
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 18, 1 lo-127 (1979)

A Class of Algorithms which Require Nonlinear Time to
Maintain Disjoint Sets*

ROBERT ENDRE TARJAN’

Computer Science Department, Stanford University, Stanford, California 94305

Received December 16, 1977; revised January 9, 1978

This paper describes a machine model intended to be useful in deriving realistic com-
plexity bounds for tasks requiring list processing. As an example of the use of the model,
the paper defines a class of algorithms which compute unions of disjoint sets on-line, and
proves that any such algorithm requires nonlinear time in the worst case. All set union
algorithms known to the author are instances of the model and are thus subject to the
derived bound. One of the known algorithms achieves the bound to within a constant
factor.

1. INTRODUCTION

Computer scientists have attempted for many years to derive lower bounds on the
complexity of computational problems. This effort has met with some success, providing,
for example, exponential lower bounds on the complexity of equivalence for regular
expressions [13], validity in Presburger arithmetic [14], and circularity in attribute
grammars [7]. In addition to these bounds for hard problems, several results for simpler
problems exist, including bounds on the number of comparisons required for ordering
problems [9], on the number of data accesses required for testing properties of graphs [15],
and on the number of arithmetic operations required for evaluating various polynomials

PI*
In spite of this progress, one domain, that of list-processing problems, is almost enitrely

devoid of lower-bound results. Though the subject of data structures is now part of the
standard computer science curriculum, and every computer science library contains many
books on the subject, with the exception of a few results on the relative power of various
data structures, nothing is known about the inherent power of pointer manipulation.

One reason for this state of affairs is the lack of a thoroughly understood machine model
which is both realistic and theoretically accessible. One candidate, the random-access

* This research was supported in part by National Science Foundation grant MCS75-22870 and
by the Office of Naval Research contract NOOO14-76-C-0688. The United States Government’s
right to retain a nonexclusive royalty-free license in and to copyright covering this paper is acknowl-
edged.

+ Some of this work was done while the author was visiting the Faculty of Mathematics at the
University of Bielefeld, Bielefeld, West Germany.

110
OO22-OOOO/79/020110-18$02.00/O
Copyright 0 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ALGORITHMS TO MAINTAIN DISJOINT SETS Ill

machine [l], which has been used by several authors to provide realistic measures of the
complexity of various algorithms, seems too powerful to analyze easily. It also has certain
defects, such as allowing unbounded parallelism if a “uniform cost” measure [l] is used.

However, another possible model exists. In 1953 Kolmogorov [ll, 121 proposed a
machine which operates by manipulating pointers connecting nodes. Fifteen years later
Knuth [8] proposed a similar machine, which he called a linking automaton. Later and
independently Schiinhage [161 defined such a machine, which he called a storage modifica-
tion machine, and he showed that such machines can simulate Turing machines with
multidimensional tapes in real time. Although these machines provide a useful tool for
describing pointer manipulation algorithms, no bounds on their computational power
except Schonhage’s seem to exist.

This paper describes an extension of Knuth’s machine, called a pointer machine. The
paper defines a class of algorithms which use such a machine to solve the disjoint set union
problem, and proves that any such algorithm requires nonlinear time (in the worst case).
The class of algorithms is general enough to encompass all set union algorithms known to
the author. This result shows that it is possible (in at least one case) to derive a nonlinear
lower bound on the complexity of a list-processing problem using a realistic computer
model. The result also provides a partial solution to [8, Exercise 2.6.11, which asks for an
exploration of the properties of linking automata.

2. POINTER ~VACHINES

A pointer machine consists of a memory and a finite number of registers. The registers
are of two types: data registers and pointer registers. The memory consists of a finite but
expandable pool of records. Each record consists of a finite number offields, each of which
is either a data Jield or a pointer jeld. Each field has an identifying 7uIme. All records are
identical in structure; that is, they contain the same fields.

A pointer machine manipulates data and pointers. A pointer either specifies a particular
record or is null (a). Each pointer register and pointer field can store one pointer. Data
can be of any kind whatsoever (integers, logical values, strings, real numbers, vectors,
etc.). Each data register and data field can store one datum.

A program for a pointer machine consists of a sequence of instructions, numbered
consecutively from one. Each instruction is of one of the following eight types. The last
instruction of every program is a halt. Execution and running time of pointer machines
are defined in the obvious way; we charge one unit of time per machine instruction
executed.

Each + below denotes a pointer register, each s denotes a data register, each t denotes a
register of any type, and each 71 denotes a field name.

7+-O Place a null pointer in register r.

6 - 22 (tl and t, must be of the same type).
Place the contents of register t, in register t, , erasing what was there previously.

112 ROBERT ENDRB TARJAN

t + n(r) (n and t must be of the same type).
Place the contents of the n field of the record specified by the contents of r into
register t, erasing what was there previously. (If r contains m, this instruction
does nothing.)

n(r) c t (n and t must be of the same type).
Place the contents of t into the n field of the record specified by the contents
of r, erasing what was there previously. (If r contains ,D , this instruction does
nothing.)

s1 +- s2es3 Combine the data in registers s2 and s, by applying’the operation 0. Store the
result in sr , erasing what was there previously.

create r Create a new record (not specified by any existing pointer) and place a
pointer to it in r. All fields of the new record initially contain a special value
called undejned (A).

halt Cease execution.
if condition then go to i

If the condition is true, then transfer control to instruction i. If the condition is
false, do nothing.

,Each condition in an if instruction is of one of the following types.

true Always true.
t, = t, (tl and t, must be of the same type).

True if the contents of tI and t, are the same.

