
Introduction Polynomial-time problems

Dynamic programming
Lecture 1: polynomial-time problems

Giovanni Righini

Doctoral course, 2023

Introduction Polynomial-time problems

Implicit enumeration

Combinatorial optimization problems are in general NP-hard and we
usually resort to implicit enumeration to solve them to optimality (this
is also useful for approximation purposes).

Two main methods for implicit enumeration are:
• branch-and-bound,
• dynamic programming.

Dynamic programming is also an algorithmic framework to solve
polynomial time problems efficiently.

It also allows to devise pseudo-polynomial time algorithms as well as
approximation algorithms.

Introduction Polynomial-time problems

An introductory example

Consider the problem of finding a shortest path from node 0 to 9 on
this graph, which is directed, acyclic and layered.

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

Introduction Polynomial-time problems

An introductory example

Consider the problem of finding a shortest path from node 0 to 9 on
this graph, which is directed, acyclic and layered.

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

A greedy algorithm from 0 would produce a path of cost 33.

Introduction Polynomial-time problems

An introductory example

Consider the problem of finding a shortest path from node 0 to 9 on
this graph, which is directed, acyclic and layered.

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

A greedy algorithm from 9 would produce a path of cost 34.

Introduction Polynomial-time problems

An introductory example

Consider the problem of finding a shortest path from node 0 to 9 on
this graph, which is directed, acyclic and layered.

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

The optimal path has cost 30.

Introduction Polynomial-time problems

Bellman’s optimality principle (1953)

An optimal policy is made of a set of optimal sub-policies.

By policy we mean a sequence of decisions,
i.e. of value assignments to the variables).

A sub-policy is a sub-sequence of decisions,
i.e. of value assignments to a subset of the
variables.

Richard E. Bellman

(New York, 1920 - 1984)

Introduction Polynomial-time problems

The example revisited

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

A decision must be taken every time the path is extended from one
layer to the next.

A policy is a path from 0 to 9. A sub-policy is any other path.

Introduction Polynomial-time problems

The example revisited

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3

The optimal policy is made of pairs of optimal sub-policies of the
form (0, i) and (i,9).

We only need to store optimal sub-policies . All the other
sub-policies can be disregarded.

Introduction Polynomial-time problems

Dominance

Given two sub-policies S′ and S′′, S′ dominates S′′ only if
• all sub-policies that can be appended to S′′ can also be

appended to S′, with no greater cost;
• the cost of S′ is less than the cost of S′′.

When this occurs, S′′ can be neglected from further consideration: it
cannot be part of an optimal policy.

Introduction Polynomial-time problems

The example revisited

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3 18

In our example, all sub-policies leading to the same node (paths of
the form (0, i)), can be completed by appending to them the same
sub-policies (paths of the form (i, 9)).

Then we need to store only an optimal one among them. All the
others are dominated.

Introduction Polynomial-time problems

The example finally solved

5

8

2 0

7

3

1 4

6

9

6

8

13

7

12

8

10

15

8

9

7

8

20

15

4

3 18

6

8

13

15

20

30

26

30 0

Let L = {0, . . . , L} be the set of layers.
Let Nl the subset of nodes in layer l ∈ L.
Let w be the weight function of the arcs of the graph.
• c(0) = 0
• ∀l ∈ L, l ≥ 1 ∀j ∈ Nl c(j) = mini∈Nl−1{c(i) + wij}

Introduction Polynomial-time problems

Terminology and correspondence

• Nodes in the graph are states .
• Arcs of the graph are state transitions .
• Paths in the graphs are (sub-)policies .
• Values c(i) (costs of shortest paths from 0 to i) are labels .

The solution process applies these two rules:
• Initialization (recursion base) : c(0) = 0
• Label extension (recursive step) :
∀l ∈ L, l ≥ 1 ∀j ∈ Nl c(j) = mini∈Nl−1{c(i) + wij}.

It resembles recursive programming, but it is bottom-up instead of
top-down.

