
Dynamic programming
Lecture 3: Examples

Giovanni Righini

Doctoral course, 2023

Motivation

A company sells small appliances and must provide spare parts to
several sale points.

The types of spare parts to be stocked and distributed have different
prices.

To simplify administrative procedures, the company wants to group
them into clusters, such that all spare parts in the same cluster are
sold at the same price.

The price assigned to each cluster must be chosen so that the
expected annual income remains equal to a predefined value,
estimated on the basis of the expected demand for each type of
spare part.

The goal is to keep the price of each cluster as close as possible to
the original price of the spare parts in it.

The number of clusters is a user-defined parameter.

Weight-constrained clustering on a line: data

Data.
• a set N of n points on a the real line;
• a weight wi ∈ ℜ+ for each point i ∈ N;
• a value pi ∈ ℜ+ for each point i ∈ N (its position on the line);
• a coefficient α ≥ 1.

Decision variables

Decisions.
• partition the points into K clusters {C1, . . . ,CK}, with

Ck ⊂ N ∀k = 1, . . . ,K ;
• assign a position qk to the centroid of each cluster

Ck ∀k = 1, . . . ,m.

Variables.
• A binary assignment variable xik represents the assignment of

point i ∈ N to cluster Ck .
• A continuous variable qk ∈ ℜ+ indicates the position of the

centroid of cluster Ck on the real line.

Constraints

• Assignment constraints:

m
∑

k=1

xik = 1 ∀i ∈ N

• Total weight:
K
∑

k=1

n
∑

i=1

wiqk xik ≥ α

n
∑

i=1

wipi . (1)

Additional restrictions.
• clusters cannot overlap;
• each centroid must lie within its cluster.

Objectives

The problem has two conflicting objectives.

1. Minimize the maximum difference between pi and qk for any
point i ∈ N in cluster Ck (offset, for brevity).

2. Minimize the number of clusters.

Objective 2 can be replaced by a constraint xik = 0 ∀k > K , so that
the optimal solution of the problem is computed with respect to
Objective 1 for different values of K in a used-defined range.

This allows enumerating all Pareto-optimal solutions of the
two-objectives problem.

minimize z

s.t. z ≥ qk − p + (p − pi)xik ∀i ∈ N, ∀k = 1, . . . ,K

z ≥ pixik − qk ∀i ∈ N, ∀k = 1, . . . ,K

where p = maxi∈N{pi}.

Classification

• The model is mixed-01 programming, with binary assignment
variables x and continuous variables q;

• The model is non-linear, owing to constraints

K
∑

k=1

n
∑

i=1

wiqk xik ≥ α

n
∑

i=1

wipi .

• Instances are expected to be large-sized (n: tens of thousands;
m: hundredths).

The use of general-purpose MINLP solvers cannot be considered a
viable option to find provably optimal solutions.

Additional constraints

Constraint 1: Non-overlapping clusters. After sorting the points
such that i < j implies pi ≤ pj and sorting the clusters so that h < k
implies qh ≤ qk ,

xik + xjh ≤ 1 ∀i < j ∈ N, h < k ∈ K .

Constraint 2: Bounded centroids.

min
i
{p − (p − pi)xik} ≤ qk ≤ max{pixik}.

In particular, when a cluster k ∈ K includes only one point i ∈ N, then
Constraint 2 imposes qk = pi .

Property 1

Property 1. If Constraint 2 is not imposed, then there exists an
optimal solution complying with Constraint 1.

Proof. Consider a solution X in which i ∈ N is assigned to k ∈ K ,
j ∈ N is assigned to a h ∈ K and pi < pj and qk > qh. Let z(X) be the
maximum offset in X .
Re-assigning j to Ck produces a non-worse and feasible solution.
Since qk > qh, then pj − qk < pj − qh.
Since pi < pj , then qk − pj < qk − pi .
Therefore, |pj − qk | < max{pj − qh, qk − pi} ≤ z(X).
Since qk > qh, the re-assignment of j yields a strictly positive profit
increase. In the new solution the number of clusters is not larger and
all points remain assigned. Therefore, the new solution is feasible
and non-worse than the original one.
By repeated re-assignments, Constraint 1 can always be eventually
enforced (Q.E.D.).

Property 1

When Constraint 2 is imposed, then Property 1 does not hold any
more, in general.

Consider n = 4, p = [100, 140, 150, 205], w = [4, 2, 1, 1], m = 2.
Total profit is 1185. Assume target profit to be 1220.

Solution A: C1 = {1, 2}, C2 = {3, 4} (complying with Constraint 1).
q1 = 140, q2 = 190 with z = 40.

Solution B: C1 = {1, 3}, C2 = {2, 4} (violating Constraint 1).
q1 = 137.5, q2 = 177.5 with z = 37.5.

Solution C: C1 = {1}, C2 = {2, 3, 4} (complying with Constraint 1).
q1 = p1 = 100 (owing to Constraint 2), q2 = 205, with z = 65.

Solution D: C1 = {1, 2, 3}, C2 = {4} (complying with Constraint 1).
q1 = 145, q2 = p4 = 205 (owing to Constraint 2), with z = 45.