P(Sl Y %) True if the contents of s, and s2 satisfy the predicatep, wherep is any predicate
on data.

To completely specify a pointer machine, we must describe the data and the types of
operations allowed on the data. Henceforth we use the term symbol in a technical sense
to refer to data on which no operations are permitted except testing for equality. A pure
pointer machine is a pointer machine with no data. Knuth’s linking automaton is a
pointer machine with only symbols as data.

In a pointer machine, access to memory is by explicit reference only; no computation
on pointers is possible. The pointer-machine model is thus apparently less powerful
than the random-access model with uniform cost measure Cl]; pointer machines lack the
ability to use address arithmetic for such purposes as manipulating a hash table [9],
performing a radix sort [9], or accessing a dense matrix [8]. These machines are, however,
powerful enough to simulate such list-processing languages as LISP and to model the
list-processing features of Algal-W, PLjl , and other general purpose languages.

3. THE DISJOINT SET UNION PROBLEM

Let S, , S, ,..., S, be n disjoint sets, each containing a single element. The disjoint set
union problem is to carry out a sequence of operations of the following two types on the
sets.

ALGORITHMS TO MAINTAIN DISJOINT SETS 113

fiti(determine the name of the set containing element X.

union(d, B): add all elements of set B to set A (destroying set B).

The operations are to be carried out on-line; that is, each instruction must be completed
before the next one is known. We assume that the sequence of operations contains exactly
n - 1 union operations (so that after the last union all elements are in one set) and m 3 n
intermixed find operations (if m < n, some elements are never found).

The disjoint set-union problem is an abstraction of the operations necessary to imple-
ment FORTRAN EQUIVALENCE and COMMON statements [5]. Algorithms for this
problem and for a generalization of it have applications in graph theory [18], global code
optimization [18, 193, and linear algebra [19]. A number of algorithms exist [l, 4, 5, 61.

A pointer-machine solution to the set-union problem consists of a pointer machine, a
representation of the input sets as collections of records, a program for carrying out a find,
and a program for carrying out a union. The pointer machine solves the set-union problem
in the following way. Initially the machine memory represents the input sets. Each find
is carried out by executing the find program, which halts having identified the set con-
taining the desired element. Each union is carried out by executing the union program,
which halts having modified the contents of memory to reflect the union. We make the
following assumptions concerning the details of this process.

(3.1) Each set and each element has a distinct associated symbol.

(3.2) NO record in the collection for an input set contains the symbol of any other
set or of any element outside the set.

(3.3) No record in the collection for an input set contains a pointer to any record
outside the collection.

(3.4) Before the find program is executed to locate the set containing an element X,
a pointer to some record containing the symbol for x is placed in the designated input
register y1 and n is placed in all other registers. The find program halts with the symbol for
the set containing x in the designated output register s,, .

(3.5) Before the union program is excuted to add elements in set B to set A, pointers
to records containing the symbols for A and B are placed in the designated input registers
rl and r2 respectively, and (1 is placed in all other registers. The union program halts with
no output.

The sequence of steps associated with a set-union problem and a pointer-machine
solution is the sequence of steps executed by the machine when it carries out the finds and
unions. The length of this sequence measures the total running time of the machine.
The main result of this paper is a nonlinear lower bound (as a function of n and m) on the
length of any sequence of steps which solves a worst-case instance of the set-union
problem.

The formulation described above is intended to be realistic and to facilitate derivation
of a lower bound. Assumption (3.1) above, requiring that sets and elements be represented

114 ROBERT ENDRE TARJAN

by symbols, makes it impossible to encode all elements of a set into a single datum and to
move this datum at a cost of one step per move; without this restriction there is a pointer
machine which can solve any set-union problem in linear time. Assumptions (3.2) (3.3),
and (3.4) imply that the machine, when performing a find on some element X, has access
only to records representing the set containing x. Assumptions (3.2), (3.3), and (3.5) imply
that the machine, when performing a union on sets A and B, has access only to records

representing the sets A and B. It follows by induction on the number of finds and unions
that (3.2) and (3.3) hold for the sets existing at any time during the computation, not just
for the input sets. In other words, the contents of memory after any particular find or
union can be partitioned into collections of records such that each collection corresponds
to a currently existing set, all symbols for the set and its elements occur only in the
corresponding collection of records, and no record in one collection contains a pointer
to a record in another collection. Without assumptions (3.2)-(3.5) any particular instance
of the set-union problem can be solved in linear time by initially moving symbols for all
sets and elements into a single record and solving all finds by accessing only this record,
though the author conjectures that even without assumptions (3.2)-(3.5) no single pointer
machine can solve all instances of the set-union problem in linear time.

If an algorithm for the set-union problem is to be useful in practice, the symbol of
each set and of each element should be stored in exactly one record, so that the initializa-
tion for finds (3.4) an d unions (3.5) is uniquely defined. All the algorithms in the literature
have this property, but the lower-bound proof does not require it.

A number of set-union algorithms have been proposed and analyzed (see [l, 3, 4, 5,
6, 8, 10, 17, 201). It is easy to implement each of these algorithms on a pointer machine.
We consider only the fastest (in the worst-case, asymptotic sense) such algorithm, path
compression with weighted union. The algorithm represents each element by a single record
with four fields: element, set, parent, and pointer. Symbol field element contains the symbol
of the element corresponding to the record. During the computation, a currently existing
set is represented by a rooted tree,r each vertex of which is a record corresponding to an
element in the set. The pointer field parent of each record in such a tree points to the
parent of the record in the tree; the parent field of the root is o . The root contains the
symbol of the set in symbol field set and the size (number of elements) of the set in
integer field size. Figure 3.1 illustrates this data structure.

