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VERY SIMPLE METHODS FOR ALL PAIRS NETWORK FLOW ANALYSIS*

DAN GUSFIELDt

Abstract, A very simple algorithm for the classical problem of computing the maximum network flow
value beiween every pair of nodes in an undirected, capacitated n node graph is presented; as in the
well-known Gomory-Hu method, the method given here uses only n — 1 maximum flow computations. OQur
algorithm is implemented by adding only five simple lines of code to any program that produces a minimum
cut; a program to produce an equivalent flow tree, which is a compact representation of the flow values, is
obtained by adding only three simple lines of code to any program producing a minimum cut. A very simple
version .of the Gomory-Hu cut tree method that finds one minimum cut for every pair of nodes is also

. derived, and it is shown that the seemingly fundamental operation of that method, node contraction, is not

needed, nor must crossing cuts be avoided. As a result, this version of the Gomory-Hu method is implemented
by adding less than ten simple lines of code to any program that produces a minimum cut. The algorithms
in this paper demonstrate that a cut tree of graph G can be computed with r—1 calls to an oracle that
alone knows G, and that, when given two nodes s and ¢, returns any arbitrary minimum (s, 1) cut and its value.

Key words. network flow, combinatorial optimization
AMS(MOS) subject classifications. 90B10, 90B35, 90C35, 68Q25, 05C9

1. Intreduction. For an undirected graph G with r nodes, Gomory and Hu [GH]
showed that the flow values between each of the n(n—1)/2 pairs of nodes can be
computed by solving only n — 1 network flow problems on G, saving a factor of n over
the obvious method. Furthermore, they showed that the flow values can be represented
by a weighted tree T on n nodes, where for any pair of nodes (x, ), if e is the minimum
weight edge on the path from x to y in T, then the maximum flow value from x to y
in G is exactly the weight of e. Such a tree is called an equivalent flow tree.' They also
showed a stronger result, that there exists an equivalent flow tree, where for every pair
of nodes (x, y), if e is as above, then the two components of T —e form a minimum
cut between x and y in G. Such a tree is called a GH cut tree, and it compactly
represents one minimum cut for each pair of nodes. Figure 1 shows a three node graph
G, a cut tree T' of G, and an equivalent flow tree T’ of G. Note that T’ is not a cut
tree of G. The method given in [GH] produces a GH cut tree using only n — 1 maximum
flow computations. This method is well known and is discussed in many texts and
surveys on graphs and network flows [H1], [H2], [LP], [FF], [FR, FR], {LP], [HA],
[PG], [VL], as well as in technical papers which build on it [AMS], [AH], [E], [H3],

7
1 2 1 2 1 02
7 4 10 7 10
3 3 3
(a) (b) ()

FiG. 1. Graph G, a cut tree T, and an equivalent flow tree T
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[HR], [HS], [SCT, [S], [ T], [GrH]. For a basic discussion of graphs and network flows,
see [FF1, [L], or [H2]. For a textbook discussion of the GH method, see [H2] or [FF].
Two cuts (X, Y) and (U, V) are said to cross if all four set intersections, X N U, -
XNV, YN U, and YN V, are nonempty. The Gomory-Hu method, and methods based
on it, require that all the cuts computed be pairwise noncrossing. Most of the work
of the method, other than the work involved in the maximum flow computations, is
involved in explicitly maintaining the noncrossing condition, or is a consequence of =
that condition. In particular, the operations of node contraction and identification of
which nodes to contract, are consequences of the need to maintain noncrossing cuis.
In all discussions of the GH method that we know of, both algorithmic and matherhati- -
cal, the existence of noncrossing cuts has been fundamental to both the logic of cut
trees, and to the algorithms to find and use them.
The GH method is fairly involved and nontrivial to program. A different method
for computing all the flow values, and a cut tree, can be obtained by modifying a -
method of Schnorr [SC] for a related problem on directed graphs. This method requires -
O(n log n) maximum flow computations, but it .can be implemented to have an.:
amortized total running time of O(n*). However, the implementation is more complex.
than the GH method, and to obtain the faster time bound, or to build cut trees, the. 2
method also needs to maintain noncrossing {directed} cuts. :
As for equivalent flow trees, in most of the published literature a full GH cut tree .
is used even when only the flow values are required. However, after the results in this. :
paper were first obtained [GU1], we learned of a related method by Granot and Hassin -
[GrH] which can easily be modified to produce an equivalent flow tree, but not a cut -
tree. That method solves only n—1 maximum flow problems, and does not need to :
maintain noncrossing cuts. Hence, that is the first paper we know of that indicated
that crossing cuts can be used in computing equivalent flow trees. o
In this paper we give simple, efficient methods which show that crossing cuts can':
be used in producing GH cut trees as well as equivalent flow trees. We first give an::
extremely simple, efficient algorithm for producing an equivalent flow tree that is not:;
necessarily a cut tree; as in the GH method, only # — 1 maximum flows are computed
by the method. The simplicity of the method comes from the fact that the method does::
not need to avoid crossing cuts, and so does not need to contract nodes. We implement -
the method by adding only three simple lines of code to any maximum flow program:
that produces a minimum cut; the program can be extended to explicitly output the
n(n—1)/2 flow values, by adding only two additional lines of code. We next show
that with a modification of the Gomory-Hu cut tree method, noncrossing cuts need
not be maintained, and so the fundamental operation of node contraction is not needed;
and the intermediate cut trees need not be explicitly represented or searched. Hence,
the major programming and data structures details needed for the original GH method:
can be avoided. As a result, any maximum flow program producing a minimum cu
can be converted to one that efficiently computes a GH cut tree, with the addition of
under ten simple lines of code. More generally, we show that noncrossing cuts, which
are central to all previous expositions on cut trees, are never explicitly needed 1
efficient algorithms for finding either cut trees or equivalent flow trees. :