Property 2

Property 2. There exists an optimal solution in which

qk ≥
p+

k +p−

k
2 ∀k = 1, . . . ,K , where p+

k = maxi∈Ck
{pi} and

p−

k = mini∈Ck
{pi}.

Proof. Consider a feasible solution with qk <
p+

k +p−

k
2 .

Then, the maximum offset of the points in Ck is given by p+
k − qk .

Therefore qk can be increased up to p+
k +p−

k
2 yielding a positive

increase in the profit and a decrease in the offset of the cluster.

In this way the objective function value does not increase and no
constraint can be violated (Q.E.D.).

Corollary. In optimal solutions, the offset of each cluster Ck is given
by qk − p−

k .

Three problems

Owing to Properties 1 and 2, there are three significant variations of
the problem:

A) Constraint 2 not imposed: Constraint 1 is redundant.

B) Constraint 2 imposed and Constraint 1 imposed.

C) Constraint 2 imposed and Constraint 1 not imposed.

D.P. algorithms for Problem A and Problem B.

Problem C is open.

Problem A

Constraint 2 is not imposed.
Constraint 1 can be imposed wlog (wloo).

A D.P. algorithm: step 1

Step 1: define a sequence of decisions.

Points in N are renumbered by non-decreasing order of their position
pi .

Owing to Constraint 1, the partition of a subsequence is uniquely
defined by the rightmost points of the clusters.

Notation: W j
i =

∑j
ℓ=i wℓ.

A D.P. algorithm: step 2

Step 2: define the state.

A label is associated with each pair (i, k), where
• i ∈ N is a point;
• k is the number of clusters used to partition {1, . . . , i}, with k ≤ i.

The label has the form (z(i, k), v(i, k)):
• z(i, k): minimum offset that can be achieved when {1, . . . , i} is

partitioned into k clusters;
• v(i, k): maximum profit that can be collected from {1, . . . , i}

partitioned into k clusters, when their offsets do not exceed
z(i, k).

A D.P. algorithm: step 3

Step 3: define the extension function.

Initialization.

z(i, 1) =
pi − p1

2
v(i, 1) =

pi + p1

2
W i

1 ∀i ∈ N.

Extension. To guarantee an implicit enumeration of all possible sets
of disjoint clusters, all possible ways to partition {1, . . . , i} are
considered, such that {1, . . . , j} is partitioned in k − 1 clusters and
{j + 1, . . . , i} is assigned to one cluster, for any possible choice of
j < i ∈ N.

Extension rule from (j, k − 1) to (i, k) for offset:

z(i, k)(j) = max

{

z(j, k − 1),
pi − pj+1

2

}

.

A D.P. algorithm: step 3

v(i, k)(j) = v(j, k − 1) + W i
j+1

pi + pj+1

2
+

+max

{(

z(j, k − 1)−
pi − pj+1

2

)

W i
j+1,

(

pi − pj+1

2
− z(j, k − 1)

)

W j
1

}

.

The profit v(j, k − 1) is the contribution of clusters C1 to Ck−1 when
their offset is bounded by z(j, k − 1)(j).

The contribution of Ck is W i
j+1qk , where qk is initially set to pi+pj+1

2 by

Property 2, when the cluster offset is bounded by pi−pj+1

2 .

If z(j, k − 1) > pi−pj+1

2 , then qk can be increased by the difference.
If pi−pj+1

2 > z(j, k − 1), then all values q1 to qk−1 can be increased by
the difference.

Dominance

Consider two labels (zA(i, k), vA(i, k)) = (z(i, k)(j
′), v(i, k)(j

′)) and
(zB(i, k), vB(i, k)) = (z(i, k)(j

′′), v(i, k)(j
′′)), corresponding to the

same state (i, k) reached by different precedecessors.

If zA(i, k) ≤ zB(i, k) and vA(i, k) ≥ vB(i, k) and at least one of the
inequalities is strict, then (zA(i, k), vA(i, k)) dominates
(zB(i, k), vB(i, k)).

This condition can be generalized:
if zA(i, k) ≤ zB(i, k) and zB(i, k)− zA(i, k) ≥ (vB(i, k)− vA(i, k))W i

1
and at least one of the inequalities is strict, then (zA(i, k), vA(i, k))
dominates (zB(i, k), vB(i, k)).

✲ v

✻
z

s
B

s

A✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

s

C

Figura: Comparison between labels: A dominates B, but not C.

If the centroids of CA
1 , . . . ,C

A
k are moved to increase the profit vA to

match vB, then zA remains below zB.

Termination

The optimal solution with K clusters is given by a label of state (n,K).

Given a label (z(n,K), v(n,K)), if v(n,K) ≥ α
∑

i∈N wipi , then z(n,K)
is the final offset value.

Otherwise, z(n,K) must be increased by
α
∑

i∈N wipi − v(n,K)

W n
1

to

satisfy the profit constraint.

After possibly correcting the labels to make them feasible, the one
with minimum offset is optimal.