A union of sets A and B is performed by comparing the sizes of A and B. If A is larger,
the parent of the root of B is set equal to the root of A and the size field of the root of A
is updated. If B is larger, the parent of the root of A is set equal to the root of B, and the

r A rooted tree T is a connected, acyclic, undirected graph with a unique distinguished vertex r,
called the root of T. If v and w are vertices of T such that v is on the (unique) simple path from Y

to W, then v is an ancestor of w and w is a descendant of er. This relationship is denoted by v 2 w.

The relationship v *, w and v + w is denoted by v 2 eo. If v 2 w and (v, w) is an edge of T,
then v is the parent of w and w is a child of v, This relationship is denoted by er -+ W. Two vertices v
and w are unrelated if v is neither an ancestor nor a descendant of w. A leaf is a vertex with no
children. The depth d(v) of a vertex v is the length (number of edges) of the simple path from the
root to v. The subtree of T rooted at vertex v is the subgraph of T induced by the descendants of v,
with v as root.

ALGORITHMS TO MAINTAIN DISJOINT SETS 115

FIG. 3.1. Data structure for set union algorithm. Sets are A = {a, b, c, d, e), B = {f, g, h, i),

size and set fields of the root of B are updated. Table I contains an Algol-like program
for union. It is easy to translate this into a pointer-machine program.

A find on element x is performed by following parent pointers from the record repre-
senting x until reaching a record with a null parent. This record is a tree root and contains
the symbol for the set containing X. In a second pass, the parent of each vertex on the path
from x to the root is set equal to the root. This heuristic, called path compression, saves
time in later finds. Table II contains a program for the find operation.

TABLE I

Program for Weighted Union

procedure union;
if size(r,) < size@,) then

begin
set@,) c1 set(r,);
parent + r2 ;

size(r,) 6 size@,) -i- size@.?)

end

else begin
parent + rl ;

size(rl) 4- size(r,) -L size(r,)

end;

116 ROBERT ENDRB TARJAN

TABLE II

Program for Find with Path Compression

procedure find;

begin
root + current + y1 ;
while parent(root) # B do root + parent(root);

while parent(current) # o do
begin
save +- parent(current);

parent(current) +- root;

current +- save

end end;

This set union algorithm is very difficult to analyze; see [4,6,17]. Its worst-case running
time is O(m~~,(rn, n)) [17], where ol(m, n) is a functional inverse of Ackermann’s function
defined as follows.

For i, j > 0 let the function A(i, j) be defined by

A(& 0) = 0;

JO, j) = 2;

A@, 1) = A(i - 1,2)

for j>l;

for ial;
(3.1)

Let

A&j) = A(i - 1, A(& j - 1)) for i>l, j>2.

and

a(;, n) = min(j 1 A(i, j) > log, n} (3.2)

~u(m, n) = min{i > 1 1 A(i, [2?n/nJ) > log, n}.” (3.3)

The functions A(i, j) and ol(m, n) as defined here differ slightly from those appearing in
[17], but it is routine to show that the difference in a(m, n) is bounded by an additive
constent.

This algorithm requires that records contain integer data fields and that pointer
machines add and compare. It is natural to ask whether weighted union can be imple-
mented on a pure pointer machine in such a way that the total time for all unions is O(n).
The answer is yes.

Each nonnegative integer is represented by a list which encodes the binary digits of the
integer. A zero is encoded by a null pointer; a one is encoded by a nonnull pointer. The
digit list is singly linked from the low-order digit to the high-order digit. Figure 3.2
illustrates this representation.

f For any real number x, Lx] denotes rhe greatest integer not larger than x.

ALGORITHMS TO MAINTAIN DISJOINT SETS 117

FIG. 3.2. Representation of 26 == 10110, as a list.

Two integers are added by scanning the digit lists and adding digit-by-digit, propagating
carries in the usual fashion. The scan stops after the end of the shorter list is reached and
the last carry stops propagating. Two integers are compared by scanning both simul-
taneously and noting the highest-order digit on which they differ. The scan need only
extend to the end of the shorter digit list; the integer with the longer digit list must be
larger. \Ve leave as an exercise the implementation of these algorithms as pointer-machine
programs.

The n - 1 union operations carried out by the algorithm perform the following
arithmetic. Initially there are n integers, each equal to one. During a union, two of the
integers are compared and then added. After n - 1 unions, a single integer equal to n

remains. Since comparing two integers requires no more time than adding them, it
suffices to bound the time required by all the additions.

LEMMA 3.1. Let a, 6, c be integers such that a + b = c and Zet (a,), (bJ, (ci), respectively,
be their binary digit lists (a = xr=, a,2i, b = xy=, b,2i, c = cF=, c12i; ai , bi , ci E (0, 1)).
Let di be the carry from the ith position when a and b are added. Then ztC,(ai +- b;) =
d, + x:i”=,(ci A- di) for all k. In particular, cf,(ai + bi) = CTz,(ci + di).

Proof. For i & 0, ai + bi + dieI = ci + 2di (assuming d-, = 0). Thus ai + bi =
ci L d, A (d< - di-1). S umming from i = 0 to i = k gives the lemma. 1

The time needed to add two binary integers by pointer machine is proportional to the
length of the shorter integer plus the number of carries. By Lemma 3.1 the total number
of ones in the binary representations of both integers is equal to the number of ones in
the binary representation of the sum plus the number of carries. Consider the arithmetic
performed during the union operations. Initially, the total number of ones in the binary
representations of all the set sizes is n. Each carry performed during an addition causes the
total number of ones to decrease by one. Thus the total number of carries cannot exceed
n - 1, and the time required for all carries is O(n).