2. Equivalent flow trees and all pairs maximum flow.

AvcoriTHm EQ. Input to the algorithm is an undirected capacitated graph-G
output is an equivalent flow tree 7. The algorithm assumes the ability to find:.
minimum cut between two specified nodes in G.
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1. Create a {star) tree T" on n nodes, with nodé 1 at the center and nodes 2
through n at the leaves. '

2. For s from 2 to n do steps 3 and 4.

3. Co.mpute a minimum cut (X, Y) in G between (leaf) node s and its (unique)
neighbor ¢ in 7", Label the edge (s, ) in T’ with the capacity of (X Y).

4. For every node i larger than s, if 1 is a neighbor of ¢, and i is on the, s side of
(X, Y), then modify T’ by disconnecting i from ¢, and connecting i to 5. Note
that each node i larger than s remains a leaf in T". '

It is easy to see that at every iteration, node s and all nodes larger than s are
le'aves in T’, so each chosen s has a unique neighbor, as expected by the algorithm
Figure 2 gives an example of the algorithm. Figure 2(a) shows the graph G, and the.
five cuts used by the algorithm; the capacity on each edge in G is one. Fiérure 2(b)
shows tree T’ before any cuts are computed; Figure 2(¢) shows the tree after the first
cut (-1, 2) is computed; Figure 2(d) shows the final equivalent flow tree for G Note
that in this example the (5, 1) and the (3, 1) cuts each cross the (1, 2) cut. Als;) note
that the equivalent flow tree T’ of Fig. 1 would be obtained from r’unning Algorithm

EQ on the graph G of Fig. 1, illustrating the fact that Algorithm EQ does nor always
produce a_ cut tree,

(1,2) cut

--------------- F-- (5,1) and (6,2) cuts

[}
1
[}
G: 1 ¢ : D 2
1
[}

----------- bee---q--- {(3,1) cut
| ~ (4,2) cut
1

5
) (¢}

Fi1c. 2. Graph G, and the creation of eguivalent flow tree T for G.
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To show the extreme simplicity of this method, we present the fi ollowing *‘program”
which implements Algorithm EQ. In the program, p is an n length vector initialized
to 1; at every iteration, every node i larger than or equal to s is a leaf, and pli]indicates
its unique neighbor. The program takes in graph G and outputs a set of weighted

edges which form an equivalent flow tree T of G.

ProcgraM EQ.
for s=2 to n do B

begin
Compute a minimum cut between nodes s and t=pls] in G;
let X be the set of nodes on the s aide of the cut.
t flow value f(s, t).

Qutput the edge (s, +) and the maximum S,
for i= s to n do

if (i1 is in X and pli]=t) then piil=s;
end;
1)/2 flow values, let F' be an n-by-n array, initialized to .

“To produce all the n(n—
he following Hines before the “end;” abave. .

infinity, holding the flow values. Then insert t

Fls, t1=F[t, sl=£f(s, t);
for i=1 to s—1 do
if (i O t) then Fls, i]=F[1, sl=min{f(s, t), Flt, il);

In addition to the simplicity of the algorithm, it 1 noteworthy that the only.

interaction with graph G occurs inside the minimum cut routine. Hence, the algorithm..
can be thought of as n—1 calls to an oracle which alone knows the structure of G.
Furthermore, for any given pair (s, 1), if there is more than one minimum s-t cut, then
the oracle {or adversary) is free to choose one arbitrarily. Thus, an equivalent flow:
tree for an unknown graph can be inferred from n—1 cut queries. We shall see that

: this is true for the cut tree as well. .
We will present below a short, direct proof of the correctness of Algorithm EQ.
the behavior of Algorithm EQ with

A different, indirect, proof based on comparing
the GH method is given in [GU1]. Before presenting the direct proof, we state some

needed results initially shown in [GH].
LevMa 1 [GH].' Let (X, Y) be a minimum cut in G separating nodes x€ X and

ye Y. Let u and v be two nodes on the X side of the cut, and let (U, V) be an arbitrary
minimum (u, v) cut in G. If ye U, then (U, vY=(UU Y, VN X) is a minimum {u, v)
cut, else (when ye V) (U, V)= (UN X, VUY) is a minimum {(u, v) eut. o
Figure 3 shows the two possibilities described by Lemma 1; cuts (X, Y)and (U, V

are drawn with straight solid lines, and cut (U, V') is drawn with a right angle, and
marked by hatch marks. Note that in Lemma 1, it does not matter whether x isin U
of'in V; in Fig. 3 we have drawn x to be in U. s
The importance of Lemma 1 is that it proves there always exists a minimum (u, v)

cut (U', V) in G such that Y falls entirely on the u side or entirely on the v side 0