The execution of a dynamic programming algorithm resembles the
evolution of a discrete dynamic system (automaton).

The recursive step requires to solve a very easy optimization problem.

Introduction Polynomial-time problems

Another example

Consider the problem of finding a shortest Hamiltonian path from
node 0 to node 5 on this graph, that is directed but cyclic.

0

3

1 2

4

5

A policy (i.e. a path from 0 to 5) is feasible if and only if it visits all
nodes exactly once.

Introduction Polynomial-time problems

Dominance?

0

3

1 2

4

5

Reaching the same node is no longer sufficient for a path (sub-policy)
to dominate another: they do not reach the same state.

Introduction Polynomial-time problems

Dominance

0

3

1 2

4

5

Only if they have also visited the same subset of nodes, then they
reach the same state.
• Initialization: c(0, {0}) = 0
• Extension: c(j,S) = mini∈S\{j}{c(i,S\{j}) + wij} ∀j 6= 0.

Introduction Polynomial-time problems

Complexity

The two D.P. algorithms have different complexity.

Ex. 1: n. states = n. of distinct values of j = n. of nodes in the graph.
• State: (i) [last reached node];
• Initialization: c(0) = 0;
• Extension: c(j) = mini∈Nl−1{c(i) + w(i, j)} ∀l ≥ 1 ∈ L, ∀j ∈ Nl .

Ex. 2: n. states = n. distinct values of (j,S) = exponential number in
the n. of nodes in the graph.
• State: (S, i) [visited subset, last reached node];
• Initialization: c(0, {0}) = 0;
• Extension: c(j,S) = mini∈S\{j}{c(i,S\{j}) + wij} ∀j 6= 0.

This is equivalent to solve the same problem as in Example 1 but on
a larger state graph (one node for each distinct value of (j,S)).

The complexity of the D.P. algorithm depends on the number of arcs
in the state graph.

Introduction Polynomial-time problems

Comparison with branch-and-bound

-

100

00

110

010

101

001

011

11

10

01

0

1

B&B: sub-policies only diverge.

-

111

00

001

000

011

11

01

0

1

D.P.: sub-policies sometimes
converge.

In both cases graphs are directed, acyclic and layered.
But one is an arborescence, the other can be not.

Introduction Polynomial-time problems

Dynamic Programming in three steps

In order to design a D.P. algorithm we need to:

1. put the decisions (i.e. the variables) in a sequence (policy);

2. define the state, i.e. the amount of information needed to
transform a sub-policy into a complete policy;

3. find the recursive extension function (REF) to compute the labels
of the states, following the sequence.

The state of a dynamic system at time t summarizes the past history
of the system up to time t , such that the evolution of the system after
t depends on the state at time t but not on how it has been reached.

Solving a problem with D.P. amounts at defining a suitable
state-transition graph, on which we search for an optimal path.

This graph is directed, acyclic and layered.

The number of its nodes and arcs determines the complexity of the
D.P. algorithm.

Introduction Polynomial-time problems

Shortest path on an acyclic digraph: pseudo-code

TopologicalSort ;
ComputePredecessors;
for j = 0, . . . , s − 1 do

c(j)←∞;
c(s)← 0;
for j = s + 1, . . . , t do

for i ∈ Pred(j) do
if (c(i) + wij < c(j)) then

c(j)← c(i) + wij ;
π(j)← i;

z∗ ← c(t);
X∗ ← ∅;
j ← t;
while (j > s) do

X∗ ← X∗ ∪ {(π(j), j)};
j ← π(j);

return z∗,X∗

c(i): minimum cost to reach i.
π(i): optimal predecessor of i.
z∗: minimum s − t cost.
X∗: optimal solution.

Complexity.

TopologicalSort: O(m).
ComputePredecessors: O(m).
Neglect unreachable nodes: O(n).
Label extension: O(m).
Rebuild optimal solution: O(n).

Complexity: O(m).

Introduction Polynomial-time problems

Label correcting variation

A variation of the D.P. algorithm is obtained by extending the labels
from each state to its successors.