It remains to bound the sum of the lengths of the shorter of each pair of integers added
during union operations. Let f (n) be a worst-case bound on this total length as a function
of n. Then f(1) = 0, and

f(n) = max{llog, kl + 1 + f @) + f(n - k) I 1 < k G 42) for n>l,

since the length of the binary representation of k is [log, k] + 1.

LEMMA 3.2. f(n) < 2n - log, n - 2.

118 ROBERT ENDRE TARJAN

Proof. By induction on n.

f(1) = 0 < 2 - log, 1 - 2.

Let n > 2 and suppose the lemma is true for all values less than n. Let k be such that
1 5 k I n/2 and

f(n) = llog, k1 + 1 +f(k) +f(n - k).

By the induction hypothesis

f(n) < log, k + I + 2k - log, k - 2 + 2(n - k) - log&t - k) - 2

(2n - (log&z - k) + 1) - 2

I 2n - log, n - 2 since k (n/2. 0

It follows that the total time to perform all arithmetic associated with the union opera-
tions is O(n), and the following theorem holds.

THEOREM 3.1. There exists a pure pointer machine which solves any disjoint set-union
problem in O(mLu(m, n)) time.

4. A NONLINEAR LOWER BOUND

This section shows that for all m and n there is a set-union problem which requires at
least cmol(m, n) steps to solve by pointer machine, where c is a positive constant inde-
pendent of m and n. Rather than consider pointer machines, we consider sequences of
pointer-machine steps. Given a set-union problem, a sequence of pointer-machine steps
is said to solve it if there is some pointer machine, some set of union programs, one for
each union, and some set of find programs, one for each find, such that when the sequence
of programs corresponding to the sequence of union and find operations is executed
according to the conventions of Section 3, the given sequence of pointer-machine steps
results and the find programs produce correct answers. Note that any sequence of
pointer-machine steps can be carried out by a nonbranching pointer-machine program.
We thus assume without loss of generality that no if instructions occur in any of the union
or find programs.

The lower-bound proof consists of two parts. First, we convert any solution to a set-
union problem into a simplified normal form, while increasing the running time by at
most a constant factor. This conversion proceeds in two steps, described in Theorems 4.1
and 4.2. Next, we apply a variant of the lower-bound proof in [17] to show that any normal
form solution contains a nonlinear number of steps.

THEOREM 4.1. Let S, be any sequence of pointer-machine steps which solves a set-union
problem. Then there is a sequence of pointer-machine steps S, which also solves the set-union
problem and has the following properties:

ALGORITHMS TO MAINTAIN DISJOINT SETS 119

(4.1) I s, ~ < qm + YJ + I s, I).

(4.2) S, mani$ulates no data except set and element symbols.

(4.3) S, represents each input set by a single record and contains no create instruction.

(4.4) S, fetches a symbol from memory only as the last instruction of a jkd and not at
all during a union.

Proof. Let S, be a sequence of pointer-machine steps which solves some set-union
problem. Delete from S, all steps which manipulate data other than set and element
symbols. The sequence S, now has property (4.2) and still solves the set-union problem.

The sequence S, to be constructed manipulates records corresponding to the sets,
the elements, and the records manipulated by S, . Initially the memory of Sa consists
of one record for each input set A = {a}. This record is the representative of the set A,
of the element a, and of each record in the initial collection of records by which S,
represents A. Each record created by S, also has a representative in the memory of S, ,
defined as follows. The representative of a record created during execution of find(a)
is the representative of a. The representative of a record created during execution of
union(z4, B) is the representative of A. For any object x (set, element, or record), let x*
denote the representative of x.

S, simulates S, step-by-step. If S, and Sa are executed in parallel, the memory and
registers of S, correspond to the memory and registers of S, in the following way.

(4.5) If R, and R, are records in the memory of S, such that R, contains a pointer
to R, , then R: contains a pointer to A,* (unless R: = Ii:).

(4.6) If R is a record containing a set or element symbol x, then R* contains a
pointer to x* and x* contains a pointer to R* (unless R* = x*).

(4.7) If some register of S, contains a pointer to a record R, then some register of S,
contains a pointer to R*.

(4.8) If some register of S, contains a set or element symbol x, then some register of
S? contains a pointer to x*.

(4.9) During execution of$nd(a), S, maintains a pointer to a* in a register. During
execution of union(A, B), S, maintains a pointer to A* in a register.

Initially the memory of S, consists of all the representatives, each containing the symbol
of the corresponding set, the symbol of the corresponding element, and no pointers.
Properties (4.5)-(4.9) hold initially.

LetJind(a) be a typical find. S, beginsfind with a pointer in rl to a record R containing
the symbol for a. If (4.6) holds before the find, either R* = a* or a* contains a pointer
to R*. S, begins the find with a pointer to a* in rl . S,‘s first step is to fetch a pointer to
R* into a register. This preserves (4.5)-(4.9).

Let union(A, B) be a typical union. S, begins union(A, B) with pointers in rr , r2 to
records R, , R, containing the symbols for A, B, respectively. If (4.6) holds before the
find, either R* = A* or A* contains a pointer to RT; similarly either R,* = B* or B*
contains a pointer to R,*. S, begins the union with pointers to A*, B* in rl , r, , respec-

120 ROBERT ENDRE TARJAN

tively. Ss’s first two steps are to fetch pointers to R,* and R: into registers. This preserves
(4.5~(4.9).