(U', V). Hence (U, V') does not cross (X, Y). The existence of a noncrossing cul

(U’, V') is all that is needed in the correctness proof of the original GH method, bu

in this paper we use the following immediate, but key, corollary. .

at weaker, bui the statement given here is explicitly stated an

! The original lemma in [GH] s somewh
| version. For the easiest such proof of Lemma 1, see [FF,

proved in the body of the proof of the origina
1791 or [H2, pp. 66-68].
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F1G. 3. The two cases of Lemma 1.

o .
minim;:qo(?z];\;ult.(l[ﬁt ‘(i(, Y), (U, V), and (U, V') be as in Lemma 1. Then the
that (U, 'V » , V') does not cross (X, Y), and it splits X e ;
, V) does. ? xactly the same way
The following two facts are sh i .
simple to prove. shown in [GH] (also in [FF] and [H2]) and are
Lemma 2 [GH]. Let f(x ' .
. , ¥) denote the maximum flow value b
L : {4
oy, v, -, e isaset of nodes in G, then f(v,, ) = min o o o
of LT OLI:,ARY 2 [GH} Ifi, j, and k are three arbitrary nodes ,';Gﬁt'l;,tén th ° ._1]'
JGJ), L k), and £(j, k) is not unigue. > e minimum

2.1. i i
e algorif?};);retzctt;esz f}f Algorithm EQ. Consider each edge (s, 1) created in step 3 of
ey Lorithen | rc» ed irected from s to t; then all edges are directed from lérgerpnoge
s o smalle r;; rea:f;bre)lé;nﬁ ?;.nce T'is a directed tree where every directed path
‘ . : ) -
of the edason b _‘ rected or not), let min (P) be the minimum weight
L [ .
" Sul;l\;::: 13]1 }S’u;;cpc?se- node i reaches node j by a directed path P[i, i1 in the final T
e suppose a EJ A :]). is a dlrelcted edge into j, where k is smaller (,has smaller [ab I)’
h j); 104 ec?fv ! [4 71 excegt g Then node i was a neighbor of j in T' at the time whin
»J) cut ¢ s computed by Algorithm EQ. Furth i i
and c;)nly if k is on the directed path P[i,[] in the Jfinal ;:more, i on the ke side of Cif
- i:zg".t i é&; ;helsti;r; eof Fh.e alggrithm, node i is a neighbor of node 1 oniy. Then
‘ -1, n i is node s in step 2 of the algori  has e
unt / . gorithm, node i h
one Iile;ggb;)r a’:j any tlmf':, and the unique neighbor of i can change frornz v ?f) i:{aa;y
o ot g:for: i1tses in step 2. Hence every node on P[i, 1] is a neighbor ofoina)t[
. ration i—1, and no node not 1] i
me point : , g on P[i 1] is. The f
gmallilser ;l ; Ij neighbor before th_e (J, k) cut C was computed. Furthermori'esnsliilecé E {C’
compored N j‘z{cirg ]iui)sdz 01;) [P[z] j]hexcept J» J must be the neighbor of i :Jvhen C i:
. n P[i j], then { i i if ki
then 3 comant b o5 0a Pl p i surely is on the k side of C, and if k is not,
TueoREM 1. Given input graph ]
Sow s 1 o G5 put graph G, Algorithm EQ correctly computes an equivalent
I3 ) . .
) ;cfrjl; First, note tha_t if' (x, y) is an edge in T, then Algorithm EQ computed
fo; ) m mum cut3 and 1.tsr value-is written on edge (x, y). Hence the tree iIs) et
e y Ealr of neighboring nodes in T". Now we show that if {x,v)is E)(')HeCt
i of nodes not conqected by an edge in T’, and P{x, y]={x=1u ’-y- . an_al' {U‘afy
i)o k_(;lg]nog-ng edge directions} in T' from x to y, then f(x ¥y} =nllin [f(,:k;yi;']s' o
- Given Lemma 2, we need only to show that flx, y)=min [f(v-”vm)'- ;:;
is Mi+a1 /) -
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to k —1]. Suppose not, and let (x, y) be the pair with shortest path P[x, v} among all
palrSC";};:f? ff(’);tl)lj);[;n 1;:](5;{; ’dJ;EE):Cted path from x to y (the case wl_len it is t(i};e:(tie(i
from y to x is identical). Let v# x be the neighbor of y on Il)’[x, y]])(gnz Si‘t;,ce o i)
{(x,y) isin T7}. By the minimality of P{x, y1, f(x, v)= rmq( Ex, vth;t v y],.) /)
is ’assumed to be greater than min (P[x, y]), Corollary 2 imp c1;:5‘- oy Algémhm
f(x, v)=f(v, y). But by Lemma 3, the cut betvtfeen nodes y an ntradictibn_ |
EQ separates x and y, so f(x, vy =min (Plx, D), a];:o T 21 e
Case 2. Path P[x, y] consists of two dlre-cted' subpaths PLy, z Nodé g ’cg{n e
Ply, z] is directed from y to z and P[x, z] is dlrectefi fro’m ;: tonzc;de e 2
thought of as the least cofmmon ;IEcest]or ocf1 chein;d ﬁen:h: n\:igehrlxjor L el _
ighbor of z on Plx,z] an 1 ‘
}Aztsuxn::fhgtlex?i ngl , 50 in the running of Algorithm EQ the (x,, z7) cut, C(x;,z), was |
computed before the (y;, z) cut.
From Case 1 we know that f(JE,Pz[) = .
ither f{x, z) or f(y, ) equals min (P|x, y by n=
:r]lEn (Pf[(x, y])), Corollary 2 says that f(x, z) = f(y, z) _Enn (P[J‘;,eygt)l,ea:élgzociggzt > an
edge of weight min (P[x, y]} on path P[x, z]. Let e=(u, v} e et Loz
on Plx, z] with weight min (P[x, 1), let Cu, v} l?e the (u, v)Lcu o Bt el
by EQ, and let v be closer to z on P[x, z} than u is. Then l.)y erEnm n,d , f,aus ol
on the x, side of the cut C(x,, z) computed by the Algotlthmf C(:'_)(, av) ;:md s on the .
z side of C(x,, z). By Lemma 3 again, x falls on the u side o !,:i 1; nd from e
assumption that f(x, y) > min (PEx, ¥1h ¥ mu's? also fall on the u s1 e.anf e oot .
the general situation. In particular, the positions of nod;:ls y,t 2, :;tions i’
determined down to one of the four quadrants defined byt le 13 t:rsl tions uadra;lts_
and C(u, v); the positions of nodes x, and z are each determined only o q