Succ(i) = {j ∈ N : (i, j) ∈ A}.

Algorithm 1 Label setting.
. . .

for j = s + 1, . . . , t do
for i ∈ Pred(j) do

if (c(i) + wij < c(j)) then
c(j)← c(i) + wij ;
π(j)← i;

. . .

Algorithm 2 Label correcting.
. . .

for i = s, . . . , t − 1 do
for j ∈ Succ(i) do

if (c(i) + wij < c(j)) then
c(j)← c(i) + wij ;
π(j)← i;

. . .

The time complexity is the same, i.e. O(m), because every arc is
examined once.

Introduction Polynomial-time problems

Shortest path on a weighted digraph

Find a shortest path from node 0 to node 5 on a weighted cyclic
digraph with no negative cost cycles.

0

3

1 2

4

5

Introduction Polynomial-time problems

Shortest path on a weighted digraph

0

3

1 2

4

5

The digraph is not acyclic; its nodes cannot be sorted as in the
previous example.

However no optimal path can take more than n − 1 arcs (in this case,
5 arcs).

The labels we compute at each extension are optimal for each
number of arcs of the path.

Introduction Polynomial-time problems

Shortest path on a weighted digraph

We reformulate the problem on a directed, acyclic and layered graph,
with n layers.

0 0

3

1

2

4

5

0

3

1

2

4

5

0

3

1

2

4

5

….

• State: (k , i) [n. extensions,
last reached node];
• Initialization: c(0, 0) = 0;
• Extension: c(k , j) =

= mini∈N {c(k − 1, i) + wij}

∀k ≥ 1 ∈ L, ∀j ∈ N .

Introduction Polynomial-time problems

Bellman-Ford algorithm (1958)

The label correcting algorithm obtained in this way is known as the
Bellman-Ford algorithm.

Original digraph: n nodes and m arcs.
• Time complexity: O(mn), i.e. the number of arcs in the layered

graph.
• Space complexity: O(n2), to represent the graph. For each

node in N we need to store a cost and a predecessor.

No label can be considered permanent until:
• either all layers have been labeled,
• or no label update has occurred from one layer to the next one.

Space complexity can be reduced to O(n), because
• only one optimal predecessor must be stored for each node;
• only labels of layer k − 1 are needed to compute those of layer k .

Introduction Polynomial-time problems

Dijkstra algorithm (1959)

Under the hypothesis that arc weights are non-negative, we can
permanently set the label of minimum cost in each layer. The label
setting algorithm obtained in this way is known as the Dijkstra
algorithm.

b

0

3

1

2

4

5

1

2

4

5

1

2

4

….

Introduction Polynomial-time problems

Dijkstra algorithm (1959)

1. State: (k , i) [layer, node];

2. Initialization: c(0, 0) = 0; last(0) = 0; Permanent(0) = {0};
3. Extension:

• c(k , j) = min{c(k − 1, j), c(k − 1, last(k − 1)) + w(last(k − 1), j)}
∀k ≥ 1 ∈ L,∀j 6∈ Permanent(k − 1);

• last(k) = {minj 6∈Permanent(k−1){c(k , j)}}.
• Permanent(k) = Permanent(k − 1) ∪ {last(k)};

Every node has only two predecessors: the time complexity is O(n2).

Introduction Polynomial-time problems

Shortest trees and arborescences

Bellman-Ford’s and Dijkstra’s algorithms compute the shortest paths
arborescence, that contains all shortest paths from the root node to
all the others (for the optimality principle).

With a slight modification we can obtain Prim’s algorithm to compute
the minimum spanning tree on weighted (unoriented) graphs.

All these are examples of dynamic programming algorithms for
polynomial-time combinatorial optimization problems.

