
Discrete Applied Mathematics 118 (2002) 279–291

Finding all the negative cycles in a directed graph

Takeo Yamadaa ; ∗, Harunobu Kinoshitab
aDepartment of Computer Science, The National Defense Academy, Yokosuka, Kanagawa 239-8686,

Japan
bMaritime Self-Defense Force, Maizuru, Kyoto 625-0087, Japan

Received 9 June 2000; received in revised form 2 November 2000; accepted 26 February 2001

Abstract

Given a directed graph where edges are associated with weights which are not necessarily
positive, we are concerned with the problem of /nding all the elementary cycles with nega-
tive total weights. Algorithms to /nd all the elementary cycles, or to detect, if one exists, a
negative cycle in such a graph are well explored. However, /nding all the elementary cycles
with negative cost appears to be unexplored. We develop an algorithm to do this based on the
“divide-and-conquer” paradigm, and evaluate its performance on some numerical experiments.
? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Negative cycles; Enumeration; Directed graph

1. Introduction

Let G = (V; E) be a directed graph [3] with vertex set V = {v1; v2; : : : ; vn} and edge
set E = {e1; e2; : : : ; em} ⊆ V × V . A path is a set of edges of the form {(vi; vi+1) ∈
E|i=0; 1; : : : ; k−1}, a cycle is a path with vk =v0, and a path is elementary if vi �= vj

for all i �= j. An elementary cycle is similarly de/ned. By w(e) we denote an integer
weight associated with edge e ∈ E. This may be positive or negative. For a path (or
a cycle), its weight is de/ned to be the sum of the weights of constituent edges. An
elementary cycle with negative weight is simply referred to as a negative cycle, and
our problem is the following.
P0: List up all the negative cycles in G.
Researches have been done on algorithms to list up all the elementary cycles in

directed as well as undirected graphs [4,9,11–14], but in these edge weights are not
considered. Another related topic is the negative cycle detection [8], where the problem
is to /nd a negative cycle, if one exists, or otherwise to prove nonexistence of such

∗ Corresponding author. Tel.: 81-468-41-3810; fax: 81-468-44-5911.
E-mail address: yamada@nda.ac.jp (T. Yamada).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(01)00201 -3

280 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

a cycle. This problem is important in the shortest path problem [1] or the minimum
cost-to-time ratio cycle problem [7], but in these /nding only one negative cycle
suLces.
These earlier works are related to our problem to some extent. For example, P0 is

solved if we list up all the elementary cycles by any of the enumeration algorithms and
pick up only those with negative weight. This is uninteresting, since usually graphs
contain too many cycles for exhaustive enumeration. Even in such a case negative
cycles may be relatively limited in number, and to our knowledge no researches have
been done on the problem of enumerating only the negative cycles.

2. Framework of the enumeration algorithm

Given a directed graph G = (V; E) with edge weight w : E → Z , we can detect
a negative cycle, if one exists, by modifying the label correcting algorithm [1] to
solve the shortest path problem for graphs with nonnegative edge weights. Let C =
{e1; e2; : : : ; ek} be such a negative cycle obtained. Then, we can divide P0 into the
following set of subproblems Pi ; i = 1; : : : ; k.
Pi: Find all the negative cycles of G that contain e1; e2; : : : ; ei−1, but do not contain ei.
More generally, for an elementary path F={(vi; vi+1)|i=0; 1; : : : ; k−1} in G and a set

of edges R ⊆ E that is disjoint with F , an elementary cycle C is (F; R)-admissible if it
contains all edges of F , but does not contain those of R. That is, C is (F; R)-admissible
if and only if F ⊆ C; R∩C=∅. By N (F; R) we denote the set of all (F; R)-admissible
negative cycles. Here F and R are the sets of fixed and restricted edges, respectively.
We pose the following problem.
P(F;R): List up all the cycles of N (F; R).
Clearly P0 is identical to P(∅; ∅). Corresponding to P(F;R) we introduce subgraph

G(F; R) as the graph obtained from G by removing vertices and edges incident to F .
More precisely, G(F; R) consists of the vertex set V \ {v1; : : : ; vk−1} and the edge set
E\R\{⋃k−1

i=0 E−(vi)} \{⋃k
i=1 E

+(vi)}, where E+(v) and E−(v) denote the sets of edges
coming into and going out of v, respectively. The prototype algorithm All NC0(F; R)
can be constructed in the divide and conquer [2,10] paradigm as the following recursive
procedure, provided that we have an algorithm An NC(F; R) that detects a negative
cycle in N (F; R) if one exists, and return ∅ otherwise.

