
1 Introduction and motivation

The combinatorial optimization problem presented here arises from a real ap-
plication. A company sells small appliances and must provide spare parts from
a central distribution center to several regional distribution centers and sale
points. The types of spare parts to be stocked and distributed have different
prices. For the sake of easiness in the administrative procedures, the company
wants to group them into clusters, such that all spare parts in the same cluster
are sold at the same price. The price assigned to each cluster is a decision vari-
able and it must be chosen so that the expected annual income remains equal
to a predefined value, estimated on the basis of the expected demand for each
type of spare part. This clustering operation may involve a huge number of
spare part types and clusters and therefore it must be computer-assisted with a
decision support system. The goal is to keep the price of each cluster close to the
original price of the spare parts in it. The number of clusters is a user-defined
parameter and the decision support system should allow for the analysis of the
trade-off between the number of clusters and the maximum difference between
the original price of any spare part and the price associated with its cluster.

The problem resembles the well-knownK-center problem an a line. However,
a major difference is the constraint on the required profit, i.e. the lower bound
on the weighted sum of the positions of the representative points in each cluster.
Its effect is that locating the cluster representatives at the centers, may not be
enough, i.e. it may provide an insufficient total weighted sum of their positions.
Therefore the optimal representative of a cluster (the centroid in the remainder)
may be located to the right of the cluster center, on the real line.

2 Models and properties

The problem can be formulated as follows.

Data. The following data are given:

• a set N of n points, representing the spare part types;

• a weight wi ∈ ℜ+ for each point i ∈ N , representing the expected demand
of spare parts of type i;

• a value pi ∈ ℜ+ for each point i ∈ N , representing the price of spare parts
of type i;

• a coefficient α ≥ 1, representing the required profit margin.

Variables. A solution is a set of K clusters {C1, . . . , CK}, with Ck ⊂ N ∀k =

1, . . . ,K, such that
⋃K

k=1
Ck = N and Ck′ ∩Ck′′ = ∅ ∀k′ 6= k′′. For each cluster

Ck, its centroid is a point on the line in position qk ∈ ℜ+.
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Therefore a solution can be represented with the following variables. A
binary assignment variable xik represents the assignment of point i ∈ N to
cluster Ck. A continuous variable qk ∈ ℜ+ indicates the position of the centroid
of cluster Ck on the real line, (i.e. the price associated with the cluster).

Constraints. A solution is feasible when the following assignment constraints
are satisfied:

K∑

k=1

xik = 1 ∀i ∈ N.

The constraint on the required profit is translated into a lower bound on the
weighted sum of the positions of the centroids:

K∑

k=1

n∑

i=1

wiqkxik ≥ α

n∑

i=1

wipi. (1)

This non-linear constraint states that the total expected profit when spare parts
are sold at the price qk of their clusters must be at least α times the income
that would be obtained by selling each spare part i ∈ N at its price pi. For
brevity, in the remainder we keep the term profit to refer to the left hand side
of (1) (possibly restricted to a subset of clusters).

Objectives. The problem has two conflicting objectives.

1. Minimize the maximum difference between pi and qk for any point i ∈ N

in cluster Ck. In the remainder we refer to this quantity as the offset, for
brevity.

2. Minimize the number of clusters.

Objective 2 can be replaced by a constraint

xik = 0 ∀k > K

so that the optimal solution of the problem is computed with respect to Objec-
tive 1 for different values ofK in a used-defined range. This allows to enumerate
all Pareto-optimal solutions of the two-objectives problem.

The objective function corresponding to Objective 1 is

minimize z

subject to

z ≥ qk − pi − p(1− xik) ∀i ∈ N, ∀k = 1, . . . ,K

z ≥ pixik − qk ∀i ∈ N, ∀k = 1, . . . ,K

where p = maxi∈N{pi}.
Owing to the presence of non-linear constraints and binary variables and the

possibly large size of the instances, the use of general-purpose MINLP solvers
cannot be considered a viable option to find provably optimal solutions.
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2.1 Additional constraints

We consider two additional constraints that may be imposed to define a feasible
solution.

Constraint 1: Non-overlapping clusters. This constraint requires that
clusters do not overlap, i.e. there is no pair of points i ∈ N and j ∈ N with
pi < pj that are assigned to clusters Ck′ and Ck′′ , respectively, with qk′ > qk′′ .

Constraint 2: Bounded centroids. This constraint requires that the posi-
tion of the centroid of each cluster be within the interval defined by the minimum
and the maximum position of the points in the cluster. In particular, when a
cluster Ck includes only one point i ∈ N , then the constraint imposes qk = pi.

Example. The following toy instance shows the effect of Constraints 1 and 2.
Consider an instance with N = 4 points, in positions p = [100, 140, 150, 205]

and weight w = [4, 2, 1, 1] to be clustered into K = 2 clusters. The total profit
is 1185. Assume a value of α = 1220

1185
such that the target profit is set to 1220.

Consider a solution A with clusters {1, 2} and {3, 4} (complying with Con-
straint 1). The target profit can be achieved by setting q1 = 140 and q2 = 190
with an offset z = 40.

Consider a solution B with clusters {1, 3} and {2, 4} (violating Constraint
1). The target profit can be achieved by setting q1 = 137.5 and q2 = 177.5 with
an offset z = 37.5.

From the comparison, solution B is better than solution A.

Consider now a solution C with clusters {1} and {2, 3, 4} (complying with
Constraint 1). It can be obtained by repairing solution B, i.e. upgrading to
cluster 2 all points of cluster 1 whose position is larger than the minimum
position of points in cluster 2. In our example p3 > p2 which is the minimum
position in cluster 2: hence point 3 is upgraded from cluster 1 to cluster 2. The
resulting solution complies with Constraint 1, by construction. The target profit
can be achieved by setting q1 = 132.5 and q2 = 172.5 with offset z = 32.5.

Note that in solution C, the centroid of cluster 1 is out of the cluster bounds,
which violates Constraint 2.

Repairing solution B to enforce Constraint 2 produces a solution D with q1
forced to be equal to p1 = 100. Therefore the target profit can be achieved only
by setting q2 = 205, with offset z = 65.

Symmetrically, consider a solution E with clusters {1, 2, 3} and {4}, that can
be obtained by repairing B in a different way (by point downgrading). Since
q2 would be fixed to p4 = 205, then the target profit is achieved by setting
q1 = 145, implying offset z = 45.
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