Introduction Polynomial-time problems

Dijkstra and Prim algorithms

Algorithm 3 Dijkstra algorithm.
for i ∈ N do

c(i)←∞
c(s)← 0
k ← s
P ← {s}
while |P| < |N | do

for i 6∈ P do
if c(k)+w(k , i) < c(i) then

c(i)← c(k) + w(k , i)
π(i)← k

k ← argmini 6∈P{c(i)}
P ← P ∪ {k}

Algorithm 4 Prim algorithm.
for i ∈ N do

c(i)←∞
c(s)← 0
k ← s
P ← {s}
while |P| < |N | do

for i 6∈ P do
if w(k , i) < c(i) then

c(i)← w(k , i)
π(i)← k

k ← argmini 6∈P{c(i)}
P ← P ∪ {k}

Introduction Polynomial-time problems

Example: string matching

Given two sequences S1 and S2 of characters ’A’ and ’B’, insert blank
characters in them in order to minimize the cost of the misalignments.

Instance:

• S1 = A A A B A B
• S2 = B A B A B B

Cost A B blank
A 0 2 1
B 2 0 1

blank 1 1 -

For instance:

Solution 1:
• S1 = A A A B A B
• S2 = B A B A B B

Cost = 8

Solution 2:
• S1 = A A A B A B
• S2 = B A B A B B

Cost = 4

Introduction Polynomial-time problems

Example: string matching

The problem is to decide how many blanks to insert in each of the
n + 1 positions of each sequence. A discrete choice must be made
for each position: the number of distinct solutions is exponential in n.

Dynamic Programming:

1. Sequence. Align the sequences from left to right: a sub-policy is
a partial alignment of the left part of S1 with the left part of S2.

2. State. All distinct ways of aligning the first n1 characters of S1

with the first n2 characters of S2 lead to the same state; the
remaining decisions (their feasibility and their cost) do not
depend on how the state has been reached.

Introduction Polynomial-time problems

Example: string matching

3. Extension is possible in three ways:

n1,n2

1

0 or 2

1

n1,n2+1

n1+1,n2+1

n1+1,n2

• Initialization: c(0, 0) = 0.
• Extension:

c(n1, n2) = min{c(n1 − 1, n2) + wS1(n1),“blank ′′ , c(n1, n2 − 1) +
w“blank ′′,S2(n2), c(n1 − 1, n2 − 1) + wS1(n1),S2(n2)}.

where w is the cost function.

The optimal value is c(|S1|, |S2|).

Introduction Polynomial-time problems

Example: string matching

Time complexity.

There are as many states as the n. of distinct pairs (n1, n2), i.e. n2.

Each state has 3 predecessors: each label c(n1, n2) can be
computed in O(1) time.

Then the D.P. algorithm has polynomial complexity O(n2).

Space complexity.

A cost label and a predecessor must be stored for each state: O(n2).

If the optimal solution is not needed, it can be reduced to O(n), since
only layers k − 2 and k − 1 are needed to compute labels of layer k .

Introduction Polynomial-time problems

Example: string matching

The graph is directed, acyclic and layered.
Each layer is reached only from the last two.

Introduction Polynomial-time problems

Spreadsheet implementation

Dynamic programming algorithms whose state-transitions graph is a
matrix can be implemented in a spreadsheet.

The states-transitions graph is explored depth-first, owing to the
extension function.

Branch-and-bound trees are usually visited depth-first or best-first,
because a good primal bound is needed.

Bounding can be used in D.P. if
• a primal bound is known;
• dual bounds (completion bounds) can be (efficiently) computed

for each state.

Introduction Polynomial-time problems

p-medians on a line: the problem

Given a straight line and a set N = {1, . . . , n} of points along it in
given positions xi ∀i ∈ N, find the optimal position along the line for p
additional points, called “medians”, such that the sum of the distances
between each point in N and its closest median is minimized.

W.l.o.g. we assume that the points in N are numbered according to
their order along the line.

Remark 1. The p-median problem is NP-hard on graphs.

Remark 2. The 1-median problem is polynomially solvable (even on
general graphs).
n odd: central point;
n even: anywhere between the two central points.

Let w(i, j) be the minimum cost for locating a single median to serve
the points in the interval [i, j], with i ∈ N, j ∈ N, j ≥ i.

