Gp must contain a cycle. Seee.g.[31]. However, a cycle
in Gp can appear after a labeling operation and disappear after a later labeling operation:
see Figure 2. Some of the cycle detection strategies do not check for cycles inGp after
every labeling operation. Correctness of these strategies is based on the following
theorem.

Theorem 1. If G contains a negative cycle reachable froms, then after a finite number
of labeling operationsGp always has a cycle.

2 The algorithms mentioned here are described in Section 5

282 Boris V. Cherkassky, Andrew V. Goldberg

0

6

8

7

0

6

8

2

9

2
-1

-1

-1
a

b

c

d

0

9

8

7

(a) (b)

(c) (d)

Fig. 2.a-d. Disappearing cycle inGp. (a) Input graph. (b)Gp andd after labeling operations applied to arcs
(a,b), (b, c), (c, d). (c) Next the labeling operation is applied to(d,b), creating a cycle. (d) Next the labeling
operation is applied to(a,d), destroying the cycle

Proof. Consider an execution of the labeling method. LetA be the set of vertices
whose distance labels change finitely many times during the execution and letB be the
remaining vertices. Because of the negative cycle, the execution does not terminate and
B is not empty. A vertexu ∈ A can become the parent of a vertexv ∈ B only once after
each change ind(u). Thus for eachv ∈ B, the sequence ofp(v) contains finitely many
elements ofA. Therefore after a finite number of labeling operations, for everyv ∈ B
we havep(v) 6= null and p(v) ∈ B.

Consider the subgraph ofGp induced byB. This subgraph has|B| arcs and every
vertex in it has in-degree one. Such a subgraph must have a cycle.

ut
The “distance lower bound” cycle detection strategy stops a labeling algorithm and

declares that there is a negative cycle as soon asd(s) < 0 or d(v) < −(n − 1)C for
somev ∈ V. Correctness of this strategy is based on the following lemma.

Lemma 4. Suppose for some vertexv, d(v) is less than the length of a shortest simple
path froms to v. ThenGp has a cycle. Sinced(v) is nonincreasing,Gp has a cycle at
any later point of the execution.

Proof. Note that the parent of a vertex has a finite distance label and all vertices with
finite distance labels excepts have parents. The sources has a parent if and only if
d(s) < 0.

Suppose we start atvand follow the parent pointers. If we find a cycle of parent point-
ers in this process, we are done. The only way we can stop without finding a cycle is if

Negative-cycle detection algorithms 283

we reachs andd(s) = 0. In this case there is a simples-to-v path0 in Gp. By Lemma 3
and the fact thatd(s) = 0, we haved(v) ≥ `(0). This contradicts the definition ofv.

ut
Corollary 1. If d(s) < 0, thenGp has a cycle.

The above lemma shows that the distance lower bound strategy is correct but does not
assure termination of the labeling method with this cycle detection strategy. Termination
is easy to prove for integral lengths, but for the real-valued case the proof is nontrivial.
Next we prove the following theorem.

Theorem 2. If G contains a negative cycle reachable froms, then, after a finite number
of labeling operations, for some vertexu, d(u) is less than the length of a shortest simple
path froms to u.

Lemma 4 and Theorem 2 imply Theorem 1, but the proof of the latter theorem is simpler.
The proof of Theorem 2 requires several definitions and auxiliary lemmas. We define

the pathP(v) of a vertexv inductively. Initially all vertices have empty paths except
for s, andP(s) = s. Applying the labeling operation to(u, v) replacesP(v) by P(u) · v.
Note that the paths are not necessarily simple.

Consider a nonempty pathP(v) = v1 · . . . · vt . If d(s) < 0, then Theorem 2 holds,
so for the rest of the proof we assume thatd(s) = 0. Thens = v1. Defined′(s) = 0.
For i > 0, the vertexvi on P(v) was added toP(v) by a labeling operation. Letd′(v) be
the distance label assigned tov by this operation. By the definition ofP(v), we have the
following lemma.

Lemma 5. For any1≤ i < t, d′(vi)+ `(vi , vi+1) = d′(vi+1).

Corollary 2. For any v ∈ V and at any point during execution of the algorithm,
`(P(v)) = d(v).

Since each timeP(v) changesd(v) decreases, pathsP(v) do not repeat.
Recall that every path can be decomposed into a simple path and a collection of

simple cycles.

Lemma 6. For any pathP(v), the path can be decomposed into a simple path froms
to v and a collection of simple cycles of negative length.

Proof. It is sufficient to show thatP(v) cannot contain a cycle of nonnegative length.
Consider a labeling operation applied to an arc(i , j) and suppose that this operation
creates a new cycle0 in one of the paths. Then0 must include(i , j). Let 0(j, i)
be the path fromj to i obtained by deleting(i , j) from 0. Just before the labeling
operation,d′(i)+ `(i , j) < d′(j). But d′(i) = d′(j)+ `(0(j, i)), and thereforè(0) =
`(0(j, i))+ `(i , j) < 0.

ut

Now we are ready to prove Theorem 2.

284 Boris V. Cherkassky, Andrew V. Goldberg

Proof of Theorem 2.Let ε be the absolute value of the length of the least negative
simple cycle ofG. SinceG contains a negative cycle and the number of simple cycles
is finite,ε is well-defined.

Since the pathsP(v) do not repeat, for some vertexu the number of arcs onP(u)
must be unbounded as the algorithm runs. Thus the number of simple cycles in the
decomposition ofP(u) is also unbounded. Since a simple path has a length of at most
(n−1)C and a simple cycle in the decomposition has a length of at most−ε, then when
P(u) contains more than 2(n− 1)C/ε simple cycles, we haved(u) < −(n− 1)C.

ut
Remark 1.The bound on the number of labeling operations implicit in Theorem 2
depends on the arc lengths as well as on the input network size. It is easy to modify the
network of Figure 2 to show that the boundmustdepend on the arc lengths.

The following lemma complements Lemma 2.

Lemma 7. If G contains a negative cycle reachable froms, then after the first labeling
operation of passn, Gp always contains a cycle.

Proof. The proof of Lemma 2 shows that aftern− 1 passes distance labels are at least
as small as the corresponding shortest simple path lengths. The first labeling operation
after that reduces a distance label below the shortest simple path length. An argument
similar to that of Lemma 4 completes the proof.

ut

5. Labeling algorithms

Different strategies for selecting a labeled vertex to be scanned next lead to different
algorithms. In this section we discuss some of these strategies and algorithms. We
do not discuss some of the algorithms such as the Pape–Levit algorithm [23,27] and
the threshold algorithm [12,13], which were not as robust as other algorithms in our
previous study [2]. Since in this paper we are interested in networks with negative length
arcs, we do not discuss Dijkstra’s algorithm [8], which, both in theory and in practice,
performs poorly on such networks. (Dijkstra’s algorithm performs well on network with
nonnegative arc lengths.)

First, however, we discuss techniques for improving efficiency of labeling algo-
rithms. It is well-known that after a vertex with exact distance label is scanned, it is
never scanned again. One would like to scan only such vertices, but efficient imple-
mentations of this idea are known only for the special cases of the problem, such as
acyclic networks or networks with nonnegative arc lengths. However, there are efficient
heuristics for preventingsomescans of vertices with inexact distance labels.

If the parent graphGp is a tree, we say thatd(v) is current if the distance froms
to v in Gp is equal tod(v). If d(v) is not current, it must be inexact. This observation
is the basis of several heuristic improvements of the Bellman–Ford–Moore algorithm
discussed below.

Assume thatGp is a tree. One can show that during passi , vertices at depth less than
i − 1 in Gp have exact distance labels and vertices at depthi − 1 have current distance

Negative-cycle detection algorithms 285

labels. We say that a variant of the Bellman–Ford–Moore algorithm isideal if at passi
it scans only the vertices at depthi − 1. For further discussion of this idea, see [16].

Desrochers [6] proposes to follow the path to the root before scanning a vertex, and
proceeding with the scan only if the depth of the vertex isi . This, however, may be
computationally expensive. Goldfarb et al. [16] propose efficient heuristics that identify
some (but not all) vertices with depth greater thani − 1. See Section 5.2.

As we shall see in Section 6.7, there is an efficient way of scanning only vertices
with current distance labels.

Goldberg and Radzik [15] propose to order labeled vertices before each pass so that
a scanned vertex is more likely to have a current distance label. See Section 5.3.

5.1. The Bellman–Ford–Moore algorithm

The Bellman–Ford–Moore algorithm, due to Bellman [1], Ford [10], and Moore [25],
maintains the set of labeled vertices in a first-in, first-out (FIFO) queue. The next vertex
to be scanned is removed from the head of the queue; a vertex that becomes labeled is
added to the tail of the queue if it is not already on the queue.

The performance of the Bellman–Ford–Moore algorithm is as follows, assuming
that there are no negative cycles.

Theorem 3 (See e.g. [31]).(i) Each pass takesO(m) time.(ii) The number of passes
is bounded by the depth of a shortest path tree.(iii) The algorithm runs inO(nm) time
in the worst case.