Algorithm All NC0(F; R)

Input: a simple path F , and R ⊆ E such that F ∩ R= ∅.
Output:N (F; R).
Step 1: Call An NC(F; R) to /nd C = F ∪ {e1; e2; : : : ; ek} ∈ N (F; R).

If C = ∅ return. Otherwise output C.
Step 2: For i = 0; 1; : : : ; k − 1 do:

(i) Let Fi:=F ∪ {e1; e2; : : : ; ei} and Ri:=R ∪ {ei+1}.
(ii) Call All NC0(Fi; Ri).

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 281

Unfortunately An NC(F; R) is diLcult to realize except for the case of F = ∅. To
see this, for an elementary path F let its initial and terminal vertices be iF and tF
respectively, and "(F; R) is the set of elementary paths form tF to iF in G(F; R). For
an arbitrary elementary path # ∈ "(F; R), F ◦ # denotes the elementary cycle obtained
by connecting # to F . Clearly F ◦ # is (F; R)-admissible, and F ◦ # ∈ N (F; R) if and
only if its weight satis/es

w(F ◦ #):=w(F) + w(#)¡ 0: (1)

By #?(F; R) we denote the elementary path in "(F; R) of the minimum weight,
and let

z?(F; R):=w(F ◦ #?(F; R)): (2)

Then, if z?(F; R)¡ 0 we have a negative cycle F ◦#?(F; R) ∈ N (F; R), and otherwise
N (F; R) = ∅. However, with negative edges in G /nding #?(F; R) is equivalent to the
longest elementary path problem [6] which is NP-hard in general.

Instead of calculating z?(F; R) exactly, we evaluate its lower and upper bounds,
z(F; R) and Pz(F; R). These bounds are discussed in the next section, but for the moment
we assume these are available.
Then if

z(F; R)¿ 0 (3)

is satis/ed, we conclude that N (F; R)= ∅, and subproblem P(F;R) is terminated as in
Step 1 of All NC0. Or, if

Pz(F; R)¡ 0; (4)

we have a negative cycle C = F ◦ P#(F; R), where P#(F; R) denotes a path in "(F; R)
which is obtained together with Pz(F; R), as we shall see in Section 3. With C, we
can generate subproblems of P(F;R) and call them recursively as in Step 2 of
All NC0.
Otherwise, if

z(F; R)¡ 06 Pz(F; R); (5)

we neither have a negative cycle nor the evidence that N (F; R) = ∅. In such an
uncertain case, with the set of edges {e1; e2; : : : ; ek}:=E−(tF) in G(F; R) emanat-
ing from tF , we divide P(F;R) into the set of subproblems P(Fi; Ri), i = 1; : : : ; k,
where Fi:=F ∪ {ei} and Ri:=R, and solve these problems by calling the algorithm
recursively.
In the case of F = ∅ algorithms exist to solve An NC as stated earlier, and thus no

problem arises in All NC0. To sum up, we have the following.

282 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

Algorithm All NC(F; R)

Input: a simple path F , and R ⊆ E such that F ∩ R= ∅.
Output:N (F; R).
Step 1: If F �= ∅, go to Step 2. Otherwise let C = An NC(∅; R).

If C = ∅ return; otherwise go to Step 4.
Step 2: Evaluate z(F; R). If z(F; R)¿ 0, return.
Step 3: Evaluate Pz(F; R). If Pz(F; R)¡ 0, put C:=F ◦ P# ∈ N (F; R) and

go to Step 4. Otherwise, go to Step 5.
Step 4: (A negative cycle C = F ∪ {e1; e2; : : : ; ek} is found)

Output C. For i = 0; 1; : : : ; k − 1 do:
(i) Let Fi:=F ∪ {e1; e2; : : : ; ei} and Ri:=R ∪ {ei+1}
(ii) Call All NC(Fi; Ri).

return ;
Step 5: (Uncertain case)

Let {e1; e2; : : : ; ek}:=E−(tF) in G(F; R).
For i = 1; 2; : : : ; k do:
(i) Let Fi:=F ∪ {ei} and Ri:=R.
(ii) Call All NC(Fi; Ri).