Introduction Polynomial-time problems

p-medians on a line: a D.P. algorithm

1. Sequence the decisions. All solutions induce a partition of N
into non-overlapping intervals, such that all points within a same
interval have the same closest median. If such partition is given,
it is easy to optimally locate the median in each interval (see
Remark 2). Hence, we scan the sequence of the points along the
line and we decide how many medians are used to serve the
points encountered.

2. Define the state. States: {i,m}, where i ∈ N is the last scanned
point; m is the number of medians used up to that point. Cost
associated with each state: c(i,m). It is the minimum cost to
serve the points in [1..i] with m medians.

3. Label extension.
• c(i , 1) = w(1, i) ∀i ∈ N.
• c(i ,m) = minj<i{c(j ,m − 1) + w(j + 1, i)} ∀i ∈ N : i ≥ 2 ∀m : 2 ≤

m ≤ min{i , p}.

The cost of the optimal solution is c(n, p).

Introduction Polynomial-time problems

p-medians on a line: complexity

Time complexity.

N. of states: np, which is not larger than n2, because p ≤ n.

N. of predecessors for each state: O(n).

Time complexity: O(n2p), which is not worse than O(n3).

Space complexity.

We need to store a cost and a predecessor for each state: O(np).
We also need to store a cost matrix w : O(n2).

Introduction Polynomial-time problems

p-medians on a line: an example

Figure 1 represents an instance of the p-median problem on a line.

0
❛

A

2
❛

B

4
❛

C

7
❛

D

10
❛

E

11
❛

F

14
❛

G

18
❛

H

1920

Figura: An instance of the p-median problem on a line. For better readability
the indices 1, . . . , n of the given points have been replaced by letters. In this
instance p = 3.

Introduction Polynomial-time problems

p-medians on a line: computing w

The costs w(i, j) for all pairs of points can be computed in O(n2)
exploiting the property outlined in Remark 1 by the following
algorithm, whose time complexity and space complexity is O(n2).

for i = 1, . . . , n − 1 do
opt ← i;
j ← i;
w(i, j)← 0;
parity ← 1;
while i < n do

j ← j + 1;
parity ← 1− parity ;
w(i, j)← w(i, j − 1) + (x(j)− x(opt));
if (parity = 0) then

opt ← opt + 1;

Introduction Polynomial-time problems

p-medians on a line: the cost matrix w

The resulting cost matrix w is as follows.

w A B C D E F G H
A 0 2 5 11 15 22 30 39
B 0 3 6 10 14 22 30
C 0 3 4 8 15 23
D 0 1 4 11 16
E 0 3 7 12
F 0 4 5
G 0 1
H 0

Introduction Polynomial-time problems

Introduction Polynomial-time problems

Observations

In a recursive algorithm based on
• c(i, 1) = w(1, i) ∀i ∈ N
• c(i,m) = minj<i{c(j,m − 1) + w(j + 1, i)} ∀i ∈ N : i ≥ 2 ∀m :

2 ≤ m ≤ min{i, p}

the main program would have called c(n, p) initially.

The value c(i,m) for a same pair of parameters (i,m) would have
been computed several times.

Introduction Polynomial-time problems

Pseudo-code

for i = 1, . . . , n− p + 1 do
c[i, 1]← w [1, i];

for m = 2, . . . , p do
for i = m, . . . , n − (p −m) do

c[i,m]←∞
for j = m − 1, . . . , i − 1 do

if c[j,m−1]+w [j +1, i] <
c[i,m] then

c[i,m] ← c[j,m − 1] +
w [j + 1, i];

Dynamic programming

if m = 1 then
return w [1, i];

else
mincost ←∞;
for j = m − 1, . . . , i − 1 do

x ← c(j,m − 1);
if x + w [j + 1, i] < mincost
then

mincost ← x + w [j + 1, i];
return mincost ;

Recursive algorithm c(i,m)
(branching).

Introduction Polynomial-time problems

Dynamic system optimal control

We are given a discrete-time dynamic system, i.e. a system
characterized by an input, a state and an output.