5.2. The dynamic breadth-first search algorithm

Goldfarb et al. [16] suggested an improvement of the Bellman–Ford–Moore algorithm
based on maintaining levels. Their algorithm maintains the levelst and the pass counti .
After removing a vertexv from the queue, the algorithm scansv if t(v) = i − 1.
Otherwise, the vertex is put back on the queue (to be re-processed at the next pass).

Note that if t(v) = i − 1, the depth ofv in the current tree may be greater thani .
Thus the algorithm may scan some vertices with depthi or more. Goldfarb et al. suggest
the following heuristic that decreases the number of such vertices. Given a parameterψ,
their algorithm finds a vertexu that isψ steps up fromv in Gp and makes sure that
t(u) = i − 1− ψ before scanningv. (The case when the depth ofv is less thanψ is
handled by defining dummy ancestors ofs with the appropriatet values.)

5.3. The Goldberg–Radzik algorithm

Goldberg and Radzik [15] suggested another improvement of the Bellman–Ford–Moore
algorithm that achieves the same worst-case time bound but usually outperforms the
Bellman–Ford–Moore algorithm in practice. The algorithm maintains the set of labeled
vertices in two sets,A andB. Each labeled vertex is in exactly one set. InitiallyA = ∅
and B = {s}. At the beginning of eachpass, the algorithm uses the setB to compute

286 Boris V. Cherkassky, Andrew V. Goldberg

the setA of vertices to be scanned during the pass, and resetsB to the empty set.A is
a linearly ordered set. During the pass, elements are removed according to the ordering
of A and scanned. The newly created labeled vertices are added toB. A pass ends when
A becomes empty. The algorithm terminates whenB is empty at the end of a pass.

The algorithm computesA from B as follows.

1. For everyv ∈ B that has no outgoing arc with negative reduced cost, deletev from
B and mark it as scanned.

2. LetA be the set of vertices reachable fromB in Gd. Mark all vertices inA as labeled.
3. Apply topological sort to orderA so that for every pair of verticesv andw in A such

that(v,w) ∈ Gd, v precedesw and thereforev will be scanned beforew.

The algorithm achieves the same bound as the Bellman–Ford–Moore algorithm,
again assuming no negative cycles.

Theorem 4 ([15]).The Goldberg–Radzik algorithm runs inO(nm) time.

Now supposeG has cycles of zero or negative length. In this caseGd need not be
acyclic. If, however,Gd has a negative length cycle, we can terminate the computation.
If Gd has zero length cycles, we can contract such cycles and continue the computation.
This can be easily done while maintaining theO(nm) time bound. (Seee.g.[14].)

Our implementation of the Goldberg–Radzik algorithm has one simplification. The
implementation uses depth-first search to compute topological ordering of the admis-
sible graph. Instead of contracting zero length cycles, we simply ignore the back arcs
discovered during the depth-first search. The resulting topological order is in the ad-
missible graph minus the ignored arcs. This change does not affect the algorithm’s
correctness or the running time bound given above.

Remark 2.When counting the number of scans done by the Goldberg–Radzik algorithm,
we count both the shortest pathSCAN operations and the processing of vertices done
by the depth-first searches. We count the latter only if a depth-first search completed
processing a vertex and backtracked from it.

5.4. Incremental-Graph algorithms

In this section we describe the incremental graph framework and Pallottino’s algo-
rithm [26].

An algorithm in therestricted scanframework maintains a setW of vertices and
scans only labeled vertices inW. The setW is monotone: once a vertex is added toW,
it remains inW. If there are labeled vertices but no labeled vertex is inW, some of the
labeled vertices must be added toW. Vertices may also be added toW even ifW already
contains labeled vertices. Note that if the labeled vertices inW are processed in FIFO
order, then a simple modification of the analysis of the Bellman–Ford–Moore algorithm
shows that inO(nm) time, either the algorithm terminates orW grows. This leads to an
O(n2m) time bound.

Pallottino’s algorithm definesW as the set of vertices which have been scanned
at least once; when no labeled vertex is inW, a labeled vertex is added toW. More

Negative-cycle detection algorithms 287

precisely, the algorithm maintain the set of labeled vertices as two subsets,S1 andS2, the
first containing labeled vertices which have been scanned at least once and the second
containing those which have never been scanned (S1 ⊆ W andS2 ⊆ V −W). The next
vertex to be scanned is selected fromS1 unlessS1 is empty, in which case the vertex is
selected fromS2 (i .e., this vertex is added toW).

Pallottino’s algorithm maintainsS1 andS2 using FIFO queues,Q1 andQ2. The next
vertex to be scanned is removed from the head ofQ1 if the queue is not empty and from
the head ofQ2 otherwise. A vertex that becomes labeled is added to the tail ofQ1 if it
has been scanned previously, or to the tail ofQ2 otherwise. The algorithm terminates
when both queues are empty.

Theorem 5 ([26]).Pallottino’s algorithm runs inO(n2m) time in the worst case, as-
suming no negative cycles.

5.5. Network simplex algorithm

In this section we describe a specialization of the network simplex method [4] to the
shortest path problem. The resulting algorithm is a labeling algorithm, but not a scanning
algorithm.

The main invariant maintained by the network simplex method is that the current
tree arcs have zero reduced costs. To preserve the invariant, when the distance label of
a vertexv decreases, the method decreases labels of vertices in the subtree rooted atv

by the same amount. This is equivalent to traversing the subtree and applying labeling
operations to the tree arcs. We implement this tree traversal procedure by maintaining
an in-order list of tree nodes, as in many network simplex codes. Seee.g.[19].

At every step, a generic network simplex algorithm for shortest paths finds an arc
(v,w)with negative reduced cost, applies a labeling operation to it, and updates distance
labels of vertices inw’s subtree. A step of this algorithm is called apivot, and(v,w) is
called thepivot arc. Implementations of the simplex algorithm differ in how they find
the next pivot arc.

A natural way to find the next pivot arc in the shortest path context is to use the
idea of the scanning method: Maintain the setL of labeled vertices, select one such
vertex, and scan it to find arcs with negative reduced costs. Note that if we pivot on an
arc (v,w), then all vertices inw’s subtree become labeled. This tends to create many
labeled vertices, most with inexact distance labels. Scanning such vertices is wasteful
because they will need to be rescanned after their distance label decreases.

The following heuristic cuts down the number of wasteful scans. Supposev is an
ancestor ofw in the tree andv andw are labeled. Then ifd(w) is the correct distance
from s, then so isd(v). It is possible, however, thatd(v) is correct andd(w) is not.
Therefore scanningv beforew is a good idea. To implement this idea, we maintain
L ′ ⊆ L such thatL ′ contains all labeled verticesv such that no ancestor ofv in the tree
is labeled, and scan only vertices fromL ′.

The setsL and L ′ are maintained as follows. InitiallyL = L ′ = {s}. We pick
a vertexu to scan and remove it fromL and L ′. When we pivot on(u, v), we add
all vertices in the subtree rooted atv to L if they are not already inL and delete

288 Boris V. Cherkassky, Andrew V. Goldberg

descendants ofv from L ′ if they are inL ′. When we are finished scanningu, we add
all children of u to L ′. To see that the resulting algorithm is correct, note thatL is
exactly the set of all descendants of vertices inL ′. Note also that we do not need to
maintainL explicitly.

Our implementation of the network simplex algorithm maintains the setL ′ as a FIFO
queue. When deleting an element of the queue, we mark it as deleted instead of phys-
ically removing it. When adding an element to the queue, we mark it as undeleted if
it is already on the queue, and add it to the queue otherwise. To find the next vertex to
scan, we remove vertices from the queue until we get an undeleted vertex.

We call the resulting algorithmoptimized network simplex. Note that the optimiza-
tion is heuristic; it does not improve the worst-case time bound but improves typical
running times. Next we analyze this algorithm.

Using an analysis similar to that for the Bellman–Ford–Moore algorithm, one can
show that the number of vertex scans isO(n2) and the number of pivots isO(nm).
Since each pivot takesO(n) time we have the following result.

Theorem 6. The optimized network simplex algorithm runs inO(n2m) time.

Remark 3.For the optimized network simplex algorithm, the number of vertex scans
is equal to the number of pivots. However, the algorithm (implicitly) applies labeling
operations to tree arcs when updating subtree vertex labels.

6. Cycle detection strategies

In this section we discuss cycle detection strategies. Desirable features of these strategies
are low amortized cost and immediate cycle detection. The latter means that a cycle in
Gp is detected the first timeGp contains a cycle.

6.1. Time out

Every labeling algorithm terminates after a certain number of labeling operations in the
absence of negative cycles. If this number is exceeded, we can stop and declare that the
network has a negative cycle.

A major disadvantage of this method is that if there is a negative cycle, the number
of labeling operations used by the method is equal to the worst-case bound. This method
is uncompetitive and we did not implement it.

6.2. Distance lower bound

This method is based on Theorem 2. If distance label of a vertex falls below−(n−1)C,
then Gp must contain a cycle, which can be found inO(n) time. The drawback of
this method is that the cycle is usually discovered much later than it first appears. The
method is uncompetitive and we did not implement it.

Negative-cycle detection algorithms 289

6.3. Walk to the root

Suppose the labeling operation applies to an arc(u, v) andGp is acyclic. ThenGp is
a tree, and this operation will create a cycle inGp if and only if v is an ancestor ofu in
the current tree. Before applying the labeling operation, we follow the parent pointers
from u until we reachv or s. If we stop atv, we have found a negative cycle; otherwise,
the labeling operation does not create a cycle.