min (P[x, z]) and f(y, z) =min (P[y, z]), so
. Hence by the assumption that f(x, y)=

0(31,3)
T
y
n
C(u, v)
v
z; side z side

FiG. 4. Case 2 of the proof of Theorem 1.

position of z. In either case, Lemma? 1 can b
y assumption on the position of x; is thatr;lt_té
in X), yielding a minimum (#, v) cut C* that either separat.es: x anddy,ﬁ(:lrezhit rs;::i;:lailm
z and v In particular, if ze U, then the q_uadr.ant contalmngh v ue:adrant Coma{iﬁin‘
(u, v} cut, and this cut also separates v and z; if ze V, then ‘1[3 etqthe sy

u ’deﬁnes a minimum (u, ©) cut that also separates x from y. u(, (Pl 0
cut has capacity min (P[x, y1), so if C* separates x and p, then f{x, y) = |

Now there are two cases for the
applied {recall that in Lemma 1 the on!
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and so f(x, y) =min (P[x, y]) as claimed. If C* separates v and z, then f(p, z)=
min (P[x, y]). But P[y,z] is a directed path in T', so from Case 1, f(v,z)=
min (P[v, z]) and min (P[v, z]) > min (P[x, y]) by the selection of v, so f(v,z)>
min (P[x, y]). This gives a contradiction, and we conclude that flx, yy=min(P[x, y])

s0 f(x, y)=min (P[x, ¥]), and the correctness of Algorithm EQ is proved. i

3. A simple algerithm for the GH cut tree. In this section we show how to modify
the GH method to avoid node contraction and the maintenance of noncrossing cuts,
The result is a very simple algorithm to find a GH cut tree. The key idea is to show
that although the original GH method must find in each step a minimum (u, v) cut
that does not cross any previously used cuts, 4 modification of the method permits
any minimum {1, v) cut to be used. The modified method will be proved correct by
showing how its execution simulates a possible execution of the original GH algorithm,

DerFinNiTION. Forasubset N, of nodes of G, the contraction of N, is the replacement
of the nodes of N; by a single node c;, and for each node ve G — N, the replacement
of the edges from v to N; with a single edge from v to ¢;; the capacity of edge (v, ¢;)
is the sum of the capacities of the removed edges incident with v.

3.1. . The Gomory-Hu method.

Input: An n node capacitated undirected graph G.

Output: A GH cut tree T for G.

L. Set T to be a single “supernode” containing every node of (. Then iterate the
following step until every supernode contains only one node of G.

