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________________________________________________________________________________________________

Transportation and
Assignment Models

The linear programs in Chapters 1 and 2 are all examples of classical ‘‘activity’’ mod-
els. In such models the variables and constraints deal with distinctly different kinds of
activities — tons of steel produced versus hours of mill time used, or packages of food
bought versus percentages of nutrients supplied. To use these models you must supply
coefficients like tons per hour or percentages per package that convert a unit of activity in
the variables to the corresponding amount of activity in the constraints.

This chapter addresses a significantly different but equally common kind of model, in
which something is shipped or assigned, but not converted. The resulting constraints,
which reflect both limitations on availability and requirements for delivery, have an espe-
cially simple form.

We begin by describing the so-called transportation problem, in which a single good
is to be shipped from several origins to several destinations at minimum overall cost.
This problem gives rise to the simplest kind of linear program for minimum-cost flows.
We then generalize to a transportation model, an essential step if we are to manage all the
data, variables and constraints effectively.

As with the diet model, the power of the transportation model lies in its adaptability.
We continue by considering some other interpretations of the ‘‘flow’’ from origins to
destinations, and work through one particular interpretation in which the variables repre-
sent assignments rather than shipments.

The transportation model is only the most elementary kind of minimum-cost flow
model. More general models are often best expressed as networks, in which nodes —
some of which may be origins or destinations — are connected by arcs that carry flows of
some kind. AMPL offers convenient features for describing network flow models, includ-
ing node and arc declarations that specify network structure directly. Network models
and the relevant AMPL features are the topic of Chapter 15.
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3.1 A linear program for the transportation problem

Suppose that we have decided (perhaps by the methods described in Chapter 1) to
produce steel coils at three mill locations, in the following amounts:

GARY Gary, Indiana 1400
CLEV Cleveland, Ohio 2600
PITT Pittsburgh, Pennsylvania 2900

The total of 6,900 tons must be shipped in various amounts to meet orders at seven loca-
tions of automobile factories:

FRA Framingham, Massachusetts 900
DET Detroit, Michigan 1200
LAN Lansing, Michigan 600
WIN Windsor, Ontario 400
STL St. Louis, Missouri 1700
FRE Fremont, California 1100
LAF Lafayette, Indiana 1000

We now have an optimization problem: What is the least expensive plan for shipping the
coils from mills to plants?

To answer the question, we need to compile a table of shipping costs per ton:

GARY CLEV PITT

FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WIN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 20

Let GARY:FRA be the number of tons to be shipped from GARY to FRA, and similarly for
the other city pairs. Then the objective can be written as follows:

Minimize
39 GARY:FRA + 27 CLEV:FRA + 24 PITT:FRA +
14 GARY:DET + 9 CLEV:DET + 14 PITT:DET +
11 GARY:LAN + 12 CLEV:LAN + 17 PITT:LAN +
14 GARY:WIN + 9 CLEV:WIN + 13 PITT:WIN +
16 GARY:STL + 26 CLEV:STL + 28 PITT:STL +
82 GARY:FRE + 95 CLEV:FRE + 99 PITT:FRE +
8 GARY:LAF + 17 CLEV:LAF + 20 PITT:LAF

There are 21 decision variables in all. Even a small transportation problem like this one
has a lot of variables, because there is one for each combination of mill and factory.
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By supplying each factory from the mill that can ship most cheaply to it, we could
achieve the lowest conceivable shipping cost. But we would then be shipping 900 tons
from PITT, 1600 from CLEV, and all the rest from GARY — amounts quite inconsistent
with the production levels previously decided upon. We need to add a constraint that the
sum of the shipments from GARY to the seven factories is equal to the production level of
1400:

GARY:FRA + GARY:DET + GARY:LAN + GARY:WIN +
GARY:STL + GARY:FRE + GARY:LAF = 1400

There are analogous constraints for the other two mills:

CLEV:FRA + CLEV:DET + CLEV:LAN + CLEV:WIN +
CLEV:STL + CLEV:FRE + CLEV:LAF = 2600

PITT:FRA + PITT:DET + PITT:LAN + PITT:WIN +
PITT:STL + PITT:FRE + PITT:LAF = 2900

There also have to be constraints like these at the factories, to ensure that the amounts
shipped equal the amounts ordered. At FRA, the sum of the shipments received from the
three mills must equal the 900 tons ordered:

GARY:FRA + CLEV:FRA + PITT:FRA = 900

And similarly for the other six factories:

GARY:DET + CLEV:DET + PITT:DET = 1200
GARY:LAN + CLEV:LAN + PITT:LAN = 600
GARY:WIN + CLEV:WIN + PITT:WIN = 400
GARY:STL + CLEV:STL + PITT:STL = 1700
GARY:FRE + CLEV:FRE + PITT:FRE = 1100
GARY:LAF + CLEV:LAF + PITT:LAF = 1000

We have ten constraints in all, one for each mill and one for each factory. If we add the
requirement that all variables be nonnegative, we have a complete linear program for the
transportation problem.

We won’t even try showing what it would be like to type all of these constraints into
an AMPL model file. Clearly we want to set up a general model to deal with this prob-
lem.