This method gives immediate cycle detection and can be easily combined with any
labeling algorithm. However, since paths to the root can be long, the cost of a labeling
operation becomesO(n) instead ofO(1). On certain kinds of graphs, the average tree
path length is long, and this method is slow, as we will demonstrate below.

6.4. Amortized search

Another popular cycle detection method is to use amortization to pay the cost of checking
Gp for cycles. Since the cost of such a search isO(n), we can perform the search every
time the underlying shortest path algorithm performs�(n) work without increasing the
running time by more than a constant factor if there are no negative cycles. Theorem 1
implies that a labeling algorithm using this strategy terminates.

This method allows one to amortize the work of cycle detection and can be easily
used with any labeling algorithm. However, the method does not discover negative cycles
immediately. Furthermore, since cycles inGp can disappear, we are not guaranteed to
find a cycle at the first search after the first cycle inGp appears. In fact, the cycle can
be found much later.

6.5. Admissible graph search

This method, due to Goldberg [14], is based on the fact that the arcs inGp are admissible.
Therefore ifGp contains a cycle, the admissible graphGd contains a negative cycle.
Since all arcs inGd have nonpositive reduced costs, a negative cycle in the graph can
be found inO(n +m) time using depth-first search. SinceGd may contain a negative
cycle even ifGp does not, it is possible that this method finds a negative cycle before
the first cycle inGp appears.

One can use an admissible graph search instead of a search ofGp in the amortized
search framework. SearchingGd, however, is more expensive than searchingGp, and
the searches need to be less frequent. With this method, cycle detection is not immediate.

Admissible graph search is a natural cycle detection strategy for the Goldberg–
Radzik algorithm, which performs a depth-first search ofGd at each iteration. This
allows cycle detection at essentially no additional cost. We used the admissible graph
search strategy only with the Goldberg–Radzik algorithm.

6.6. Subtree traversal

The idea behind this strategy is similar to the idea behind the walk to the root strategy.
Suppose the labeling operation applies to an arc(u, v) andGp is acyclic. ThenGp is

290 Boris V. Cherkassky, Andrew V. Goldberg

a tree, and this operation will create a cycle inGp if and only if u is an ancestor ofv in
the current tree. We can check if this is the case by traversing the subtree rooted atv.

In general, subtree traversal needs to be applied after every labeling operation and
increases the cost of a labeling operation toO(n). (A good way to implement subtree
traversal is using standard techniques from the network simplex method for minimum-
cost flows; seee.g.[19].) With this strategy, cycle detection is immediate.

This strategy fits naturally with the network simplex method. During a pivot on(u, v),
we already traverse the subtree rooted atv. Although we apply labeling operations to the
tree arcs as we traverse the subtree, these operations do not change the tree and cannot
create cycles inGp. The subtree traversal strategy allows the method to detect cycles at
essentially no extra cost.

We use the subtree traversal strategy only with the network simplex method.

6.7. Subtree disassembly

This method, due to Tarjan [30], is a variation of the subtree traversal strategy that allows
one to amortize the subtree traversal work over the work of building the subtree. The
method is a variation of the scanning method where some unreached vertices may have
finite labels butnull parents. Distance labels of such vertices, however, are inexact. One
can easily show that the method remains correct in this case.

When the labeling operation is applied to an arc(u, v), the subtree rooted atv is
traversed to find if it containsu (in which case there is a negative cycle). Ifu is not in
the subtree, all vertices of the subtree exceptv are removed from the current tree and
marked as unreached. TheSCAN operation does not apply to these vertices until they
become labeled.

The work of subtree disassembly is amortized over the work to build the subtree,
and cycle detection is immediate. Because this strategy changes the status of some
labeled vertices to unreached, it changes the way the underlying scanning algorithm
works. However, since the vertices whose status changes have inexact distance labels,
this tends to speed the algorithm up.

A combination of the FIFO selection rule and subtree disassembly yields Tarjan’s
algorithm [30] for the negative cycle problem. Like the Bellman-Ford-Moore algorithm,
Tarjan’s algorithm maintains a queue of labeled vertices and adds newly labeled vertices
at the tail of the queue if they are not already on it. Initially the queue contains onlys. At
each step, the algorithm removes the head vertexv from the queue. Ifv is still labeled,
the algorithm scansv and, for each vertexw whose distance label improves during the
scan, the algorithm disassembles the subtrees rooted atw. Note that some vertices may
become unreached as a side-effect of the subtree disassembly. The algorithm has an
interesting property (recall the definition of the current distance label from Section 5):

Lemma 8. Tarjan’s algorithm scans only vertices with current distance labels.

The proof of the lemma is a straight-forward induction on the number of scan operations.
A variation of subtree disassembly is subtree disassembly with update. This strategy

can be viewed as the network simplex method with subtree disassembly strategy. As
the subtree rooted atv is traversed and disassembled, the distance labels of proper

Negative-cycle detection algorithms 291

descendants ofv are decreased by the same amount asd(v), and the descendants become
unreached. After a scan of a vertexu is complete, all vertices which wereu’s children
immediately before the scan become labeled. A combination of the FIFO selection rule
and this cycle detection strategy yields an algorithm with performance that is close to
that of Tarjan’s algorithm.

6.8. Level-based strategy

The level-basedcycle detection strategies (see e.g. [16,28]) are based on the following
modification of the labeling method. We maintain a level,t(v), at every vertexv. Initially
t(v) = ∞ for all v 6= s and t(s) = 0. Every time we setp(v) = u during a scan of
(u, v), we sett(v) = t(u) + 1. One can show that ifd(v) is exact, thent(v) is equal to
the number of arcs on the path froms to v in Gp. Therefore in the absence of negative
cycles, during passi , for each 0≤ j < i there must be a vertexv with t(v) = j .

An algorithm with level-based cycle detection maintains levelst and an arrayC of
counts:C[j] contains the number of verticesv with t(v) = j . Whent(v) changes, the
counts are updated. If during passi C[j] becomes zero for 0≤ j < i , the algorithm
terminates and declares that the network contains a negative cycle.

7. Algorithms studied

Algorithm/Strategy Bellman– Goldfarb– Goldberg– Pallottino’s Network
Ford–Moore Hao–Kai Radzik Simplex

Walk to the root BFCF

O(n2m)
Amortized search BFCS

O(nm)
Subtree traversal SIMP

O(n2m)
Subtree disassembly BFCT, BFCM PALT

O(nm) O(n2m)
Subtree disassembly BFCTN

with update O(nm)
Level-based GHK3

O(nm)
Admissible graph GORC

search O(nm)

Fig. 3. Summary of negative cycle algorithms

Figure 3 gives a summary of the negative cycle algorithms used in our study. The table
includes running time bounds, which follow from the results of Sections 3 – 6. Recall
that a negative cycle algorithm is a combination of a shortest path algorithm and a cycle
detection strategy, and that we did not implement time-out and distance lower bound
strategies.

292 Boris V. Cherkassky, Andrew V. Goldberg

Three algorithms have natural cycle detection strategies associated with them: the
optimized network simplex algorithm has subtree traversal, the Goldfarb et al. algo-
rithm has levels, and the Goldberg–Radzik algorithm has admissible graph search. We
implemented these algorithms only with their natural cycle detection mechanisms. For
the second algorithm, we setψ = 3 (this appears to be a reasonable choice in view of
the data of [16]). The resulting codes areSIMP, GHK3, andGORCrespectively.

Consider the Bellman–Ford–Moore algorithm. We implemented it with walk to
the root, amortized search, subtree disassembly, and subtree disassembly with update
strategies. Names of our Bellman–Ford–Moore cycle detection codes start withBFC.
The last letters identify cycle detection strategies. The codes areBFCF (follow path to
the root),BFCS (amortizedsearch), BFCT (Tarjan’s algorithm), andBFCTN (Tarjan’s
naturalvariant), respectively.

A simple variation of Tarjan’s algorithm implements the ideal variation of the
Bellman–Ford–Moore algorithm. This variation differs from Tarjan’s algorithm only in
one place. After applying a labeling operation to(u, v), Tarjan’s algorithm addsv to the
tail of the queue ifv is not in the queue. The modified algorithm addsv to the tail of the
queue ifv is not in the queue and movesv to the tail of the queue ifv is in the queue.
Our codeBFCM (minimumtree depth) implements the modified algorithm.

Consider an execution of the modified algorithm. Suppose no negative cycles have
been found so far, soGp is a tree. Induction onk shows if a vertex is scanned at passk,
then the depth inGp of the vertex at the time of the scan isk−1. An equivalent statement
is that for each scan, the algorithm selects a labeled vertex with the minimum depth
in Gp.

Since Tarjan’s algorithm gives improved performance, it is natural to use the subtree
disassembly strategy in Pallottino’s algorithm. This is what ourPALT code does.

8. Experimental setup

Our experiments were conducted on a 133MHZ Pentium machine with 128MB memory
and 256K cache running LINUX 1.2.8. Our codes are written in C and compiled with
the LINUX gcc compiler using theO4optimization option.