3. Lower and upper bounds

For an arbitrary subgraph G′ = (V ′; E′) of G, let dj(v : v0; G′) denote the minimum
weight of (not necessarily elementary) paths from v0 to v in G′ within j steps. This
is also referred to as the distance of v, and satis/es the following recurrence relation
[1,7]

dj(v : v0; G′) = min
v′∈V ′

{dj−1(v′ : v0; G′) + w(v′; v)}; ∀v ∈ V; j ¿ 1; (6)

where w(v′; v) is the weight of (v′; v) ∈ E, and

d0(v : v0; G) =
{
0 if v= v0;
∞ otherwise:

(7)

Given an elementary path F={(vi; vi+1)|i=0; 1; : : : ; k−1} in G, dn−|F|(iF : tF ; G(F; R))
gives the distance of iF from tF within n − |F | steps. Let #(F; R) denote a (not nec-
essarily elementary) path in G(F; R) that attains the minimum distance, i.e.,

w(#(F; R)) = dn−|F|(iF : tF ; G(F; R)): (8)

Such a path can be obtained as we calculate dj(v : tF ; G(F; R)) via (6)–(7). Since
elementary paths in G(F; R) is at most of n − |F | steps, dn−|F|(iF : tF ; G(F; R)) gives
a lower bound to w(#?(F; R)), and

z(F; R):=w(F) + w(#(F; R)) (9)

is a lower bound to z?(F; R).

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 283

Fig. 1. Graph for Example 1.

Fig. 2. dj(v : v1; F; R) for Fig. 1.

An upper bound can be found by applying the Dijkstra’s method [5] to G(F; R) with
tF as a starting vertex. Dijkstra’s method usually /nds shortest paths in a graph with
nonnegative edge weights. If we apply the same algorithm to G(F; R), for all v ∈ V it
/nds an elementary path P#(v : tF ; F; R) from tF to v and its “distance” Pd(v : tF ; F; R).
However, with negative edges in G, these may no longer be optimal. Nevertheless,
since P#(F; R):= P#(iF : tF ; F; R) is elementary in G(F; R), Pd(iF : tF ; F; R) gives an upper
bound to w(#?(F; R)), and thus the following is an upper bound to z?(F; R).

Pz(F; R):=w(F) + Pd(iF : tF ; F; R): (10)

Example 1. Consider the graph of Fig. 1 with F={(v2; v1)} and R={(v4; v5)} shown in
heavy and broken arrows, respectively. We have w(F)=3, and applying the Dijkstra’s
method we obtain the tree shown in Fig. 1 in thick lines with Pd(v : v1; F; R) given in
italics at each v ∈ V . From this we have P#(F; R) = v1v3v4v2 with Pz(F; R) = 2. Fig. 2
shows dj(v : v1; F; R), and from this we have #(F; R) = v1v3v4v3v4v2 with z(F; R) = 1.

284 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

4. An illustrative example

Consider now the graph of Fig. 3, where ek is shown by the number at each edge,
and details are given in Table 1. We start All NC with F=R=∅, which is subproblem
P0. Then, in Step 2, we get a negative cycle C1 = {e6; e14; e11; e5} as the output of
An NC. From this we generate 4 subproblems as shown in Table 2, where F and R
describe each subproblem, and ‘Cycle’ denotes the output from An NC. Here dashes
(-) indicate N (F; R) = ∅, and question marks (?) are for the uncertain case of (5).
Problem numbers will be explained soon.
By a recursive call with P1 in Step 4, we obtain another negative cycle C2=