2. Pick a supernode S containing more than one node of G, and pick two nodes
u and v in S. Find all the connected components of T~ S and let N, be the
set of nodes of G contained in the supernodes of the ith connected component
of T— 8, Successively contract the nodes in each set N, in G, and let G(S) be
the resulting graph; note that the nodes in S are not contracted. Compute the
maximum flow from u to v in G(S). Let f(u, ) be the value of the (u, v) low,
and let C(u, v) be a minumum cut between u and » in G(S). Let S, be the
supernode containing the nodes of G in S which fall on the u side of Clu, v),
and let S, be the supernode containing the remaining nodes of S. Modify T
by replacing supernode § with 8, and S,, connected by an edge of weight

f(u, v). Any edge (S, ) incident with § in T is now moved to be incident with

S, if 8" is in a contracted node of G{S) on the u side of C(u, v), and is moved
to be incident with S, if S’ is in.a contracted node of G(S) on the v side of
C(u, v); note that the weights of all the edges remain unchanged, including
those edges which were moved,

The existence of noncrossing cuts, stated earlier in Lemma 1, provides justification
for the contraction operation in the GH method. That is, in order to find a minimum

(u, v} cut in G, it is permissible fo contract Y, a minimum (u, v) cut in the graph with -

Y contracted defines a minimum (u, v) cut in G, and of course, the two cuts have the
same capacity. Applied iteratively from the leaves of T to S, the lemma can be used

to show that a minimum (u, v} cut (for # and v in S) in the contracted graph G(S},
has the same capacity .as a minimom (u, v) cut in G. Such a cut will of course not
Cross any previously found cuts, and is desired in the GH method because it is then

easy to see how to use that cut to split § and how to reconnect the supernode neighbors
‘of 8 to 8, and ..

3.2. Crossing cuts can be used to split a supernode. Consider the basic step in the

'GH method of dividing a supernode S by computing a minimum cut C(u, v) between
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: ings: it decides how to 3. (G=N)NU;=(G~No)N Yy, 50 Ny U, or N, = V,and N, < U, if and only
i ¢ S). This step does two things: it .
u and v in the contracted graph G(

: i to reconnect the if Nyc U,.
; . des §, and S,, and it decides hQW B 3 B

SPLE 5 Tmto Two few Supem?l :SS and §.. In this section we will show how the GH - 4. 8 ﬂ b_rz— S N U 1=50N U_ (and SN V,=8N V.)' o
neighbors of S to the SUPEINOCes vy ald 2y t the first decision. Continuing in this way, using the fact that N, 1s disjoint from § and from each
method can use crossing cuts in carrying ou alled a cut pair for an edge e of an Nj=i—1, we can inductively apply Lemma 1 to cuts C; and (U,_,, V,_,) (the cut

DEFINITION. A palff O}f nod;s (xEJé‘)} llrsl tche two connected components-of T—e obtained in iteration i—1) to obtain a minimum (u, v) cut (U, V;) with the properties
intermediate cut tree T if t 1¢ n0des O S S that
form @ miﬁim;l rlrl1 (x°, yg) lceL;;rl:llaGl‘et T be an intermediate tree produced.by the GH .:;i? L. (U, V) has the same capacity as (U, V).

For the followin »

2. 8NU;=8SNU (and SNV, =8N V).
3.{G=-N)INU=(G-N)N U_,,soforallj=i N;c U, or N2V, and N U
if and only if N, < U..

We conclude then that SN U, =SN U {and SNV, =8N V), and that for each
iZk, N;c U, or N, V,, and (Ui, Vi) has the same capacity as (U, V). Now since
each N, is strictly on one side or the other of (Uk, Vi), it clearly defines a (v, v) cut
(C.. C,) in G(S)} of the same capacity, and the theorem is proved. 0

CoroLLARY 4. For all j, N;< Uy if and only if N, U.

This corollary, and the last part of line labeled 3 above are not needed in the

proof of Theorem 2, but will be needed Iater.