Our implementations use the adjacency list representation of the input graph, similar
to that of [11]. We attempted to make our implementations of different algorithms
uniform to make the running time comparisons more meaningful. We also tried to make
the implementations efficient.

The running times we report are user CPU times in seconds, averaged over several
instances generated with the same parameters except for a pseudorandom generator
seed. Each data point consists of the average running time (in bold), standard deviation,
and the average number of scans per vertex. The number of scans per vertex is a machine-
independent measure of algorithm performance which is very useful. For example, we
use it to compare the overhead of vertex selection and cycle detection and to determine
effectiveness of heuristics aimed at reducing the number of scan operations. Except for
two families, we average over five instances. For the Rand-5 and the SQNC02 families
(described below), we average over ten instances because of higher standard deviations.

Negative-cycle detection algorithms 293

We put a 30 minute limit of CPU running time for each problem instance. Note that the
clock precision is 1/60 of a second.

When scoring code performance on a problem family, we use the following scale:
good (©), fair (

⊙
), poor (

⊗
), and bad (•). We assign performance based on the running

times for the biggest instances of the problem family. (The only exception is the Rand-5
family, where the problem size is constant and the range of the arc lengths varies. For
that family, we use the instances with the highest relative performance difference for
scoring.) We normalize the times by that of the fastest code and use a factor of four
as the threshold between adjacent scores. If the fastest code runs inx seconds, a code
running in 2x seconds is rated good, in 7x seconds – fair, in 25x seconds – poor, and any
code running in 64x seconds or more is rated bad. Our choice of the threshold makes
it unlikely that a code not rated good in our experiment would be the fastest under
a different compiler and machine architecture combination. We provide detailed data in
addition to the summary scores, so, if desired, readers can interpret the data according
to their own system.

9. Preliminary experiment

Before describing our main experiments, we give preliminary data to demonstrate the
issues involved. We also cut down the number of codes evaluated in the main experiment
by eliminating uncompetitive and similar codes.

The preliminary experiment compares codesBFCF, BFCS, BFCT, BFCM, BFCTN and
GHK3 on square grids generated as in the square grid experiment described in Section 10.
Suppose we have anX · X square grid. The five problem families of this experiment
differ by the number of negative cycles in the graph and the cardinality (number of arcs)
of these cycles. The families have no negative cycles, one small negative cycle (with
three arcs),X small negative cycles, 16 moderately long (cardinalityX) negative cycles,
and one Hamiltonian negative cycle. The data is given in Figures 4–8. The number
and cardinality of negative cycles greatly affect algorithm performance. For example,
problems with many small negative cycles are easy.

Figure 4 gives data in the absence of negative cycles. The data shows how much
different heuristics reduce the number of scans. CodesBFCF andBFCS have the same
number of scans as the Bellman–Ford–Moore algorithm without cycle detection would

X*Y BFCF BFCS GHK3 BFCT BFCM BFCTN

64 3.94 0.70 0.22 0.03 0.03 0.03
64 0.67 0.06 0.03 0.00 0.01 0.00

28.85 28.85 17.48 2.99 2.99 2.97
128 111.45 5.21 1.99 0.13 0.16 0.18
128 15.93 0.52 0.14 0.01 0.02 0.00

49.91 49.91 30.73 2.96 2.98 2.95
256 46.61 18.22 0.71 0.75 0.91
256 3.96 1.46 0.06 0.06 0.06

98.01 58.78 2.93 2.93 2.92

Fig. 4. Preliminary experiment. No cycles

294 Boris V. Cherkassky, Andrew V. Goldberg

X*Y BFCF BFCS GHK3 BFCT BFCM BFCTN

64 0.07 0.06 0.24 0.01 0.01 0.01
64 0.08 0.05 0.05 0.01 0.01 0.01

2.41 2.52 15.66 0.76 0.73 0.76
128 1.50 0.50 1.64 0.04 0.05 0.05
128 1.41 0.37 0.24 0.03 0.02 0.03

4.97 5.06 24.97 0.76 0.87 0.76
256 44.38 2.99 16.15 0.14 0.16 0.16
256 62.98 3.50 2.47 0.12 0.14 0.15

6.30 6.44 48.16 0.52 0.52 0.52

Fig. 5. Preliminary experiment. One small cycle

X*Y BFCF BFCS GHK3 BFCT BFCM BFCTN

64 0.00 0.00 0.12 0.00 0.00 0.00
64 0.00 0.01 0.03 0.00 0.01 0.00

0.07 0.20 4.61 0.04 0.04 0.04
128 0.01 0.02 0.98 0.01 0.02 0.01
128 0.01 0.01 0.23 0.01 0.01 0.01

0.02 0.20 8.73 0.02 0.01 0.02
256 0.02 0.07 7.90 0.03 0.03 0.02
256 0.01 0.00 1.31 0.00 0.00 0.00

0.01 0.20 15.97 0.01 0.01 0.01

Fig. 6. Preliminary experiment.X small cycles

X*Y BFCF BFCS GHK3 BFCT BFCM BFCTN

64 0.23 0.25 0.09 0.05 0.05 0.06
64 0.02 0.01 0.01 0.01 0.00 0.01

8.84 8.95 5.41 3.40 3.45 3.24
128 3.25 1.60 0.65 0.33 0.35 0.37
128 0.30 0.12 0.05 0.04 0.02 0.02

12.22 12.32 7.97 4.12 4.15 3.93
256 48.76 8.04 3.62 1.43 1.63 1.71
256 3.54 0.71 0.16 0.08 0.12 0.07

14.81 14.92 10.00 4.54 4.55 4.35

Fig. 7. Preliminary experiment. 16 medium cycles

X*Y BFCF BFCS GHK3 BFCT BFCM BFCTN

64 6.66 0.67 0.29 0.15 0.17 0.19
64 1.01 0.04 0.02 0.01 0.00 0.01

17.54 17.67 14.01 10.15 10.14 9.43
128 119.62 3.84 1.92 1.15 1.16 1.29
128 10.78 0.15 0.07 0.11 0.09 0.04

20.23 20.36 16.31 12.03 12.06 11.19
256 21.34 10.95 6.03 6.39 6.90
256 0.78 0.35 0.79 0.64 0.24

23.48 19.12 14.17 14.19 13.14

Fig. 8. Preliminary experiment. One Hamiltonian cycle

Negative-cycle detection algorithms 295

have in this case. The heuristics used inGHK3 reduce the number of scans by almost
a factor of two. Subtree disassembly drastically reduces the number of scans – the
number of scans per vertex is small and, on this problem family, does not grow with
problem size.

The data also shows relative overheads of cycle detection strategies. On the square
grid problems, walk to the root is asymptotically more expensive than amortized search
and BFCF is much slower thanBFCS. The level-based strategy has a slightly lower
overhead than amortized search. Combined with the smaller number of scans, this
explains whyGHK3 is faster thanBFCS. Subtree disassembly has amortized overhead
and drastically reduces the number of scan operations. The three codes based on this
strategy perform similarly to each other, and much better than the other codes used in
this experiment.

Next we compare the cycle detection strategies in the presence of negative cycles.
The family with many small cycles (Figure 6) shows the benefits of immediate cycle
detection. All algorithms with this property, evenBFCF, are extremely fast on this family.
The amortized search strategy finds a cycle somewhat later and the level-based strategy
– much later, and the corresponding codes are slower.

In these experiments, as in all other experiments, the subtree disassembly codes
BFCT, BFCM, and BFCTN outperform the other codes. ComparingBFCT, BFTM, and
BFCTN codes, we observe that the performance of these codes is very close.

Although we do not present the data in this paper, for all problem families in our study
BFCF, BFCS, andGHK3 never perform significantly better thanBFCT, and often perform
considerably worse. To avoid presenting uninteresting data, in the main experiment we
do not give the data for the former codes. We also do not give the data forBFCM and
BFCTN, whose performance is very similar toBFCT.

10. Problem generators and families

In the main experiment we use eleven problem families with four underlying graph
types produced by two generators. These problem families were selected by exploring
many more families (for example, long and wide grids) and selecting ones which are
natural or give insight in the algorithm performance and avoid duplication. Figure 9
summarizes these problem families.

The first generator we use is SPRAND [2]. To produce a problem withn vertices and
m arcs, this generator builds a Hamiltonian cycle on the vertices and then addsm− n
arcs at random. One of the vertices is designated as a source. In the experiments of this
paper, the lengths of all arcs, including the cycle arcs, are selected uniformly at random
from the interval[L,U].

The Rand-5 family is generated using the SPRAND generator with a fixed network
size:n = 200,000 andm= 1,000,000. The maximum arc lengthU is fixed at 32,000,
and the minimum arc lengthL varies from 0 to−64,000.

The second generator we use is TOR, derived from the SPGRID generator of [2].
We use this generator to produce two types of skeleton networks: grid networks and
layered networks. The skeleton networks have no negative cycles.