In this simple example they consist of a scalar value.

In a discrete set of T points in time t = 1, . . . ,T the state x(t) evolves
according to the equation

x(t) = x(t − 1) + u(t)

where u(t) is the input at time t .

The domains U and X of u and x are given discrete intervals.

A cost ft (x(t − 1), u(t)) is associated with each transition occurring
from a state x(t − 1) with an input value u(t) at time t.

The whole set of input values is to be decided and the initial state
x(0) as well.

The system must reach a given final state x by a sequence of
transitions of minimum cost.

Introduction Polynomial-time problems

Dynamic programming algorithm

1. Sequencing the decisions. The sequence of decisions is the
sequence of input values to be chosen: there is a decision for
each t ∈ 1, . . . ,T .

2. Defining the state. The state in dynamic programming
corresponds with the state of the dynamic system: {x , t}, where
x is the state of the system and t indicates the point in time. The
cost c(x , t) is the minimum cost to reach state x at time t.

3. Label extension.
• c(x , 0) = 0 ∀x ∈ X .
• c(x , t) = maxu∈U{c(x−u, t−1)+ft(x−u,u)} ∀x ∈ X ∀t ∈ 1, . . . , T .

The minimum cost is c(x ,T).

Introduction Polynomial-time problems

Complexity

Time complexity.

The number of possible values of x is |X |.
The number of possible values of t is T .
Hence, the number of states grows as O(|X |T).
N. of predecessors for each state: |U|.

Time complexity: O(|X ||U|T).

If |X | and |U| are given, then the complexity is polynomial.
If they are part of the input, the complexity is pseudo-polynomial.

Space complexity.

The number of states grows as O(|X |T).
The data f grow as O(|U|T).

Space complexity: O(|X |T + |U|T).

Introduction Polynomial-time problems

An example

X = {1, 2, 3}, U = {−1, 0, 1}, T = 3.

f1 f2 f3
-1 0 1 -1 0 1 -1 0 1

1 (2) -7 -3 (1) -5 -9 (0) -6 -4
2 0 5 -4 -2 -14 2 1 -1 0
3 3 -10 (-3) 15 20 (-8) 4 -9 (-2)

Tabella: Transition costs. Rows: x ; columns: u.

Final state: x = 2 at t = 3.

Introduction Polynomial-time problems

Figura: The state-transition graph and the optimal solution. Costs are
represented in blue; optimal predecessors are represented in red. The
optimal solution is indicated by thick arcs and bolded numbers.

Introduction Polynomial-time problems

Optimal budget allocation

We are given a set P = {1, . . . , n} of projects and a budget R.

We have to assign an investment xi to each project i ∈ P.

Depending on the investment xi , each project i is expected to yield a
profit fi(xi).
No assumption is made about the kind of relationship between the
investment and the profit. For simplicity, we assume that the
investments are integer and non-negative.

The domain of xi is indicated by Xi for ech i ∈ P.

Objective: maximize the overall expected profit, without exceeding
the budget.

Introduction Polynomial-time problems

Dynamic programming

1. Sequencing the decisions. Arbitrarily sort the projects. A
decision must be taken for each project i ∈ P.

2. Defining the state. Each decision consumes a certain amount
of a limited resource.
States have the form {i, r}, where i is the last project considered
and r is the residual available budget.
Profit associated with each state: p(i, r).
A state {0,R} corresponds to the beginning of the decision
process.

3. Label extension.
• p(0,R) = 0.
• p(i , r) = maxxi∈Xi{p(i − 1, r + xi) + fi(xi)} ∀i ∈ P ∀r ∈ 0, . . . ,R.

The maximum expected profit is maxR
r=0{p(n, r)}.

Remark. If fi(xi) ≥ xi ∀i ∈ P ∀xi ∈ Xi and R ≤
∑

i∈P maxxi∈Xi{xi},
then the maximum expected profit is p(n, 0), because it is optimal to
invest the whole budget.