Ss simulates each step of S, in the following way. Each time S, fetches a pointer to a
record R, from a record R, , S, fetches a pointer to R,* from I?: (possible by (4.5)). Each
time Ss stores a pointer to a record R, in a record R, , S, stores a pointer to R,* in R:
(possible by (4.7)). Each t’ rme S, fetches a set or element symbol x from a record R, S,
fetches a pointer to X* from R* (possible by (4.6)). Each time S, stores a set or element
symbol x into a record R, S, stores a pointer to x* in R* and a pointer to R* in x*
(possible by (4.7) and (4.8)). Each time S, creates a record, S’s does nothing. At the end of
each find, S’s fetches the appropriate set symbol. Each of these steps preserves (4.5)-(4.9).
The sequence Ss constructed in this way carries out the finds and has properties (4.1)-
(4.4). I

We can represent the memory manipulated by a pointer machine as an undirected
graph, with one vertex R* for each record R and one edge for each pointer. If a record RI
contains a pointer to a record Rz , then (RF, R,*) is an edge in the graph. This representa-
tion motivates the following definition, which reformulates the set-union problem as a
graph-construction problem.

A link solution to a set-union problem consists of a set of vertices V, one for each initial
set and element, and a sequence of instructions of the form Zink(v, w), where v, ru E V.
The sequence of link instructions constructs a graph edge-by-edge, starting from the
graph with vertex set V and no edges; Zink(x, y) constructs edge (x, y). For any initial set
or element x, let x* denote the corresponding vertex. The sequence of link instructions
must have the following properties.

(4.10) The sequence of links can be partitioned into contiguous subsequences,
each subsequence corresponding to a union or find operation.

(4.11) Let find(a) with answer A be a typical find. Each Zink(x, y) in the sub-
sequence for jind(a) is such that x = A * and the distance between x and y in the graph
existing before the link is two. If A* # a *, then the instruction Zink(A*, a*) occurs
either in the subsequence for)&(a) or earlier in the sequence.

(4.12) Let union(A, B) be a typical union. Each Zink(x, y) in the subsequence for
union(A, B) is such that x = A* and either y = B* or the distance between x and y in
the graph existing before the link is two.

THEOREM 4.2. Any set-union problem solvable in k pointer-machine steps has a link
solution of length not exceeding 4m + 5n + 4k.

Proof. Let S, be a sequence of k pointer-machine steps which solves a set-union
problem. Let Ss be a sequence of pointer-machine steps satisfying Theorem 4.1. Then
1 Sa 1 < 2(nz + n + k). From S, we construct a link solution Ss satisfying the theorem.
The vertex set for Ss consists of one vertex R* for each record R manipulated by S, .
If 5’s and Ss are executed in parallel, the following properties hold.

(4.13) If a record R, contains a pointer to a record R, , then the distance between
RF and R,* is at most two.

ALGORITHMS TO MAINTAIN DISJOINT SETS 121

(4.14) Letfind with answer A be a typical find. If during this find some register
of S, contains a pointer to R, then either A * = R* or (A*, R*) is a previously con-
structed edge.

(4.15) Let zmion(A, B) b e a typical union. If during this union some register of S,
contains a pointer to R, then either A* = R* or (A *, R*) is a previously constructed edge.

S, simulates S, instruction-by-instruction. Certainly (4.13)-(4.15) hold initially. Let
union(A, B) be a typical union. To begin the union, S, links A* and B*. This preserves
(4.13)-(4.15). LetJind(a) with answer A be a typical find. Suppose S, fetches 1 pointers
from memory while carrying out the find. If (4.13) holds before the find, there must be a
path of length 21 or less between A* and a* in the graph existing before the find. To
begin the find S, links each vertex on this path to A*. This preserves (4.13)-(4.15).

Consider a subsequence of S, corresponding either to a @d(a) with answer A or a
union(A, B). Suppose S, fetches a pointer (say to R2) from a record (say R,). If (4.13)-
(4.15) hold before the fetch, then there is a path between A* and R,* of length at most
three. S, links each vertex on this path to A *. This preserves (4.13)-(4.15). Suppose S,
stores a pointer (say R,) in a record (say R,). Then S, must first have pointers to R, and R,
in registers. By (4.14) and (4.15) this means that the distance between R: and R,* in the
graph existing before the store is at most two, and no links need to be carried out to
preserve (4.13)-(4.15). All th o er instructions in S, do not affect (4.13)-(4.15).

The total length of the sequence Ss constructed in this way is at most 4m + 5n +- 4k,
and the sequence clearly solves the set-union problem. 1

In the following discussion we do not distinguish between an initial set, its single
element, and the vertex representing the set and the element. We define the union tree
of a sequence of unions as follows. The vertices of the tree are the initial sets. The edges
are the pairs (A, B) such that union(A, B) occurs in the sequence. The root of the tree is
the set remaining after all unions are carried out. With this definition, every Zink(v, w) in
a link solution to a set-union problem has the property that w & w in the union tree. In
the worst-case set-union problems to be constructed below, the union tree is a complete
binary tree.

The lower-bound proof makes use of a rapidly growing function B(i, j) defined for
i, j > 1 as follows.

B(l,j) = 1 for j&l;

B(i, 1) = B(i - 1,2) + 1 for i > 2;

B(i, j) = B(i, j - 1) + B(i - 1, 2B(*~j-1)) for i,j>2.

LEMMA 4.1. B(i, j) + 1 < A(i, 2j)for i, j >, 1.