296 Boris V. Cherkassky, Andrew V. Goldberg

Generator Class name Brief description # cycles |cycle|
SPRAND Rand-5 random graphs of degree 5 lengths-dependent
TOR SQNC01 square grids,n = X · X 0

SQNC02 1 3
SQNC03 X 3
SQNC04 16 X
SQNC05 1 n

TOR PNC01 layered graphs,n = X · 32 0
PNC02 1 3
PNC03 X/4 3
PNC04 8 X/4
PNC05 1 n

Fig. 9. Summary of problem classes. Here # cycles is the number of negative cycles and|cycle| is the
cardinality of a negative cycle

Grid networks are grids embedded in a torus. Vertices of these networks correspond
to points on the plane with integer coordinates[x, y], 0 ≤ x < X, 0 ≤ y < Y. These
points are connected “forward” bylayer arcs of the form([x, y], [x + 1 mod X, y]),
0 ≤ x < X, 0 ≤ y < Y, and “upward” byinter-layerarcs of the form([x, y], [x, y+
1 mod Y]). In addition there is a source connected to all vertices withx = 0. Layer
arc lengths are chosen uniformly at random from the interval[1,000,10,000]. Inter-
layer arc lengths are chosen uniformly at random from the interval[1,100]. Arcs from
the source are treated as inter-layer arcs. Skeletons of SQNC** (square with negative
cycles) problems are square grids withX = Y.

Layered networks consist of layers 0, . . . , X − 1. Each layer is a simple cycle plus
a collection of arcs connecting randomly selected pairs of vertices on the cycle. The
lengths of the arcs inside a layer are chosen uniformly at random from the interval
[1,100]. There are arcs from one layer to the next one, and, in addition, there are
arcs from a layer to “forward” layers. Consider an inter-layer arc(u, v) which goesx
layers forward. The length of this arc is selected uniformly at random from the interval
[1,10,000] and multiplied byx2. In addition there is a source connected to all vertices
with x = 0. These networks are similar to the Grid-PHard networks of [2], except inter-
layer arcs “wrap around” moduloX. Skeletons of PNC** (P-Hard with negative cycles)
problems are layered networks with each layer containing 32 vertices andX = n/32.

Arcs forming vertex-disjoint negative cycles are added after the skeleton network
has been generated. All arcs on these cycles have length zero except for one arc, which
has a length of−1. As we have seen in the preliminary experiment, the number and
the cardinality of negative cycles greatly affects the algorithm performance. Each TOR
family has a certain type of negative cycles. Families with names ending in “01” have
no negative cycles. Families with names ending in “02” have one small negative cycle.
Families with names ending in “03” have many small negative cycles. Families with
names ending in “04” have a few medium negative cycles. Families with names ending
in “05” have one Hamiltonian negative cycle. See Figure 9 for details.

After adding the cycles, we apply a potential transformation to “hide” them. For
each vertex, we select a potential uniformly at random from the same interval as the
inter-layer arc lengths. Then we add the potential to the lengths of the incoming arcs
and subtract the potential from the length of the outgoing arcs.

Negative-cycle detection algorithms 297

11. Experimental results

In this section we describe results of our main experiment. Fig. 10 summarizes these
results and Figs. 11–21 give detailed data. The discussion in this section should be taken
in the context of our experiment. Our use of the common sense and the preliminary
experiment to filter out clearly uncompetitive algorithms explains why the remaining
algorithm performance is good on many problem classes.

GORC has the highest scores. However, the only problem family it outscoresBFCT

on is Rand-5, and the score difference is due to the difference in performance for a small
range of parameter values. On other problem classes,BFCT’s performance is often

BFCT GORC PALT SIMP

Rand-5
⊙ © ⊙ ⊙

SQNC01 © © © ⊗
SQNC02 © © © ⊙
SQNC03 © © © ©
SQNC04 © © © ©
SQNC05 © © © ©

PNC01 © © ⊙ ⊙
PNC02 © © ⊙ ⊙
PNC03 © © © ©
PNC04 © © © ©
PNC05 © © © ©

Fig. 10. Summary of algorithm performance.©means good,
⊙

means fair, and
⊗

means poor

0

1

2

3

4

5

6

7

1000 2000 4000 60008000 16000 32000 64000

ru
nn

in
g

tim
e

in
 s

ec
s

|length lower bound| (logscale)

PALT
SIMP

GORC
BFCT

min/max BFCT GORC PALT SIMP

0 4.76 5.83 4.47 5.07
32000 0.17 0.19 0.21 0.17

2.13 3.62 2.38 2.06
-1000 5.54 6.37 5.38 5.87
32000 0.45 0.26 0.61 0.46

2.47 3.99 2.86 2.38
-2000 6.30 6.97 6.52 6.62
32000 1.92 2.36 1.95 2.02

2.81 4.42 3.47 2.68
-4000 3.51 3.83 4.73 3.75
32000 1.85 2.36 2.65 2.03

1.34 2.45 2.38 1.24
-6000 2.72 1.08 2.13 2.88
32000 1.40 0.64 1.06 1.47

0.96 0.65 1.04 0.85
-8000 1.52 0.15 1.18 1.71
32000 0.96 0.06 0.83 1.15

0.50 0.04 0.55 0.47
-16000 0.42 0.10 0.31 0.45
32000 0.23 0.01 0.16 0.26

0.13 0.00 0.12 0.13
-32000 0.28 0.09 0.16 0.26
32000 0.24 0.01 0.08 0.21

0.07 0.00 0.05 0.06
-64000 0.13 0.09 0.09 0.11
32000 0.08 0.01 0.03 0.07

0.02 0.00 0.02 0.02

Fig. 11.Rand-5 family data

298 Boris V. Cherkassky, Andrew V. Goldberg

0.1

1

10

100

64 128 256 512 1024

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

64 0.03 0.05 0.02 0.07
64 0.00 0.01 0.01 0.00

2.99 7.10 2.01 2.90
128 0.16 0.19 0.07 0.52
128 0.01 0.01 0.00 0.04

2.96 7.01 1.91 2.84
256 0.85 0.90 0.39 3.09
256 0.03 0.01 0.01 0.14

2.93 7.31 1.94 2.80
512 3.44 4.20 1.71 22.30
512 0.18 0.04 0.02 1.46

2.80 7.48 1.95 2.66
1024 12.69 15.22 6.09 131.29
1024 0.68 0.22 0.06 7.71

2.78 7.56 1.96 2.63

Fig. 12.SQNC01 family data

0.1

1

10

64 128 256 512 1024

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

64 0.01 0.02 0.00 0.02
64 0.01 0.01 0.01 0.02

0.76 2.62 0.88 0.74
128 0.05 0.09 0.04 0.10
128 0.03 0.04 0.02 0.06

0.76 2.76 0.91 0.74
256 0.16 0.27 0.14 0.39
256 0.14 0.23 0.11 0.41

0.52 1.99 0.61 0.50
512 0.69 1.07 0.52 2.18
512 0.51 0.84 0.36 2.29

0.52 1.83 0.54 0.49
1024 2.07 2.95 1.40 9.68
1024 1.14 1.60 0.68 9.54

0.36 1.18 0.34 0.38

Fig. 13.SQNC02 family data

somewhat better than that ofGORC. We conclude that these two codes are the best in
our experiments.

PALT has lower scores on the Rand-5 family (again due to a small range of parameter
values) as well as on the PNC01 and PNC02 families. However, it was the fastest or
nearly the fastest code on several families, including SQNC01, SQNC02, SQNC03, and
PNC03.

SIMP, with four fair and one poor score, is the least robust code in our study.
Although the number of pivot operations of this code is often smaller than the number
of scan operations ofBFCT, a pivot is usually more time-consuming than a scan, and
SIMP is often slower.

In general, more negative cycles lead to better performance for all codes. This is
because more cycles make it easier to find one. In the case of many small cycles,
algorithms often terminate after examining only a small portion of the graph.

Next we comment on individual problem families.

Negative-cycle detection algorithms 299

0.1

1

64 128 256 512 1024

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

64 0.01 0.01 0.02 0.00
64 0.01 0.01 0.01 0.01

0.04 0.12 0.07 0.04
128 0.01 0.00 0.00 0.00
128 0.01 0.01 0.01 0.01

0.02 0.04 0.04 0.02
256 0.03 0.03 0.02 0.02
256 0.00 0.01 0.00 0.00

0.01 0.02 0.02 0.01
512 0.11 0.13 0.08 0.08
512 0.01 0.02 0.01 0.00

0.00 0.01 0.01 0.00
1024 0.41 0.48 0.34 0.33
1024 0.01 0.03 0.01 0.00

0.00 0.01 0.00 0.00

Fig. 14.SQNC03 family data

0.1

1

10

64 128 256 512 1024

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

64 0.05 0.07 0.05 0.07
64 0.01 0.00 0.01 0.00

3.40 7.54 3.97 3.16
128 0.36 0.38 0.40 0.42
128 0.02 0.04 0.07 0.03

4.12 10.39 5.63 3.85
256 1.70 1.63 1.54 1.88
256 0.06 0.06 0.30 0.07

4.54 11.40 5.01 4.24
512 7.73 7.10 7.41 8.57
512 0.25 0.30 0.71 0.34

5.30 12.45 5.82 4.94
1024 33.03 30.65 37.24 36.71
1024 1.18 2.03 1.22 1.40

6.00 14.37 7.59 5.51

Fig. 15.SQNC04 family data

1

10

100

64 128 256 512 1024

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

64 0.18 0.26 0.28 0.19
64 0.00 0.01 0.03 0.01

10.15 19.46 19.08 9.10
128 1.32 1.69 2.09 1.30
128 0.04 0.12 0.15 0.04

12.03 22.38 23.21 10.73
256 7.14 9.01 11.75 6.81
256 0.24 0.47 0.80 0.21

14.17 26.13 28.27 12.56
512 34.29 43.96 60.43 32.13
512 0.95 1.94 5.00 0.68

16.39 30.76 34.09 14.36
1024 149.01 185.24 255.33 137.90
1024 2.15 2.28 14.77 0.67