! X e a cut
algorithm, with e an edge in T between two supernodes § and S . Il;et (32i Jizgtbg (a; o
fir for e:ige e with xe 8§ and ye §'; let u and v be any nodes in %a_ns o ;n'd
ge a minimuom ’(u, v) cut in the contracted graph G(S) defined frorrcll I terr.nediatz and
S. be the new supernodes created from S, and let T be the update‘ interm
i H algorithm. .
glvenL?]\:l;?: 4G[GE;-Ig].2 The pair (u, v) is a cut pair for the edge bfetweendSu qndTS;}I ;:: |
T. Assume xe U (the case when xe V is symmetric-). If (s, 8,) is an e i: lr;ir}or it _
(3; y) is a cut pair for it, and if (S, S,) is an edge in T, then (v, y) is a cut p .,
"t ing si i ama 4, which
" TInitially we will need only the following 51mPler version of IIen:;rtl;:m , W
follows easily by induction on the number of iterations of the GH a gto i (;f on
CoRroLLARY 3 [GH]. Let T be an intermediate iree in the con;{;‘u aI};J o
. ‘ i
[ two supernodes S and S'. Then there i
{ tree, and let e be an edge in T between ' .
(C;‘ m:des (x,y) withxe S and ye §' such that (x, y) is a cut }'Jalrforﬁe. L
Lemm; 4 and its corollary are not as simple as they might at first Zee ﬂ,lat e
and y may not be the nodes used in the flow that crle.ategl ¢, and the nodes .
used might not be in the current supernodes 5 or S in T
We are now ready for the major theorem of th¥s section.  vtermediate
THEOREM 2. Let u and v be two nodes of G in supernode S of a ermediate
GH tree T. If (U, V) is any minimum (u, v) cutin G {(withue Uandve.‘;), Eeg rere
i ini un,’a (u, v) cut (C,, C,) in the contracted graph G(S) (wit usC, h:
emg )ﬂ ml;:lt}:at sN ’U =SNC u:ma’ SN V=S8N C,, and such that the capacities of the
ve C,) suc = Y
ts are the same. - N
e igesnzg o determine how S could be split in a step of the GH mci'?'ltlz?,sw; ;:?;d
not compute a cut in the contracted graph G(S), Eu(t_} rather use the spli
L o . iginal graph G. §
minimum cut splitting S in the origina . (GoN.N) &
> avProof of Theorem 2. By Corollary 3, for each i from 1 to k, dCI in((;r, Si;ce ;g
a minimum cut separating some node in G— N, from some node i :
B i . . e
(G V\fé)now apply Corollary 1 to cuts C; and (U, V)‘. Corollary 1 1m}:}>111te; tthja& t;w;*f 1...
is a minimum (u, v} cut (U;, V|) with the same capacity as (U, V), 212 N )a ) fcl,ll—ows'_
or N,c V,,and suchthat (G— N)N U=(G - N;)N [J,.Since S< ( 1)s lows
* =SNU, (and SNV=8NV,} _ —
that i?chonsider! t(he cut C,=(G—N,, Np). Since N, and N, are ‘d1SJo1.nr:i,maLn ;
S< G- N,. it follows that SU N, € G— N,. Hence, by Corollary 1 there is a mi _
= - 2 |
(u, v) cut (U,, V,) derived from cuts C, and (U, V;) such that )
, 1. (U,, V) has the same capacity as (U,, V,) and hence as {U, V).
2. Nzg U2 or N2§ Vz.

3.3. Reconnection despite crossing cuts. Theorem 2 shows how to determine, using
the original G instead of a contracted graph, a split of § that the GH algorithm could
have found. However, a minimum (u,v) cut Cin G might split a set N, between the
u and v sides of C (i.e., might cross a previous cut); the GH algorithm has no rules

to deal with such cuts. In this section we will see how to use crossing cuts to reconnect
the neighbors of S to §, and §,.

3.3.1. Maedifying the GH cut tree method. We first modify the GH method so that
in every intermediate tree, every supernode S contains exactly one node called the
representative of §, denoted r(S). We start by arbitrarily declaring some node to be
the representative of the first supernode of the GH method (the set of all nodes of
(). We then impose the rule that when any supernode S is to be split, the flow
computed must be between r(S) and some other node v of 8. After S is split into two
supernodes S, and S,, #(S) is the representative of S, and v becomes the
representative of S,. It is then easy to see inductively that each supernode has exactly
one representative. With this modification, successive application of Lemma 4 yields
Lemma 5. '

LEMMA 5. Let The an intermediate cut tree with S and §' any two adjacent supernodes
in T, let N; be the connected component of T — 8 containing S'. Then (G-N.,N)isa
minimum cut in G separating (S} and r(S"). That is, (r(S), r(8") is a cur pair for the
edge in T between S and S,

For the statement of the following theorem, let S and N, for j = k be as in Theorem
2,and forj =k, let ¥ € N;, x;€{G ~ N;) be such that (G—N,, N)) is a minimum (x;, »;)
cut in G (by Corollary 3, such an (%;, y;) exists). Also, for u and & in S, let (U, V) be
any minimum (u, ») cut in G, and let (Us, Vi) be the minimum {u, v} cut obtained
from (U, V) as in the proof of Theorem 2.

THEOREM 3. For a fixed j, if x;=u, then N, U, if and only if y;e U.

Proof. Corollary 4 says that N;< U, if and only if N;< U, So all that must be
proved is that N; < U; if and only if ¥ € U, assuming that u = x;. Now if u = x;, then
el _,(since SNU =8N U, ;}, so Lemma 1 says that e U ifand only if y; e U.,.
But y,e N, < (G—N,_;), and (G=N_)NU_,=(G~- NN U5, 50 y,¢ U,_,ifand
only if y;e U_,. Now Y €(G=N,) for all p<j, so we can induct as above to get

W 4 { d in the baody of a proof of a diﬁele.
As with Lemma 1, the statemen and Prgof of Lemma 4 15 foun ! .
pmposition in ‘GH FT s and [H2]. The simp]est such proo of Lemma 4 appears 1n [I t P 182] C.. [

pp. 71-731.
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(G-N)NU,=(G-N,)NU,y,s0y,el}, if and only ify,-g U,_, for all p <j. Her{ce, |
- assuming that x; =, it follows that y,€ U if and only if y,& U, and otherwise,
yj' = Vk' D . ) ) .n ot
Theorem 3 is the key to reconnecting neighbors of § after S is split by a crossing cut.
COROLLARY 5. For S a supernode in an intermediate tree T produced by the modified