3.2 An AMPL model for the transportation problem

Two fundamental sets of objects underlie the transportation problem: the sources or
origins (mills, in our example) and the destinations (factories). Thus we begin the AMPL
model with a declaration of these two sets:
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set ORIG;
set DEST;

There is a supply of something at each origin (tons of steel coils produced, in our case),
and a demand for the same thing at each destination (tons of coils ordered). AMPL
defines nonnegative quantities like these with param statements indexed over a set; in
this case we add one extra refinement, a check statement to test the data for validity:

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

The check statement says that the sum of the supplies has to equal the sum of the
demands. The way that our model is to be set up, there can’t possibly be any solutions
unless this condition is satisfied. By putting it in a check statement, we tell AMPL to
test this condition after reading the data, and to issue an error message if it is violated.

For each combination of an origin and a destination, there is a transportation cost and
a variable representing the amount transported. Again, the ideas from previous chapters
are easily adapted to produce the appropriate AMPL statements:

param cost {ORIG,DEST} >= 0;
var Trans {ORIG,DEST} >= 0;

For a particular origin i and destination j, we ship Trans[i,j] units from i to j, at a
cost of cost[i,j] per unit; the total cost for this pair is

cost[i,j] * Trans[i,j]

Adding over all pairs, we have the objective function:

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];

which could also be written as

sum {j in DEST, i in ORIG} cost[i,j] * Trans[i,j];

or as

sum {i in ORIG} sum {j in DEST} cost[i,j] * Trans[i,j];

As long as you express the objective in some mathematically correct way, AMPL will sort
out the terms.

It remains to specify the two collections of constraints, those at the origins and those
at the destinations. If we name these collections Supply and Demand, their declara-
tions will start as follows:

subject to Supply {i in ORIG}: ...
subject to Demand {j in DEST}: ...

To complete the Supply constraint for origin i, we need to say that the sum of all ship-
ments out of i is equal to the supply available. Since the amount shipped out of i to a
particular destination j is Trans[i,j], the amount shipped to all destinations must be
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set ORIG; # origins
set DEST; # destinations

param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

param cost {ORIG,DEST} >= 0; # shipment costs per unit
var Trans {ORIG,DEST} >= 0; # units to be shipped

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

Figure 3-1a: Transportation model (transp.mod).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

sum {j in DEST} Trans[i,j]

Since we have already defined a parameter supply indexed over origins, the amount
available at i is supply[i]. Thus the constraint is

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j] = supply[i];

(Note that the names supply and Supply are unrelated; AMPL distinguishes upper and
lower case.) The other collection of constraints is much the same, except that the roles of
i in ORIG, and j in DEST, are exchanged, and the sum equals demand[j].

We can now present the complete transportation model, Figure 3-1a. As you might
have noticed, we have been consistent in using the index i to run over the set ORIG, and
the index j to run over DEST. This is not an AMPL requirement, but such a convention
makes it easier to read a model. You may name your own indices whatever you like, but
keep in mind that the scope of an index — the part of the model where it has the same
meaning — is to the end of the expression that defines it. Thus in the Demand constraint

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand[j];

the scope of j runs to the semicolon at the end of the declaration, while the scope of i
extends only through the summand Trans[i,j]. Since i’s scope is inside j’s scope,
these two indices must have different names. Also an index may not have the same name
as a set or other model component. Index scopes are discussed more fully, with further
examples, in Section 5.5.

Data values for the transportation model are shown in Figure 3-1b. To define DEST
and demand, we have used an input format that permits a set and one or more parameters
indexed over it to be specified together. The set name is surrounded by colons. (We also
show some comments, which can appear among data statements just as in a model.)
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

param: ORIG: supply := # defines set "ORIG" and param "supply"
GARY 1400
CLEV 2600
PITT 2900 ;

param: DEST: demand := # defines "DEST" and "demand"
FRA 900
DET 1200
LAN 600
WIN 400
STL 1700
FRE 1100
LAF 1000 ;

param cost:
FRA DET LAN WIN STL FRE LAF :=

GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20 ;

Figure 3-1b: Data for transportation model (transp.dat).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If the model is stored in a file transp.mod and the data in transp.dat, we can
solve the linear program and examine the output:

ampl: model transp.mod;
ampl: data transp.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 196200
12 dual simplex iterations (0 in phase I)

ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 300 300
LAN 600 0 0
STL 0 0 1700
WIN 400 0 0
;

By displaying the variable Trans, we see that most destinations are supplied from a sin-
gle mill, but CLEV, GARY and PITT all ship to LAF.

It is instructive to compare this solution to one given by another solver, SNOPT:

ampl: option solver snopt;
ampl: solve;
SNOPT 6.1-1: Optimal solution found.
15 iterations, objective 196200
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ampl: display Trans;
Trans [*,*] (tr)
: CLEV GARY PITT :=
DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 0 600
LAN 600 0 0
STL 0 300 1400
WIN 400 0 0
;

The minimum cost is still 196200, but it is achieved in a different way. Alternative opti-
mal solutions such as these are often exhibited by transportation problems, particularly
when the coefficients in the objective function are round numbers.