17.87 32.91 37.11 15.56

Fig. 16.SQNC05 family data

The Rand-5 family is related to the probability model considered in [29]. In that
model, a network is a random graph with arc probabilityp. Arc lengths are chosen

300 Boris V. Cherkassky, Andrew V. Goldberg

1

10

100

256 512 1024 2048 4096 8192

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

256 0.67 0.64 6.64 2.58
32 0.03 0.02 0.24 0.13

12.33 17.01 132.47 6.80
512 1.37 1.31 14.15 6.19
32 0.04 0.04 0.29 0.35

12.60 17.66 139.96 6.93
1024 2.84 2.64 29.20 14.42

32 0.03 0.04 0.54 0.51
12.85 17.57 144.27 7.08

2048 5.76 5.38 59.14 28.13
32 0.13 0.05 0.59 0.34

12.82 17.93 146.42 6.96
4096 11.68 10.58 116.70 57.99

32 0.11 0.13 1.40 1.24
12.95 17.73 146.10 7.02

8192 22.79 21.06 226.88 111.13
32 0.26 0.20 2.26 2.44

12.89 17.81 147.29 7.01

Fig. 17.PNC01 family data

1

10

256 512 1024 2048 4096 8192

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

256 0.21 0.29 2.10 0.69
32 0.19 0.18 2.33 0.64

3.75 7.22 40.94 1.59
512 0.37 0.33 3.74 1.77

32 0.35 0.19 3.78 2.14
3.34 3.93 36.58 1.73

1024 0.97 0.86 10.89 5.00
32 0.65 0.67 7.79 4.20

4.35 5.35 53.25 2.45
2048 1.28 0.99 13.30 5.92

32 1.01 0.97 11.82 5.42
2.76 3.10 32.29 1.47

4096 1.55 1.50 16.77 7.36
32 0.84 0.72 8.01 4.03

1.62 2.34 20.65 0.93
8192 2.47 1.92 23.43 11.31

32 1.08 0.82 9.85 5.20
1.26 1.47 14.62 0.69

Fig. 18.PNC02 family data

independently from the same distribution, which is symmetric around zero. One can
easily show that for anyε > 0 andp≥ 2+ε

n , the probability that an′-vertex graph does
not have a negative cycle is exponentially small inn′. This suggests that an incremental
graph algorithm running in polynomial time, such asPALT, hasO(1) expected running
time in the model, assuming that the initialization takes constant time. The distribution
of Rand-5 graphs forU = 32,000 andL = −32,000 is similar to (but not the same as)
that of random graphs withp = 5/n. Fig. 11 shows that for these values ofU andL,
PALT scans a small fraction of vertices.

However, other codes scan a small fraction of vertices as well. For a small range of
parameter values (e.g. for the length lower bound of−8000),GORCscans significantly
fewer vertices than the other codes and runs much faster. We conclude that in some
cases, the admissible graph search strategy is superior.

Negative-cycle detection algorithms 301

0.1

256 512 1024 2048 4096 8192

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

256 0.01 0.02 0.02 0.01
32 0.01 0.00 0.01 0.01

0.11 0.33 0.25 0.10
512 0.01 0.03 0.02 0.02

32 0.01 0.00 0.00 0.01
0.03 0.19 0.10 0.03

1024 0.02 0.04 0.02 0.02
32 0.00 0.01 0.00 0.01

0.02 0.12 0.04 0.01
2048 0.03 0.05 0.03 0.03

32 0.00 0.01 0.00 0.00
0.01 0.05 0.03 0.01

4096 0.05 0.08 0.05 0.05
32 0.01 0.02 0.00 0.00

0.01 0.03 0.01 0.00
8192 0.11 0.12 0.08 0.08

32 0.01 0.00 0.00 0.01
0.00 0.01 0.00 0.00

Fig. 19.PNC03 family data

1

10

256 512 1024 2048 4096 8192

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

256 0.27 0.40 0.65 0.38
32 0.01 0.02 0.15 0.03

4.61 10.08 13.08 4.03
512 0.67 0.91 1.94 0.92

32 0.03 0.07 0.16 0.09
5.43 11.36 17.97 4.80

1024 1.76 2.04 4.09 2.21
32 0.10 0.09 0.14 0.09

6.57 12.71 18.36 5.71
2048 4.08 4.77 10.09 5.11

32 0.24 0.28 1.85 0.17
7.41 14.78 21.89 6.63

4096 9.20 10.98 26.30 10.75
32 1.46 1.05 5.02 1.30

7.96 17.11 26.83 6.91
8192 21.10 23.17 53.84 23.58

32 1.22 1.88 6.26 1.79
8.71 18.08 27.40 7.72

Fig. 20.PNC04 family data

On the SQNC01 and SQNC02 families,PALT clearly outperforms the other codes,
although the margin is not big enough to cause a score difference.

On PNC03 problems,GORC terminates after scanning significantly more vertices
than the other codes, in particularBFCT andSIMP. Similar phenomena happens on the
PNC04 and PNC05 families. Thus the admissible graph cycle detection strategy can be
inferior to the subtree traversal and subtree disassembly strategies.

12. Follow-up experiment

Results of Section 11 suggest that Tarjan’s algorithm performs well as a shortest path
algorithm. To see if this is the case, we ran theBFCT code on shortest path problem

302 Boris V. Cherkassky, Andrew V. Goldberg

1

10

256 512 1024 2048 4096 8192

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

PALT
SIMP

GORC
BFCT

X*Y BFCT GORC PALT SIMP

256 0.45 0.64 0.55 0.50
32 0.02 0.08 0.03 0.03

5.77 11.02 8.43 5.42
512 1.13 1.54 1.31 1.22

32 0.03 0.14 0.08 0.03
6.10 11.79 8.76 5.73

1024 2.57 3.24 3.38 2.78
32 0.13 0.45 0.26 0.13

6.43 11.47 10.37 6.07
2048 5.67 7.18 7.64 6.07

32 0.08 0.83 0.65 0.15
6.77 12.28 11.05 6.39

4096 11.87 15.28 15.56 12.81
32 0.56 1.77 1.27 0.60

6.88 12.63 11.59 6.46
8192 25.57 38.95 35.59 27.70

32 0.48 9.85 2.54 0.75
7.36 15.51 12.72 6.92

Fig. 21.PNC05 family data

families from [2]. The families we use are Grid-SSquare (square grids), Grid-SSquare-S
(square grids with an artificial source), Grid-PHard (layered graphs with nonnegative
arc lengths), Grid-NHard (layered graphs with arbitrary arc lengths), Rand-4 (random
graphs of degree 4), Rand-1:4 (random graphs of degreen/4), and Acyc-Neg (acyclic
graphs with negative arc lengths). For a detailed description of these problem families,
see [2].

An interesting question is how much the subtree disassembly used by Tarjan’s al-
gorithm improves the Bellman–Ford–Moore algorithm, and how much this strategy
improves Pallottino’s algorithm. We also evaluate the optimized network simplex algo-
rithm. Since the Goldberg–Radzik algorithm performed well in our previous study, one
would like to know how the new codes compare with it.

To answer these questions, we includeGORC, SIMP, andPALT in these experiments.
(The former code is almost the same asGOR of [2].) To gauge how subtree disassembly
affects performance, we also include an implementationBFP of the Bellman–Ford–
Moore algorithm, and an implementationTWO-Q of Pallottino’s algorithm. We use the
same codes as in [2].

Note that for networks with nonnegative arc lengths, good implementations of
Dijkstra’s algorithm perform very well. In the presence of negative-length arcs, however,

BFP BFCT GORC SIMP PALT TWO-Q

Grid-SSquare
⊗ © © © © ©

Grid-SSquare-S
⊗ © © © • •

Grid-PHard • © © ⊙ ⊗ •
Grid-NHard • © © ⊙ ⊙ ⊗

Rand-4 © © © © © ©
Rand-1:4 © © © © © ©

Acyc-Neg • • © ⊗ • •
Fig. 22. Summary of algorithm performance in the follow-up experiment.© means good,

⊙
means fair,⊗

means poor, and• means bad

Negative-cycle detection algorithms 303

the algorithm performs poorly. For this reason, we do not include it in this study.
However, the results of [2] can be used for an indirect comparison.

A summary of the follow-up experiment appear in Fig. 22 and the details – in
Figs. 23–29.