{e21; e30; e39; e26; e23; e19} as shown in Table 2, and from this generate 6 subproblems
P2 ∼ P7. These subproblems are all terminated due to condition (3). From P8 we
have z(F; R) = −68 and Pz(F; R) = 50, so we go to Step 5 of All NC and generate 2
subproblems as follows. Table 3
Next, from P16 we obtain C3 = {e21; e30; e39; e26; e23; e9; e8; e5; e6; e14} and from this

generate subproblems P17 ∼ P23 and P25 which are all terminated, except for P23, due to
(3) again. P26 is similarly terminated. In P23 we obtain C4={e21; e30; e39; e26; e23; e23; e9;
e4; e; 6; e14}, which produces only one feasible subproblem P24. This is terminated by
(3), either.
All these processes are summarized in Fig. 4, where subproblems and their children

are shown as a tree. Note that subproblems are generated and examined in the

Fig. 3. Graph for the example of Section 4.

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 285

Table 1
Data for Fig. 3

Edge Root Top Weight

e1 v1 v2 53
e2 v1 v6 180
e3 v1 v11 353
e4 v3 v2 −10
e5 v4 v2 70
e6 v2 v5 −30
e7 v6 v2 −20
e8 v3 v4 −104
e9 v8 v3 183
e10 v5 v4 10
e11 v7 v4 −40
e12 v4 v8 172
e13 v5 v6 98
e14 v5 v7 −20
e15 v6 v7 133
e16 v6 v11 175
e17 v6 v12 190
e18 v6 v20 162
e19 v8 v7 10
e20 v9 v7 159
e21 v7 v10 30
e22 v7 v20 120
e23 v9 v8 −60
e24 v8 v16 338
e25 v10 v9 94
e26 v15 v9 −90
e27 v9 v16 201
e28 v12 v10 134
e29 v13 v10 150
e30 v10 v14 −50
e31 v10 v15 169
e32 v20 v10 40
e33 v11 v12 60
e34 v11 v19 234
e35 v12 v13 104
e36 v12 v20 104
e37 v14 v13 47
e38 v13 v19 86
e39 v14 v15 30
e40 v19 v14 55
e41 v15 v16 115
e42 v15 v18 92
e43 v16 v17 125
e44 v18 v16 137
e45 v17 v18 98
e46 v19 v18 100

depth-;rst order. This is due to the recursive structure of All NC. Shadowed circles
represent the subproblems where negative cycles are found, and subproblems enclosed

286 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

Table 2
Subproblems generated from P0

Subproblem F R Cycle

P1 ∅ {e6} C2
P8 {e6} {e14} ?
P16 {e6; e14} {e11} C3
P26 {e6; e14; e11} {e5} —

Table 3
Subproblems generated from P8

Subproblem F R Cycle

P9 {e6; e13} {e14} ?
P15 {e6; e10} {e14} —

Fig. 4. Tree of subproblems.

with broken lines are terminated due to condition (3). Thus, in this example All NC
generated 27 subproblem to /nd 4 negative cycles.

5. A stronger lower bound

In evaluating the lower bound z(F; R) we obtained the path #(F; R), but this may
be non-elementary. If this happens to be elementary, we have z(F; R) = z?(F; R), and
An NC(F; R) is solved as explained previously.
Next, let us consider the case of non-elementary #(F; R), where the path meets to

itself at some node c in G(F; R). We divide "(F; R) into the set of elementary paths
which go through c, and the set of those which do not go through c. First, let

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 287

G0(F; R; c) denote the subgraph of G(F; R) obtained by removing vertex c and incident
edges, and de/ne

d0(F; R; c):=dn−|F|(iF : tF ; G0(F; R; c)): (11)

Next, de/ne subgraphs G1(F; R; c) and G2(F; R; c) as the subgraph of G(F; R) obtained
by removing E−(c) and E+(c) respectively. Let

d1(F; R; c):= min
0¡k¡n−|F|

{d1
k(F; R; c)}; (12)

where

d1
k(F; R; c):=dk(c : tF ; G1(F; R; c)) + dn−|F|−k(iF : c; G2(F; R; c)); (13)

and put

z′(F; R):=w(F) + min{d0(F; R; c); d1(F; R; c)}: (14)

Clearly this gives a lower bound to z?(F; R) which is better than z(F; R), i.e.,

z(F; R)6 z′(F; R)6 z?(F; R): (15)