GH method, and for v+ 1(8S), let (U, V) be any minimum (r(S), v) cut in G. The _

following rule correctly decides whether a neighbor of S, §,inT sh(?uld ;e com;e;t;d .S::o
S,s) or to S,: If r(S') is on the r(8) side of (U, V), then con'nect S’ to Sus, gsg : thue.
Proof. By Lemma 5, when the modified GH method is used, r(S)_ satls.- es
conditions required of x;, namely, that r(§}e G‘— N; the cut .(Nj, G- N))is a mln}mltli‘rln
(r(8), r(8;)) cut, where S; is the supernode neighbor of § in N;. Fl{rthe'rmo;e, mh e
modified GH method, u=x; = r(S5) for every j. Hence Theorem 3 11.'nphes t at.t ere
exists a minimum {u, v) cut (Uy, V) in G(S) such that for every j, N, Uy 1f_ r;llnd
only if #(S;) U. Such a cut (Uy, Vi) could have been computed by the GH algorithm,

and so the corollary follows. 0

3.3.2. The method in brief. Theorem 2 and Corollary 5 form t.he basis of our simple
version of the GH method. Initially, node 1 is the representative of the superpode
consisting of all the nodes. When splitting a supernoc.le S, compute an arb:trfzrl)l;
minimum cut in G between r(S) and any other node v in S. The nodt?s of § whic
fall on the v side of the cut form a new supernode S, w-ith r§presentat1ve v, af}d the
other nodes in S remain in S,s, with representative r(8);if §'is a supernode neighbor
of S in T before the split, and #(S’) falls on the v side of the cut, then replace the

{8, 5) edge with edge (S,, §').

3.4. A simple complete cut tree pregram. To demonstrate the simplicity of our
version of the GH method, we give the following program to cc-)rr_1p‘ute. a GH cut tr;?c
of input graph G. Theorem 2 and Corollary 5 allow great flexibility in the order in

order from 2 to . As in program EQ, p is an n length vector initialized to 1. At iteration
s, pls] is the representative of the supernode that s is in. The edge§ of T are the ﬁnffll
pairs (i, p[i}) for i from 2 to n, and edge (j, pli]) has Va!u‘e f(i). If each edge is
considered a directed edge from i to p[i], then T forms a directed tree where every
node leads io node 1.

Cur Tree Program MGH.

for s:=21tondo
begin
Compute a minimum cut between nodes _
s and t=p[s] in G; let X be the set of nodes on the s side

of the cut. Output the maximum s, t flow value f(s, t).
fllsl=f(s, t);

for i:=1 to n do : S

if {i0s and 1 is in X and p[il=t) then plil=s;

if (plt] is in X) then

begin
plsl=plt];
plt)=s;

flls]l=1f1l[t]:
flltl=f{s, t);
end;
end;

which supernodes are split, but for simplicity, the program below chooses s nodes in
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We use the convention that the name of a supernode is given 'by the name of its
representative, and note that after iteration i — 1, nodes 1 through i are representatives
of supernodes, and no node j>i is a representative node in supernode p[f]; so for
every node j> s, p[v] indicates the representative of the supernode that v is in. Every
supernode other than 1 points (with the p vector) to exactly one other supernode, and
hence if x is a supernode other than 1, then its neighbors consist of those supernodes
pointing to x, plus p[x], the supernode to which x points. The neighbors of supernode
1 are just those supernodes with p value 1, i.e., those supernodes that point to 1. During
the ith iteration, node i+ 1 becomes the representative of a supernode labeled i+1,
and-all representatives which point to p[i+1] and which fall on the i+ 1 side of the
(i+1,pli+1]) cut are now made to point to i+ 1. Since the intermediate trees are
being kept in an n-length vector, not an adjacency list, the only subtle part of the
program occurs after a flow from s=i+1 to ¢=p[i+1] if  points to a supernode
neighbor x of 7, and x falls on the s side of the (s, t) cut. In that case we make 7 point
to 5, and s point to x; otherwise, s remains pointing to .

To explicitly accumulate the maximum flow values between all the pairs, we simply

add the same two lines of code shown after algorithm EQ; the lines are added just -

before the final end. This is correct, because the set of (s;t) flow pairs generated in
MGH is clearly a set that could have been generated in EQ. This accumulation of flow
values can also be shown to be correct strictly in the context of the GH method, but
was not obvious and was observed only after the discovery of algorithm EQ. Without
this observation, a simple O(n”) method to explicitly calculate the n{n—1)/2 flow
values is to do depth first search on the final cut tree, so that when backing up from
a node x to y, the flow fi(y, z) from y to a descendent z of x can also bg computed
as the minimum of fI(x, y) and fI(x, z). While this depth first search is not difficult, it
requires a change in how T is represented, and the above two-line approach is certainly
much simpler,

Note that, as in Algorithm EQ, the only interaction with & is in the minimum
cut routine, so the tree could be inferred from »n—1 calls to an oracle which returns
a minimum cut and its valae.