0.1

1

10

100

4097 16385 65537 262145 1048577

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

4097 0.03 0.02 0.02 0.02 0.01 0.02
12288 0.00 0.01 0.00 0.00 0.01 0.01

2.74 1.35 2.26 1.34 1.25 1.25
16385 0.21 0.09 0.08 0.10 0.05 0.04
49152 0.03 0.02 0.00 0.00 0.01 0.01

5.05 1.43 2.29 1.42 1.26 1.26
65537 1.92 0.39 0.37 0.45 0.29 0.22

196608 0.09 0.01 0.00 0.01 0.01 0.01
9.66 1.48 2.28 1.46 1.27 1.27

262145 19.30 1.69 1.94 1.93 1.20 0.97
786432 0.48 0.05 0.01 0.06 0.00 0.00

19.68 1.52 2.29 1.50 1.27 1.27
1048577 165.57 7.50 7.52 8.52 5.16 4.08
3145728 4.70 0.32 0.02 0.23 0.01 0.01

41.78 1.57 2.30 1.54 1.27 1.27

Fig. 23.Grid-SSquare family data

GORC is the most robust code in our tests, with the highest score on every problem
family. Its performance is always within a factor of two of the fastest code.

BFCT’s record is marred only by its bad performance on Acyc-Neg graphs. Other-
wise, this is a robust algorithm. One may argue that the Acyc-Neg family is favorable
for GORC, which uses depth-first search to order vertex scans line the special-purpose
algorithm for acyclic graphs. However, the depth-first search is an integral part ofGORC,
which, unlike the special-purpose algorithm, works even if cycles are added so that the
graph is no longer acyclic.

304 Boris V. Cherkassky, Andrew V. Goldberg

0.1

1

10

100

4098 16386 65538 262146 1048578

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

4098 0.05 0.03 0.05 0.03 0.32 0.26
16385 0.01 0.01 0.01 0.00 0.03 0.02

4.78 2.37 4.51 2.37 29.10 38.14
16386 0.40 0.16 0.18 0.18 2.14 2.24
65537 0.03 0.01 0.01 0.01 0.05 0.10

9.19 2.48 4.57 2.46 39.21 71.31
65538 3.35 0.67 0.87 0.81 16.49 26.28

262145 0.13 0.01 0.01 0.01 0.22 0.90
17.43 2.52 4.59 2.50 71.46 166.50

262146 33.66 2.88 4.08 3.37 130.42 387.80
1048577 0.80 0.04 0.02 0.07 3.03 8.67

34.12 2.56 4.62 2.54 124.35 489.18
1048578 279.75 12.55 16.58 14.72
4194305 6.38 0.21 0.80 0.27

70.97 2.62 4.62 2.58

Fig. 24.Grid-SSquare-S family data

With no bad scores, one poor score and two fair scores, the network simplex al-
gorithm performance is the third overall. Performance ofSIMP is reasonable but not
spectacular. Although the number ofSIMP pivots is usually less than the number of
GORCor BFCT scans, pivots are more expensive.

We conjectured that subtree disassembly will makeTWO-Q algorithm more ro-
bust, and in factPALT scores are higher than those ofTWO-Q. ComparingPALT

and TWO-Q, we note that on problems which are easy for Pallottino’s algorithm
(where the number of scans per vertex is close to one), subtree disassembly does
not reduce the number of scan operations and slightly increases the running time.
See for example Figure 23. On hard problems, subtree disassembly decreases the
number of scan operations. The decrease can be relatively small, as on the Grid-

Negative-cycle detection algorithms 305

1

10

100

1000

8193 16385 32769 65537 131073 262145

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

8193 13.98 0.63 0.59 2.07 5.46 38.76
63808 0.89 0.01 0.02 0.15 0.19 3.58

390.13 12.44 16.90 6.73 132.21 1108.89
16385 61.38 1.30 1.22 5.26 11.80 83.04

129344 1.07 0.04 0.03 0.20 0.13 2.79
799.87 12.53 17.98 6.94 140.82 1145.92

32769 255.78 2.64 2.49 11.82 24.71 174.19
260416 7.25 0.08 0.06 0.48 0.57 5.14

1612.36 12.75 17.87 6.97 144.87 1190.10
65537 1028.94 5.29 4.97 23.24 50.60 352.18

522560 6.83 0.08 0.13 0.81 0.64 4.40
3175.98 12.83 17.84 6.98 146.07 1190.76

131073 10.70 10.24 50.24 101.39 708.27
1046848 0.14 0.09 0.92 1.24 16.83

12.93 17.98 7.01 146.11 1199.97
262145 21.09 19.93 98.14 204.28 1412.31

2095424 0.20 0.18 1.24 1.88 18.43
12.87 17.82 7.01 147.20 1194.03

Fig. 25.Grid-PHard family data

SSquare-S family (Figure 24), or large, as on the Grid-PHard and Grid-NHard fam-
ilies (Figures 25 and 26). EvenPALT’s scores, however, are dominated bySIMP’s
scores.

Although the fact thatBFP has the lowest scores is not surprising, it is very infor-
mative to compare it toBFCT and to see how much performance is gained by subtree
disassembly. This speedup is due to the reduction in the number of scan operations.

The data presented in this section shows that Tarjan’s algorithm is almost as robust
as the Goldberg–Radzik algorithm and in many cases is slightly faster.

306 Boris V. Cherkassky, Andrew V. Goldberg

1

10

100

1000

8193 16385 32769 65537 131073 262145

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

8193 14.52 1.61 0.60 2.42 7.39 39.18
63808 0.89 0.05 0.03 0.32 0.31 3.14

392.09 27.01 17.88 8.68 166.24 1143.77
16385 61.95 3.60 1.34 6.13 15.99 86.09

129344 0.74 0.11 0.04 0.25 0.41 1.89
803.31 29.11 19.89 8.94 177.25 1187.05

32769 263.14 7.74 2.85 14.29 34.00 183.49
260416 7.14 0.23 0.09 1.08 0.89 5.58

1619.02 30.65 20.66 9.08 183.57 1231.74
65537 1054.18 15.50 5.95 29.52 68.58 363.71

522560 8.57 0.15 0.32 1.18 0.72 2.76
3190.63 30.87 21.30 9.16 184.67 1231.16

131073 31.32 12.72 60.85 137.10 741.91
1046848 0.36 0.37 0.99 1.59 20.00

31.32 22.58 9.09 185.41 1239.82
262145 61.87 26.50 119.46 276.66 1475.43

2095424 0.29 0.33 3.00 2.86 12.17
31.31 23.47 9.13 186.74 1234.86

Fig. 26.Grid-NHard family data

13. Concluding remarks

While this paper was being reviewed, we learned of another negative cycle detection
algorithm. This algorithm is a special case of Howard’s algorithm [17] for the problem
of finding an optimal policy for a Markov decision problem. Howard’s algorithm,
developed in the 50’s, is well-known in the Control Theory community.

An interpretation of Howard’s algorithm for the negative cycle problem is as follows.
Assume that the source has no incoming arcs; if it does, add a new source connected
to the old one by a zero-length arc. Start as in the labeling method. Then initialize the
parent graphGp to a maximal spanning tree ofG rooted ats. At each iteration, ifGp

Negative-cycle detection algorithms 307

1

10

100

8192 16384 32768 65536 131072 262144 524288 1048576

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

8192 0.39 0.34 0.37 0.36 0.52 0.42
32768 0.03 0.03 0.03 0.02 0.07 0.07

12.23 7.75 14.58 6.90 15.37 15.90
16384 1.12 0.94 1.00 0.87 1.53 1.30
65536 0.06 0.04 0.08 0.09 0.17 0.25

13.45 8.61 16.19 7.57 17.99 18.83
32768 2.47 2.03 2.26 2.04 3.67 2.75

131072 0.23 0.22 0.15 0.05 0.31 0.28
13.73 8.78 16.47 7.70 18.87 19.38

65536 6.55 4.84 5.56 5.15 9.33 7.70
262144 0.45 0.37 0.40 0.31 0.72 0.69

15.51 9.80 18.21 8.50 22.33 23.38
131072 13.74 11.28 12.22 9.92 20.90 18.94
524288 1.28 1.07 0.69 0.66 2.32 1.56

16.75 10.48 19.48 8.97 25.08 26.07
262144 30.46 22.93 25.27 22.98 45.47 38.97

1048576 2.38 2.12 1.24 1.80 4.52 2.93
17.61 11.07 20.76 9.47 26.25 26.95

524288 61.60 45.56 54.97 48.57 98.29 79.15
2097152 3.35 0.82 3.89 1.87 11.25 6.01

18.19 11.38 21.02 9.69 27.92 28.41
1048576 131.68 101.62 112.55 97.15 210.67 189.17
4194304 11.39 6.64 7.84 6.70 15.86 14.28

19.12 12.00 22.40 10.19 30.12 30.70

Fig. 27.Rand-4 family data

is a tree rooted ats, then for every vertexv setd(v) to the distance froms to v in Gp.
Otherwise, terminate:G has a negative cycle. To complete the iteration, examine all
arcs and for every arc apply the labeling operation to it.