Example 2. Consider the problem of Fig. 1 again with F={(v2; v1)} and R={(v4; v5)}.
The path #(F; R) meets to itself at c=v3. Removing E−(c), no paths exist from tF =v1
to c and thus we have d0(F; R; c) =∞. Next, clearly dj(c : tF ; G1(F; R; c)) ≡ −1 for
j ¿ 1 and

dj(iF : c; G2(F; R; c)) =




∞; j = 0; 1;
0; j = 2; 3;
−3; 46 j 6 6:

From these we obtain z′(F; R)=−4¿z(F; R)=−5. Since Pz(F; R)=−4 in Example 1,
we conclude z?(F; R) =−4, and the path #(F; R), shown in thick arrows in Fig. 1, is
optimal.

In what follows, by All NC′ we denote the algorithm equipped with z′(F; R) instead
of z(F; R) in All NC.

6. Numerical experiments

To evaluate the performance of the developed algorithms, we have implemented
All NC and ALL NC′ in C language on an HP 9000 B132L workstation, and conducted
a series of numerical experiments on the following test problems.

1. Complete: this is a directed complete graph Kn with vertices {1; 2; : : : ; n}. Weights
are given by

c(i; j) =
{−1 if |i − j|¿ �n=p�;
1 otherwise;

(16)

where p is a parameter which is set to p= 1:4 or p= 2:0.

288 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

Fig. 5. Instances for numerical experiments: (a) C12;1;3, and (b) L5;8.

2. Cord: this graph Cn;K;p consists of vertices {1; 2; : : : ; n} and edges {(i; i+1); : : : ; (i; i+
K); (i; i − p)|i = 1; : : : ; n}, where all additions and subtractions on vertex numbers
should be done in mod n. All edge weights are 1, except for edges {(3k; 3k−p)|16
k 6 �n=3�}, where weights are −1. Here K and p are parameters which are set to
K = 1 or K = 2 and p= 3 in our experiments.

3. Lattice: this is an s × t lattice Ls; t with a feedback arc, consisting of vertices
{vi; j | i=1; 2; : : : ; s; j=1; 2; : : : ; t} and edges {(vi; j ; vi; j+1) | i=1; 2; : : : ; s; j=1; 2; : : : ; t−
1} ∪ {(vi; j ; vi+1; j) | i = 1; 2; : : : ; s − 1; j = 1; 2; : : : ; t} ∪ {(vs; t ; v1;1)}. Edge weights are
all 1, except for the bottom row edges where weights are −1.
Fig. 5(a) and (b) depict C12;1;3 and L5;8, respectively. We also implemented the

Tarjan’s algorithm [11] to list up all the elementary cycles for comparison. Tables
4–6 summarize the results of experiments for Complete, Cord and Lattice instances,
respectively. Here shown are the number of negative cycles (#nc), the number of
cycles found in Tarjan’ algorithm (#cycle), the number of subproblems generated by

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 289

Table 4
Results of experiments for Kn

Graph p #nc Tarjan All NC All NC′

#cycle CPU #prob CPU #prob CPU

K9 1.4 1 125664 5.4 3 0.0 3 0.1
K10 1.4 1 — — 3 0.0 3 0.1
K11 1.4 23 — — 54916 7.5 134 0.1
K12 1.4 25 — — 438542 91.5 158 0.1
K13 1.4 27 — — 3945802 637.6 184 0.1
K14 1.4 1854 — — 254037287 86803.9 4940262 1660.1

K6 2.0 13 409 0.1 56 0.1 44 0.1
K7 2.0 15 2365 0.2 112 0.2 58 0.1
K8 2.0 246 16004 0.6 2069 0.3 894 0.1
K9 2.0 364 125664 5.4 8706 1.9 1647 0.4
K10 2.0 10348 — — 162171 19.9 44412 6.4
K11 2.0 19720 — — 1073446 144.4 141655 27.5
K12 2.0 699901 — — 19758440 2816.0 4009789 796.7
K13 2.0 1629217 — — 175659211 53174.9 21343101 1342.4