Proof. Straightforward by double induction (see [17]). 1

THEOREM 4.3. For any k, s 3 1, let T be a complete binary tree of depth d > B(k, s).
Let {vi 1 1 < i < ~2~(~**)} be a set of pairwise unrelated vertices in T, each of depth strictZy

122 ROBERT ENDRE TARJAN

greater than B(k, s), such that exactly s vertices in (vi} occ~ in each s&tree of T rooted at a
vertex of depth B(k, s). Then for n = 2h+r - 1 and m = s2 B(k~s) there is a set-union problem
for which

(4.16) the union tree is T;

(4.17) the set of finds is {find(v,) 1 1 < i & m>;

(4.18) the answu to eachjnd is a vertex of depth strictly less than B(k, s); and

(4.19) any link solution has length at least km, even if every edge (v, w) such that
a f w and d(v) 3 B(k, s) in T is allowedfor free, and after each link(v, w) every edge (x, y)
such that v % x f y .++ w is added for free.

Proof. The proof is by double induction on k and s and is similar to the lower-bound
proof in [17]. Suppose k = 1. Consider any set-union problem consisting of n - 1 unions
which form T followed by a find on each vertex in {vi}. The answer to each find is the root
of T; (4.18) holds since B(k, s) > 0. None of the originally free edges solves a find. Since
the vertices in {vi} are pairwise unrelated, any Zink(x, y) can solve only one find, even
including the appropriate free edges. Thus (4.19) holds (Fig. 4.1).

Suppose the theorem holds for k - 1, s = 2. The following argument proves the
theorem for k with s = 1. Suppose the hypotheses of the theorem hold. Let
(ui 1 1 < i < m> be the set of vertices of depth B(k, 1) in T, numbered so that up k vi ,
The vertices in {uJ are pairwise unrelated and exactly two occur in each subtree of T
rooted at a vertex of depth B(k, 1) - 1 = B(k - 1,2). By the induction hypothesis
there is a set-union problem satisfying the theorem for k’ = k - 1, s’ = 2, T, {q}. Let the

B(1.s) = 1

fi Y

Tl Tz

FIG. 4.1. Tree for the case k = 1. TI and T, are complete binary trees, Each w denotes a
vertex zli ; all vertices oi are. at a distance of at least two from the root of T.

sequence of finds and unions in this set-union problem be PI . Form Pz from PI by
replacing each$find(uJ byfind(W e c 1 aim the resulting sequence satisfies the theorem for
k, s = 1, T, {vi} (Fig. 4.2).

Certainly (4.16)-(4.18) hold, Consider any sequence S, of of links which carries out
P 27 allowing for free the edges described in (4.19). Form a sequence S, from S, by
replacing each Zink(x, y) such that vt s y for some (uniquely determined) i by Zink(x, ui).
Delete from S, all links which do not create new edges. We claim S, carries out PI
(allowing appropriate edges for free) and that j S, 1 < 1 S, 1 - m.

The following pr.operty is true initially and is preserved if S, and Sa are executed in
parallel (on separate graphs).

ALGORITHMS TO MAINTAIN DISJOINT SETS 123

FIG. 4.2. Branch of tree for the case s = 1. Each e, denotes a vertex 0~; each u denotes a vertex ui .

(4.20) For 1 < i < m, ui is adjacent in the graph manipulated by S, to all vertices
adjacent to at least one descendant of vi in the graph manipulated by S, .

It follows that S, carries out Pi .
For any vi , consider the first Zink(x, y) in S, such that x L ui 5 vi -li+ y. There must

be such a link since none of the initially free edges solvesfind by (4.18). There must be
a path of length two, say (x, z)(x, y), between x and y in the S, graph existing before the
link. Furthermore z must satisfy ui & z 4 vi . It follows that (x, ui) is an edge of the Sr
graph existing before the link. Thus S, need not contain an instruction Zink(x, ui) corre-
sponding to Z&(x, y). This is true for any value of i. Hence j S, 1 < / S, 1 - m.

Since (K - I)m < / S, 1 by the induction hypothesis, / S, / > km, and (4.19) holds.
Suppose the theorem holds for k, s - 1 and also for k - 1, B(k, s - 1). The following

argument proves the theorem for k, s. Suppose the hypotheses of the theorem hold. Let
(wi 1 1 < i < 2B(“*s)} be a subset of (vi} such that exactly one vertex wi occurs in each
subtree of T rooted at a vertex of depth B(k, s). Let {ui I 1 < i < 2B’“,S)} be the set of
vertices of depth B(k, s), numbered so that ui Ft wi (Fig. 4.3).

Consider the subtrees Tj , 1 < j < 2B(k,s)-B(Jc,s-r), rooted at vertices of depth
B(k, s) - B(k, s - 1) = B(k - 1, 2B(z*s-1)) in T. Each subtree Tj contains (s - 1)2B’k*8-1’
vertices in {ni} - {wi}, exactly s - 1 in each subtree rooted at a vertex of depth B(k, s).
By the induction hypothesis there is a set-union problem satisfying the theorem for
k’ = k, s’ = s - 1, Tj , {ZJ j v is a vertex in Tj and v E {vi} - {wi}>. Let Pj be the sequence
of unions and finds in this set-union problem.

The vertices in the set {u$} are pairwise unrelated and exactly 2B’“*s-1) occur in each
subtree Tj of T. By the induction hypothesis there is a set-union problem satisfying the
theorem for k’ = k - I, s’ = 2 B(k,s---l), T, (ui}. Let Q be the sequence of unions and finds
in this set-union problem. Because appropriate edges are allowed for free, the sequence Q
can be permuted, without increasing the number of links required to carry out Q, so that
all unions forming the subtrees Tj occur before all other operations.