This algorithm (which we shall call Howard’s algorithm as well) is similar to the
Bellman-Ford-Moore algorithm with the amortized search cycle-detection strategy. The

308 Boris V. Cherkassky, Andrew V. Goldberg

0.1

1

10

512 1024 2048 4096

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

512 0.10 0.09 0.20 0.14 0.20 0.18
65536 0.01 0.01 0.02 0.01 0.01 0.02

5.32 4.40 7.91 4.02 8.45 8.70
1024 0.48 0.43 0.79 0.58 0.89 0.88

262144 0.03 0.03 0.06 0.06 0.08 0.13
5.10 4.29 7.91 3.94 8.74 8.88

2048 1.92 1.79 3.23 2.22 3.55 3.54
1048576 0.18 0.21 0.15 0.07 0.33 0.20

4.65 4.01 7.23 3.64 8.27 8.33
4096 7.84 7.35 13.24 9.39 15.80 15.29

4194304 0.34 0.65 0.19 0.22 1.25 1.26
4.65 4.10 7.24 3.68 8.81 8.92

Fig. 28.Rand-1:4 family data

two major differences are that Howard’s algorithm sets vertex labels to tree distances at
the beginning of every iteration and that it examines all arcs during a pass (not only arcs
out of the labeled vertices).3 We ran Howard’s algorithm on our problem families and
found that it is not competitive with the best codes in our study. However, the idea of
usingGp to update distance labels in an amortized manner is probably the first heuristic
improvement of the Bellman–Ford–Moore algorithm that preserves theO(nm) time
bound.

In our study,GORC andBFCT are the best codes overall. The former is somewhat
more robust, but the latter is in many cases a little faster. The variants of Tarjan’s
algorithm implemented byBFCM andBFCTN performed similarly toBFCT.

3 The original Bellman–Ford–Moore algorithm examined all arcs as well; its scanning method variant is
a later development.

Negative-cycle detection algorithms 309

1

10

100

1000

8192 16384 32768 65536 131072

ru
nn

in
g

tim
e

in
 s

ec
s

 (
lo

gs
ca

le
)

number of nodes (logscale)

BFP
TWO_Q

PALT
SIMP

GORC
BFCT

nodes/arcs BFP BFCT GORC SIMP PALT TWO-Q

8192 23.24 4.71 0.23 2.51 15.81 171.85
131072 1.23 0.19 0.01 0.13 0.60 23.72

466.95 45.21 2.00 12.38 311.21 4590.70
16384 99.58 15.61 0.53 7.42 53.08 786.24

262144 3.26 0.81 0.01 0.26 1.33 111.38
887.44 64.83 2.00 14.53 464.61 9699.84

32768 492.75 51.76 1.26 22.54 201.15
524288 21.77 1.60 0.06 0.77 9.00

1724.82 92.76 2.00 16.19 665.26
65536 157.08 2.66 62.11 626.02

1048576 11.68 0.12 4.00 54.74
130.20 2.00 18.42 976.15

131072 462.43 5.65 179.79
2097152 48.34 0.31 13.52

185.73 2.00 20.56

Fig. 29.Acyc-Neg family data

Because the Goldberg–Radzik algorithm performed so well on shortest path prob-
lems with negative length arcs in [2], we expected that it would perform well on many
negative cycle problems. The good performance of Tarjan’s algorithm was a surprise to
us. This algorithm was motivated by adding immediate cycle detection to the Bellman–
Ford–Moore algorithm at low cost. Yet in practice the resulting algorithm is much
faster than the Bellman–Ford–Moore algorithm. Lemma 8 gives an explanation for this
phenomena.

Performance ofBFCT andBFCM is extremely similar. This seems to indicate that
scanning only labeled vertices with current distance labels is more relevant to perform-
ance than scanning the vertices with the lowest tree depth.

310 Boris V. Cherkassky, Andrew V. Goldberg

The admissible graph search strategy works well with the Goldberg–Radzik algo-
rithm. This strategy does not give immediate cycle detection, but in some cases finds
a negative cycle before the first cycle appears inGp.

Subtree disassembly (with or without updates) is a very good cycle detection strategy.
It gives immediate cycle detection, never adds a significant overhead, and usually speeds
up the underlying algorithm. Our study shows that this strategy improves the Bellman–
Ford–Moore algorithm and Pallottino’s algorithm. The strategy also allows a simple
implementation of the ideal Bellman–Ford–Moore algorithm. This strategy may prove
useful in the context of other shortest path algorithms as well.

Most students are taught only the Bellman-Ford-Moore algorithm as an algorithm
for the shortest path problem with negative arc lengths. Teaching Tarjan’s algorithm
will expose them to an algorithm with better practical performance and build-in cycle
detection while illustrating the use of amortization in algorithm design.

Acknowledgements.We would like to thank Bob Tarjan for stimulating discussions, for simplified proofs of
Theorem 2 and related lemmas, and for comments on a draft of this paper. We thank Donald Goldfarb and
Uwe Schwiegelshohn for bringing the level-based cycle detection strategy to our attention. We also would like
to thank Harold Stone for comments that improved our presentation. We thank Satish Rao for an insightful
discussion of Howard’s algorithm. Finally, we would like to thank the referees for their helpful suggestions
and comments.

References

1. Bellman, R.E. (1958): On a routing problem. Quart. Appl. Math.16, 87–90
2. Cherkassky, B.V., Goldberg, A.V., Radzik, T. (1996): Shortest paths algorithms: theory and experimental

evaluation. Math. Program.73, 129–174
3. Cormen, T.H., Leiserson, C.E., Rivest, R.L. (1990): Introduction to Algorithms. MIT Press, Cambridge,

MA
4. Dantzig, G.B., (1951): Application of the Simplex Method to a Transportation Problem. In: Koopmans,

T.C., ed., Activity Analysis and Production and Allocation, pp. 359–373. Wiley, New York
5. Denardo, E.V., Fox, B.L. (1979): Shortest–Route methods: 1. reaching, pruning, and buckets. Oper. Res.

27, 161–186
6. Desrochers, M. (1987): A note on the partitioning shortest path algorithms. Oper. Res. Lett.6, 183–187
7. Dial, R.B., Glover, F., Karney, D., Klingman, D. (1979): A computational analysis of alternative algo-

rithms and labeling techniques for finding shortest path trees. Networks9, 215–248
8. Dijkstra, E.W. (1959): A note on two problems in connexion with graphs. Numer. Math.1, 269–271
9. Ford, L. (1956): Network Flow Theory. Technical Report P-932, The Rand Corporation

10. Ford Jr., L.R., Fulkerson, D.R. (1962): Flows in Networks. Princeton Univ. Press, Princeton, NJ
11. Gallo, G., Pallottino, S. (1988): Shortest paths algorithms. Ann. Oper. Res.13, 3–79
12. Glover, F., Glover, R., Klingman, D. (1984): Computational study of an improved shortest path algorithm.

Networks14, 25–37
13. Glover, F., Klingman, D., Phillips, N. (1985): A new polynomially bounded shortest paths algorithm.

Oper. Res.33, 65–73
14. Goldberg, A.V. (1995): Scaling algorithms for the shortest paths problem. SIAM J. Comput.24, 494–504
15. Goldberg, A.V., Radzik, T. (1993): A heuristic improvement of the Bellman-Ford algorithm. Applied

Math. Lett.6, 3–6
16. Goldfarb, D., Hao, J., Kai, S.-R. (1991): Shortest path algorithms using dynamic breadth-first search.

Networks21, 29–50
17. Howard, R.A. (1960): Dynamic Programming and Markov Processes. John Wiley, New York
18. Hung, M.S., Divoky, J.J. (1988): A computational study of efficient shortest path algorithms. Comput.

Oper. Res.15, 567–576
19. Kennington, J.L., and Helgason, R.V. (1980): Algorithms for Network Programming. John Wiley, New

York
20. Klein, M. (1967): A primal method for minimal cost flows with applications to the assignment and

transportation problems. Manage. Sci.14, 205–220

Negative-cycle detection algorithms 311

21. Kolliopoulos, S.G., and Stein, C. (1996): Finding Real-Valued Single-Source Shortest Paths ino(n3)
Expected Time. In: Proc. 5th Int. Programming and Combinatorial Optimization Conf.

22. Lawler, E.L. (1976): Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, Winston, New
York, NY

23. Levit, B.Ju., and Livshits, B.N. (1972): Nelineinye Setevye Transportnye Zadachi. Transport, Moscow.
In Russian

24. Mondou, J.-F., Crainic, T.G., and Nguyen, S. (1991): Shortest path algorithms: A computational study
with the C programming language. Comput. Oper. Res.18, 767–786

25. Moore, E.F. (1959): The Shortest Path Through a Maze. In: Proc. of the Int. Symp. on the Theory of
Switching, pp. 285–292. Harvard University Press

26. Pallottino, S. (1984): Shortest-Path methods: complexity, interrelations and new propositions. Networks
14, 257–267

27. Pape, U. (1974): Implementation and efficiency of Moore algorithms for the shortest root problem. Math.
Program.7, 212–222

28. Schwiegelshohn, U. (1987): A shortest-path algorithm for layout compaction. In: Proceedings of the
European Conference on Circuit Theory and Design, pp. 453–458

29. Spirakis, P., Tsakadidis, A. (1986): A Very Fast, Practical Algorithm for Finding a Negative Cycle in
a Digraph. In: Proc. 13th ICALP, Lecture Notes in Computer Science 226, pp. 59–67. Springer

30. Tarjan, R.E. (1981): Shortest Paths. Technical report, AT&T Bell Laboratories, Murray Hill, NJ
31. Tarjan, R.E. (1983): Data Structures and Network Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, PA