Table 5
Results of experiments for Cn;K;3

n K #nc Tarjan All NC All NC′

#cycle CPU #prob CPU #prob CPU

10 1 0 49 0.00 1 0.00 1 0.00
20 1 4 877 0.07 22 0.01 22 0.01
30 1 71 25818 2.94 477 0.12 476 0.11
40 1 422 — — 2341 0.63 2300 0.62
50 1 2790 — — 18638 8.93 17855 7.48
60 1 41131 — — 301472 193.17 300891 158.65
70 1 258222 — — 1408320 771.02 1405706 660.35

10 2 2 416 0.02 8 0.00 8 0.00
20 2 12 50882 3.95 49 0.01 48 0.01
30 2 281 — — 1766 0.54 1717 0.52
40 2 3775 — — 17855 7.39 17148 6.92
50 2 44270 — — 218141 127.73 209476 113.19
60 2 1230221 — — 8017428 2616.40 7874398 1782.74

our algorithms (#prob), and CPU time in seconds. Dashes (—) indicate the cases where
computation was terminated due to insuLcient computer memories.

Tarjan was able to solve only a few smaller problems, mainly due to excessive
memory requirements. For the case solved, all algorithms produced the same numbers
of negative cycles. In Complete and Cord instances, All NC′ is superior to All NC
both in CPU time and memory requirements. However, for Lattice the diVerence be-
tween All NC and All NC′ vanishes, because in this instance all cycles are necessarily
elementary, and thus we have z′(F; R) ≡ z(F; R).

290 T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291

Table 6
Results of experiments for L5×t

Graph #nc Tarjan All NC All NC′

#cycle CPU #prob CPU #prob CPU

L5×10 5 715 0.1 41 0.0 41 0.0
L5×20 210 3060 0.4 1107 0.2 1107 0.2
L5×30 1365 40920 12.5 7823 2.0 7823 2.0
L5×40 4845 — — 31689 9.8 31689 9.8
L5×50 12650 — — 94205 44.5 94205 44.5
L5×60 27405 — — 229996 121.0 229996 121.0

7. Concluding remarks

We have developed an heuristic algorithm to list up all the negative cycles within the
divide and conquer framework. Due to the gap between the lower and upper bounds
for the shortest elementary path in graphs with negative edges, the algorithm often
produces subproblems where existence of negative cycles is uncertain. By strengthening
the lower bound, we were able to reduce this possibility, and with these algorithms
solved problems with up to a few hundred vertices within reasonable CPU time.
For future researches we mention further strengthening of the lower and upper

bounds. Recursion elimination from our algorithms may worth trying, since recursive
algorithms are often ineLcient in actual execution.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications,
Prentice-Hall, Englewood CliVs, 1993.

[2] S. Baase, Computer Algorithms: Introduction to Design and Analysis, 2nd Edition, Addison-Wesley,
Reading, MA, 1993.

[3] R.G. Busacker, T.L. Saaty, Finite Graphs and Networks: an Introduction with Applications,
McGraw-Hill, New York, 1965.

[4] S. Chen, D.R. Ryan, A Comparison of three algorithms for /nding fundamental cycles in a directed
graph, Networks 11 (1981) 1–12.

[5] E. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959) 269–271.
[6] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness,

Freeman and Company, San Francisco, 1979.
[7] R.M. Karp, A characterization of the minimum cycle mean in a digraph, Discrete Math. 23 (1978)

309–311.
[8] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and Winston, New

York, 1976.
[9] R.C. Read, R.E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning trees,

Networks 5 (1975) 237–252.
[10] R. Sedgewick, Algorithms in C, 3rd Edition, Addison-Wesley, Reading, MA, 1998.
[11] R.E. Tarjan, Enumeration of elementary circuits of a directed graph, SIAM J. Comput. 2 (1974) 211–

216.

T. Yamada, H. Kinoshita /Discrete Applied Mathematics 118 (2002) 279–291 291

[12] J.C. Tiernan, An eLcient search algorithm to /nd the elementary circuits of a graph, Comm. ACM 13
(1970) 722–726.

[13] H. Weinblatt, A new search algorithm for /nding the simple cycles of a /nite directed graph, J. ACM
19 (1973) 43–56.

[14] J.T. Welch, A mechanical analysis of the cyclic structure of undirected linear graphs, J. ACM 13 (1966)
205–210.