57III8/2-2

124 ROBERT ENDRE TARJAN-

Let Q’ be formed from the permuted version of Q by deleting all unions forming the
subtrees Tj , let Q” be formed from Q’ by replacing each Jind(ui) by Jind(wJ, and let
P” = PI , Pz ,..., P~B,k.s,--B(K,s--l, , Q”. We claim P” defines a set-union problem which
satisfies the theorem for k, s, T, {vi}.

t \ \ \
‘\

‘\ \ \

B(k,s-1)

B(k.4

FIG. 4.3. Branch of tree for the general case. Each er denotes a vertex vi, each w denotes a
vertex wi , and each u denotes a vertex ui . Finds on all vertices in {wi} - fwi} occur within trees Tf ,
leaving finds on vertices wi to be performed in larger tree T.

Certainly (4.16)-(4.18) hold. Consider any sequence S” of links which carries out P”,
allowing for free the edges described in (4.19). Form a new sequence S from S” by
replacing each lhk(x, y) such that wui & y for some (uniquely determined) i by 2z%k(x, +).
Delete from S all links which do not create new edges. The following property is true
initially and is preserved if S and S” are executed in parallel (on separate graphs).

(4.21) For 1 < i < 2e(k*s), uI is adjacent in the graph manipulated by S to all
vertices adjacent to at least one descendant of wi in the graph manipulated by S”.

It follows by an argument like that in the previous case that S carries out

P’ = PI , P, ,..., P2a,a)-~(m--l) ,Q’

and that 1 S 1 < 1 s” 1 - 2B(K*8). S can be written as S = S, , S, ,..., S2B,l,s,-B(k,a-1, , U,
where Si carries out Pi for 1 < i < ZB(k.*)--B(k+-l), allowing for free the edges described
in (4.19), and U carries out Q’, allowing for free the edges (0, w) such that v 5 w and
d(v) 3 B(k - 1, 2B(kJ-l)) and after each Zink(v, w) allowing for free the edges (x, y) such
that v b x f y h w. This means that U carries out Q, allowing the appropriate edges for
free. By (4.19),) SC 1 > K(s - 1) 2 B(k.rr-1) for 1 < i < p~.d--8(k,8-1) , and 1 U 1 >
(k - 1) 2B(L*8). It follows that

1 S” 1 2 1 s 1 + 2B(k.S) >, k(s - 1)2B’7c*“’ + (k _ 1)2~Wc.s) + 2BW.8) = J&XU”.s’ = km.

Thus (4.19) holds. By double induction, the theorem is true in general. 1

ALGORITHMS TO MAINTAIN DISJOINT SETS 125

COROLLARY 4.1. Let k, s > 1. Let T be a complete binary tree of depth B(k, s). Then
there is a set-union problem whose union tree is T, which contains m = s2B(k*SJjnds, and which
requires at least (k - 1)m links for its solution.

Proof. Choose 1 > 1 such that 2z 3 s. Let T’ be a complete binary tree formed by
replacing each leaf of T by a complete binary tree of height 1. Let {vi 1 1 < i < m) be any
set of vertices satisfying the hypotheses of Theorem 4.3 for k, s, T’. For 1 -5 i < m, let ui

be the vertex of height 1 in T’ such that ui ri vi . Let P’ be a sequence of unions and finds
defining a set-union problem satisfying the conclusions of Theorem 4.3 for k, s, T’, {vi>.
Without loss of generality we can assume that the unions which form the subtrees of T’
rooted at height 1 occur at the front of P’.

Form P from P’ by deleting the unions which form the subtrees of T’ rooted at height I
and replacing each$ti(vJ by fiti(W e c 1 aim P defines a set-union problem satisfying
the conclusions of the corollary. Certainly P contains m finds and the union tree of P
is T. Suppose S is a sequence of links which carries out P. Form S’ from S by following
each Zink(x, ui) which solves a jnd(uJ by link(x, vi). Then S’ carries out P’ if all edges
(v, w) with d(v) 3 2 are allowed for free. Thus / S’ j > km, and / 5”’ : 2 (k - 1)m. i

Theorem 4.2, Lemma 4.1, and Corollary 4.1 combine to establish the main result of this
paper.

THEOREM 4.4. There is a positive constant c such that, for all m > n 2 1, there is a
set-union problem consisting of m finds and n - 1 intermixed unions whose solution h-v pointer
machine requires at least cma(m, n) steps.

Proof. Let s = [m/n]. Choose k as large as possible such that 2B(k*s)-1 - 1 z< 11.
Partition the n elements into as many sets as possible of size 2B(k*s)+1 - 1, plus leftover
elements. At most n/2 elements are leftover. On each set of 2B(%ss)+l - 1 elements, define
a set-union problem satisfying Corollary 4.1. Concatenate these problems, add enough
additional unions to combine all elements, including the leftovers, into a single set, and
add enough additional finds to bring to total to m.

The resulting set-union problem contains m finds, II - 1 intermixed unions, and
requires at least (k - 1) s2 B(lc~s)n/2B(k,s)+2 = (k - 1) sn/4 > (k - l)m/8 links for its
solution. By Theorem 4.2, this set-union problem requires at least (k - l)m/32 --- nz -
4n/4 > (k - 73)m/32 pointer-machine steps for its solution.

If ti(m, n) > 2, k 3 ol(m, n) - 1 in this construction since

B(cll(m, n) - 1, s) + 1 < A(a(m, n) - 1, 2s) by Lemma 4.1

< log, n by the definition of 01.