Introduction Polynomial-time problems

Complexity

Time complexity.
The n. of possible values of i is n.
The n. of possible values of r is R + 1 (from 0 to R).
Hence, the n. of states is nR.
The n. of predecessors for each state is at most |Xi |, which is not
larger than R + 1.

Time complexity: O(nR2) (pseudo-polynomial).

Space complexity.
For profits and predecessors of states: O(nR).
For data: O(nR), since |Xi | ≤ R + 1 ∀i ∈ N.

Space complexity: O(nR) (pseudo-polynomial).

Introduction Polynomial-time problems

An example

P = {1, . . . , 4} and R = 10.

x1 f1 x2 f2 x3 f3 x4 f4
0 0 0 -2 0 0 0 -5
1 7 1 4 1 5 1 -2
2 13 2 7 2 6 2 3
3 17 3 8 3 7 3 7
4 20 4 8

Tabella: The possible investments and the corresponding expected profits for
each project.

Introduction Polynomial-time problems

Figura: The state-transition graph and the optimal solution. Costs are
represented in blue; optimal predecessors are represented in red. The
optimal solution is indicated by thick arcs and bolded numbers.

Introduction Polynomial-time problems

The max independent set problem on an interval graph

The owner of an AirB&B apartment has collected a set N of n
reservation requests from potential customers; she must decide
which requests to accept in order to maximize her profits.

Each request i ∈ N has a check-in day si , a check-out day ei and a
profit pi .

Obviously, no two accepted requests can overlap in time.

Introduction Polynomial-time problems

The max independent set problem on an interval graph

Remark. In graph terminology this problem is called Max
independent set problem on an interval graph.

Define a graph where
• each vertex corresponds to a request
• two vertices i and j are connected by an edge, if and only if the

two corresponding requests overlap.

Subsets of compatible requests correspond to independent sets, i.e.
a subset of vertices not connected to one another by any edge.

The subset of requests yielding the maximum profit corresponds to a
maximum weight independent set, after assigning each vertex i a
weight equal to the profit pi of the corresponding request.

The max independent set problem is NP-hard on general graphs, but
it is polynomially solvable on interval graphs.

Introduction Polynomial-time problems

Dynamic programming

1. Sequencing the decisions. Sort the requests according to their
check-in date s.
A binary decision must be taken for each of them (whether to
accept it or not).

2. Defining the state. At each stage we only need to know the next
request that must be considered, i ∈ N.
Profit associated with each state {i}: f (i).
A dummy state {n + 1} represents the final state, when all
requests have been decided: sn+1 is set to a value larger than
maxi∈N{ei}.

3. Label extension.
• f (1) := 0.
• f (i) := max{0,maxj∈N:ej≤si{f (j) + pj}} ∀i = 1, . . . , n + 1.

The maximum profit is f (n + 1).

Introduction Polynomial-time problems

Complexity

Time complexity.
The n. of possible values of i is n + 1.
The n. of predecessors for each state is at most n.

Time complexity: O(n2) (polynomial).

Improvement. Assign each state j a unique successor succ(j) such
that

succ(j) = argminiinN:si≥ej
{si}.

From succ we can construct a graph in which each state j has only
two outgoing arcs:
• an arc with value 0 to the next state j + 1 (refuse j),
• an arc of value pj to succ(j) (accept j).

The resulting graph is directed, acyclic and layered and has only O(n)
arcs: labelling its nodes takes O(n).

Constructing the graph takes O(n) after sorting the requests (in
O(n log n)).

Introduction Polynomial-time problems

An example

i si ei pi

1 4 15 11
2 18 42 24
3 40 45 5
4 4 33 29
5 7 29 22
6 3 9 6
7 21 30 9

Tabella: The list of the requests.

Introduction Polynomial-time problems

Figura: The state-transition graph and the state extensions. Costs are
represented in blue; optimal predecessors are represented in red. The
optimal solution is indicated by thick arcs and bolded numbers.

	Introduction
	Introduction

	Polynomial-time problems
	Polynomial-time problems