The optimal labels of states (n,K) for all K provide a complete
description of the Pareto-optimal frontier of the two-objectives
problem, allowing the decision-maker tuning the trade-off between
the number of clusters and the minimum offset.

Computational complexity

Each state (i, k) can have O(ik) non-dominated associated labels.

The worst-case computational complexity is exponential.

It is polynomial for any K fixed.

In practice, it is not likely that many non-dominated labels exist for
each state.

Problem B

Constraint 2 is imposed.
Constraint 1 is imposed.

The model

The mathematical model is the same as for Problem A with the
additional restrictions

p−

k ≤ qk ≤ p+
k ∀k ∈ K

and
xik + xjh ≤ 1 ∀i < j ∈ N, ∀h < k ∈ K .

A D.P. algorithm: step 1

Step 1: define a sequence of decisions.

Same as for Problem A.

Points on the real line are sorted in ascending order of their positions.

Clusters are sorted in ascending order of their centroids.

Since overlaps are not allowed, the ordering is well-defined.

A D.P. algorithm: step 2

Step 2: define the state.

Each policy that partitions {1, . . . , i} in k clusters is characterized by
two values, z(i, k) and v(i, k) with the same meaning as before.

However, they are no longer enough to establish dominance.

Constraint 2 may produce different effects on different policies when
the offset is increased to meet the profit requirement.

When qk = p+
k (Ck is saturated), no further increase in profit can be

obtained from Ck .

A D.P. algorithm: step 2

Consider a generic policy leading to a state (i, k); it corresponds to a
set of clusters, indexed by h = 1, . . . , k .

The correspondence between an increase in the allowed offset and
the corresponding increase in the achievable profit is no longer a
linear function as in Problem A, this is now a piecewise linear
function.

Given a label (z(i, k), v(i, k)), for each cluster h = 1, . . . , k we define
• its total weight Wh =

∑

ℓ∈Ch
wℓ

• its residual allowed offset increase
rh = max{p+

h − (p−

h + z(i, k)), 0}.

Notation:
• ∆: a generic offset increase of the policy;

• Ψ(i, k ,∆) =
∑k

h=1(Wh min{rh,∆}) is the corresponding profit
increase.

✲ z

✻

v

✄
✄
✄
✄
�
�
✏✏✏✏✏✏✏✏✏

✂
✂
✂✂
�
�
�
�

sA

sB

Figura: There is no dominance betweeen the piecewise linear functions of
policies A and B.

A D.P. algorithm: step 3

Initialization.

z(i, 1) =
pi − p1

2
v(i, 1) =

pi + p1

2

i
∑

j=1

wj ∀i ∈ N.

Extension.
Extension of the offset:

z(i, k)(j) = max

{

z(j, k − 1),
pi − pj+1

2

}

,

when a state (i, k) is reached from a state (j, k − 1).

A D.P. algorithm: step 3

Extension of the profit:

v(i, k)j = v(j, k − 1) + W i
j+1

pi + pj+1

2
+max{Ψ+

,Ψ−}.

When pi−pj+1

2 > z(j, k − 1), then the offset of C1 to Ck−1 can be
increased by ∆+ =

pi−pj+1

2 − z(j, k − 1). The corresponding profit

increase is Ψ+ =
∑k−1

h=1 (Wh min{rh,∆
+}).

When z(j, k − 1) > pi−pj+1

2 , then the offset of Ck can be increased by
∆− = min{z(j, k − 1)− pi−pj+1

2 ,
pi−pj+1

2 }. The corresponding profit
increase is Ψ− = ∆−W i

j+1.

Termination

A final solution with K clusters is provided by each policy reaching
state (n,K).

If v(n,K) ≥ α
∑

i∈N wipi , then z(n,K) is the final value.

Otherwise, z(n,K) must be increased so that the profit increases by
Ψ = α

∑

i∈N wipi − v(n,K).

The necessary offset increase ∆ corresponding to a profit increase of
Ψ is determined from the piecewise linear function Ψ(n,K ,∆).

The policy providing the feasible solution with the minimum final value
of z(n,K) is the optimal one.

Dominance

Dominance between labels occurs only when one of the two
piecewise linear functions is completely above the other.

To limit the combinatorial explosion of the number of feasible policies
to be recorded, for each pair (i, k) the algorithm records a unique
non-dominated piecewise linear function, defined as the maximum of
v(i, k) + Ψ(i, k ,∆) for each value of z(i, k) + ∆.

In general this function corresponds to different policies in different
intervals of ∆ and it is neither convex nor concave.

✲ z

✻

v

sA✄
✄
✄
✄
�
�
✏✏✏✏✏✏✏✏✏✏

sB✂
✂
✂
✂
✂
�
�
�
�

Figura: Dominance between piecewise linear functions.

Complexity

Given two piecewise linear functions, made of s1 and s2 segments
respectively, the non-dominated piecewise linear function resulting
from their comparison can be made by up to s1 + s2 segments.

The number of segments associated with a state (i, k) grows
exponentially with k in the worst-case.

The D.P. algorithm for Problem B has exponential worst-case time
complexity.