Thus the selected set-union problem requires at least (Lu(m, n) - 74)m/32 > a(m, n)m/64
pointer-machine steps, if Ol(m, n) 2 148. B u I o! m, n) < 148, any set-union problem t ‘f (
requires at least m 3 mar(m, n)/148 pointer-machine steps. Choosing c = l/148 gives the
theorem. 1

126 ROBERT ENDRR TARJAN

5. CONCLUSIONS

This paper has described a machine model, called a pointer m&i&, suitable for
analyzing list-processing problems. The model is similar to several previously proposed
[8, 11, 12, 161. P om * t er machines are quite powerful; Schdnhage [16] has shown that they
can simulate Turing machines with multidimensional tapes in real time, and one can show
that they can simulate random-access machines with logarithmic cost in real time.

The paper has analyzed the ability of pointer machines to compute disjoint set unions.
Under certain natural restrictions, all pointer machines require nonlinear time to solve
this problem. This lower bound characterizes the efficiency with which one can represent
dynamic information of a certain kind in a list structure. The bound does not require that
the machine be deterministic, or that the program of the machine be fixed while the
problem size grows, or that the complexity of memory (number of fields per record) be
fixed while the problem size grows.

This generality is achieved by making the assumption that the description of each set is
stored separately and that moving the description of a set requires constant time per
element. Without these assumptions the lower bound is not valid. The author conjec-
tures, however, that the lower bound holds if the separate storage assumption is replaced
by an assumption about the complexity of memory; namely, that every record contains
only a fixed number of fields independent of the problem size.

The lower-bound proof would be simplified if one could show how to convert any
pointer-machine solution for the set-union problem into a form to which the lower bound
of [17] would apply directly. The author was unsuccessful in accomplishing this and
believes it to be very hard. The lower bound in Theorem 4.4 is significantly more general
than that in [17]; it covers arbitrary manipulation of pointers, whereas [17] allows only
pointers between records on a find path.

ACKNOWLEDGMENT

I would like to thank Professor Wolfgang Paul for his thoughtful criticism and valuable insights
which contributed substantially to the lower bound proof.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Llass., 1974.

2. A. BORODIN AND I. MUNRO, “The Computational Complexity of Algebraic and Numeric
Problems,” Elsevier, New York, 1975.

3. J. DOYLE AND R. L. RIVEST, Linear expected time of a simple union-find algorithm, Inform.
Processing Lett. 5 (1976), 146-148.

4. M. J. FISCHER, Efficiency of equivalence algorithms, in “Complexity of Computer Computa-
tions” (R. E. Miller and J. W. Thatcher, Eds.), pp. 153-168, Plenum, New York, 1972.

5. B. A. GALLER AND M. J. FISCHER, An improved equivalence algorithm, Comm. ACM 7 (1964),
301-303.

ALGORITHMS TO MAINTAIN DISJOINT SETS 127

6. J. E. HOPCROFT AND J. D. ULLMAN, Set merging algorithms, SIAM J. Comptct. 2 (1973).
294-303.

7. M. JAZAYERI, W. F. OGDEN, AND W. C. ROUNDS, The intrinsically exponential complexity of
the circularity problem for attribute grammars, Comm. ACM 18 (1975), 697-706.

8. D. E. KNUTH, “The Art of Computer Programming,” Vol. 1, “Fundamental Algorithms,”
Addison-Wesley, Reading, Mass., 1968.

9. D. E. KNUTH, “The Art of Computer Programming,” Vol. 3, “Sorting and Searching,”
Addison-Wesley, Reading, Mass., 1975.

10. D. E. KNUTH AND A. SCH~NHAGE, The expected linearity of a simple equivalence algorithm,
Technical Report STAN-CS-77-599, Computer Science Department, Stanford lYniversity,
1977.

11. ,4. N. KOL~IOGOROV, On the notion of algorithm, Uspehi Mat. Nuuk. 8 (1953), 175-176.
12. A. N. KOLMOGOROV AND V. A. USPENSKII, On the definition of an algorithm, Uspehi Mat. Nnuk.

13 (1958), 3-28; English translation Amer. Math. Sot. Transl. 29 (1963), 217-245.
13. A. R. MEYER AND L. J. STOCKMEYER, The equivalence problem for regular expressions with

squaring requires exponential space, in “Proc. 13th Annual Symp. on Switching and Automata
Theory, 1972,” pp. 125-129.

14. M. J. RABIN AND M. J. FISCHER, Super-exponential complexity of Presburger arithmetic,
SIAM-Amer. Math. Sot. PYOC. 7 (1974), 27-41.

15. R. RIVEST AND J. VUILLEMIN, On recognizing graph properties from adjacency matrices,
Theoret. Comput. Sci. 3 (1976), 371-384.

16. A. SCH~NHAGE, Real-time simulation of multidimensional Turing machines by storage modifica-
tion machines, Project MAC Technical Memorandum 37, MIT, 1973.

17. R. E. TARJAN, Efficiency of a good but not linear disjoint set union algorithm, 1. ~&soc. Comp2lt.

Much. 22 (1975), 215-225.
18. R. E. TARJAN, Applications of path compression on balanced trees, Technical Report STAN-

CS-75-512, Computer Science Dept., Stanford University, 1975.
19. R. E. TARJAN, Solving path problems on directed graphs, Technical Report STAN-CS-75-528,

Computer Science Dept., Stanford University, 1975.
20. A. C. YAO, On the average behavior of set merging algorithms, in “Proc. Eighth Annual ACbL

Symp. on Theory of Computing 1976,” pp. 192-195.