Relation with Algorithm EQ. The modified GH method can be described in
terms of Algorithm EQ. To compute the GH tree, change step 4 of Algorithm EQ
to read:

4. For every node i other than s, if i is a neighbor of t, and i is on the s side of

(X, ¥), then modify T’ by disconnecting 7 from ¢, and connecting i to s, labeling
the new (i, s) edge with the label from the old (i, 1) edge.

Phrases in italics show the differences between this step 4 and the step 4 of
Algorithm EQ.

4. Additional comments and extensions. (1) Itis easy to underestimate the amount

of programming detail needed by the original GH method. In fact, the ideas teading

to this paper partly began after a failed attempt to quickly implement the method. The
implementation was made more difficult because we used existing code for finding the
maximum flow, but we did not understand the code well, and we needed to modify
it to implement graph contraction and expansion. With the modified GH method of
this paper, we totally avoid these difficulties, since we never touch any of the existing
code, and never touch the graph after it is input.

In addition to the obvious work involved in contraction, an implementation of
the original GH method must do a fair amount of work implied by the need to do
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contraction. It must maintain T in a way so that the connected components can be
efficiently found, and so that the nodes of G contained in particular supernodes of T
can be identified, both to split a supernode, and to properly contract the nodes of G
contained in a component of T—S. It must also maintain information about-the

connected components of T— 8, or it must reexpand components after a flow, so that -

it can determine which supernodes fall on the u side and which on the v side of the
cut C{u, v) in G(S8).

(2) The original GH method might run faster in practice than the modified method
(although the worst case asymptotic time is the same}, since the contracted graphs are
smaller than the original graph. However, it is an empirical question whether the
speedup in flow computation compensates for the work needed to implement contrac-
tion and all the associated work implied by contraction; contraction should be seen
as a heuristic that might accelerate the performance of the program. ‘

(3) Some of the ideas in this paper have been extended and used to study the
structure of minimum cuts in three other settings. A GH cut tree represents at least
one minimum cut for each pair of nodes in an undirected edge-weighted graph. In
[GN1] we generalize the GIH cut tree, showing how to efficiently and compactly
represent all minimum cuts between each pair of nodes. Interestingly, our method is
based on equivalent flow trees, rather than on cut trees, further extending the importance
of efficient computation of equivalent flow trees. This work also connects to and builds
on recent work by Matula {M] and by Mansour and Schieber [MS] on computing
connectivity quickly. In related work [GN2] we show how to construct with O(n)

maximum flow computations a cut tree for weighted node cuts, rather than edge cuts. -

We also show how to compactly represent weighted edge cuts in a directed graph.
(4) Very recently, Cheng and Hu [CH] have further reduced the importance of
noncrossing cuts in equivalent flow trees. In Algorithm EQ and in the algorithm from
[GrH], crossing cuts are allowed, but the proofs of correctness still use the fact that
noncrossing cuts exist. Cheng and Hu give a different method which uses only n—1

maximum flow computations, and can be used to produce equivalent flow trees, but -

not cut trees. However, its proof of correctness does not even depend on the existence
of noncrossing cuts. Because of that, their method can be used to represent minimum
cut values where the value of a cut is given by an arbitrary function, i.e., is not the

sum of the edge capacities crossing the cut. It is not difficult then to use this method.
to improve the problem comsidered in Schnorr [SC]. For a pair of nodes (i, j) define:
B(i, j) as the minimum of the flow in a directed graph from { to j, or from j to i. These -
B values are needed in several problems [GN2], [GU]. Schnorr shows, using a very’
clever idea, that all the pairwise 8 values can be computed with O{n log n) maximum
flow computations on the original graph. He then modifies that method to show that,'._

with contraction, those O(nlogn) flows run in total time Q(n™). However, using the

method of [CH] with its relaxed notion of cut values, the 8 values can be computed
using only O{n) maximum flow computations [GN2]. Hence in Schnorr’s problem,’

contraction can also be avoided without sacrificing efficiency.

5, Conclusion. We have shown how to efficiently construct equivalent flow trees:
and GH cut trees without finding or maintaining noncrossing cuts, hence without node ;

contraction and its associated work. The main theoretical consequence is conceptua
clarity: node contraction, which is presented in existing discussions of the GH method
as the fundamental algorithmic idea, is in fact not fundamental to cut tree computation
it should be seen as a heuristic which might accelerate the Tunning of the flow

computations. Similarly, although the existence of noncrossing cuts remains central in
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the Jogic of cut trees, they are not explicitly needed in the efficient éom utati f
trees. An additional theoretical consequence is the fact that a cut tree fan beo'n t? Cuc;
ffom n —_l queries of an oracle which alone knows the actual graph. On the " etr' o
side, the 1mPort of these observations is that they lead to very simple ;:fﬁcient I;fac -
for computing equivalent flow trees and cut trees; most of the prog’rammingisg rcall;;

structure details of the original GH
structure g method become unnecessary when contraction is
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