Unfortunately, there is no easy way to characterize all the optimal solutions. You
may be able to get a better choice of optimal solution by working with several objectives,
however, as we will illustrate in Section 8.3.

3.3 Other interpretations of the transportation model

As the name suggests, a transportation model is applicable whenever some material is
being shipped from a set of origins to a set of destinations. Given certain amounts avail-
able at the origins, and required at the destinations, the problem is to meet the require-
ments at a minimum shipping cost.

Viewed more broadly, transportation models do not have to be concerned with the
shipping of ‘‘materials’’. They can be applied to the transportation of anything, provided
that the quantities available and required can be measured in some units, and that the
transportation cost per unit can be determined. They might be used to model the ship-
ments of automobiles to dealers, for example, or the movement of military personnel to
new assignments.

In an even broader view, transportation models need not deal with ‘‘shipping’’ at all.
The quantities at the origins may be merely associated with various destinations, while
the objective measures some value of the association that has nothing to do with actually
moving anything. Often the result is referred to as an ‘‘assignment’’ model.

As one particularly well-known example, consider a department that needs to assign
some number of people to an equal number of offices. The origins now represent individ-
ual people, and the destinations represent individual offices. Since each person is
assigned one office, and each office is occupied by one person, all of the parameter values
supply[i] and demand[j] are 1. We interpret Trans[i,j] as the ‘‘amount’’ of
person i that is assigned to office j; that is, if Trans[i,j] is 1 then person i will
occupy office j, while if Trans[i,j] is 0 then person i will not occupy office j.

What of the objective? One possibility is to ask people to rank the offices, giving
their first choice, second choice, and so forth. Then we can let cost[i,j] be the rank
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________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

set ORIG := Coullard Daskin Hazen Hopp Iravani Linetsky
Mehrotra Nelson Smilowitz Tamhane White ;

set DEST := C118 C138 C140 C246 C250 C251 D237 D239 D241 M233 M239;

param supply default 1 ;

param demand default 1 ;

param cost:
C118 C138 C140 C246 C250 C251 D237 D239 D241 M233 M239 :=

Coullard 6 9 8 7 11 10 4 5 3 2 1
Daskin 11 8 7 6 9 10 1 5 4 2 3
Hazen 9 10 11 1 5 6 2 7 8 3 4
Hopp 11 9 8 10 6 5 1 7 4 2 3
Iravani 3 2 8 9 10 11 1 5 4 6 7
Linetsky 11 9 10 5 3 4 6 7 8 1 2
Mehrotra 6 11 10 9 8 7 1 2 5 4 3
Nelson 11 5 4 6 7 8 1 9 10 2 3
Smilowitz 11 9 10 8 6 5 7 3 4 1 2
Tamhane 5 6 9 8 4 3 7 10 11 2 1
White 11 9 8 4 6 5 3 10 7 2 1 ;

Figure 3-2: Data for assignment problem (assign.dat).
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

that person i gives to office j. This convention lets each objective function term
cost[i,j] * Trans[i,j] represent the preference of person i for office j, if person
i is assigned to office j (Trans[i,j] equals 1), or zero if person i is not assigned to
office j (Trans[i,j] equals 0). Since the objective is the sum of all these terms, it
must equal the sum of all the nonzero terms, which is the sum of everyone’s rankings for
the offices to which they were assigned. By minimizing this sum, we can hope to find an
assignment that will please a lot of people.

To use the transportation model for this purpose, we need only supply the appropriate
data. Figure 3-2 is one example, with 11 people to be assigned to 11 offices. The
default option has been used to set all the supply and demand values to 1 without
typing all the 1’s. If we store this data set in assign.dat, we can use it with the trans-
portation model that we already have:

ampl: model transp.mod;
ampl: data assign.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)

By setting the option omit_zero_rows to 1, we can print just the nonzero terms in the
objective. (Options for displaying results are presented in Chapter 12.) This listing tells
us each person’s assigned room and his or her preference for it:
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ampl: option omit_zero_rows 1;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j];
cost[i,j]*Trans[i,j] :=
Coullard C118 6
Daskin D241 4
Hazen C246 1
Hopp D237 1
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1
;

The solution is reasonably successful, although it does assign two fourth choices and one
sixth choice.

It is not hard to see that when all the supply[i] and demand[j] values are 1, any
Trans[i,j] satisfying all the constraints must be between 0 and 1. But how did we
know that every Trans[i,j] would equal either 0 or 1 in the optimal solution, rather
than, say, 1⁄2? We were able to rely on a special property of transportation models, which
guarantees that as long as all supply and demand values are integers, and all lower and
upper bounds on the variables are integers, there will be an optimal solution that is
entirely integral. Moreover, we used a solver that always finds one of these integral solu-
tions. But don’t let this favorable result mislead you into assuming that integrality can be
assured in all other circumstances; even in examples that seem to be much like the trans-
portation model, finding integral solutions can require a special solver, and a lot more
work. Chapter 20 discusses issues of integrality at length.

A problem of assigning 100 people to 100 rooms has ten thousand variables; assign-
ing 1000 people to 1000 rooms yields a million variables. In applications on this scale,
however, most of the assignments can be ruled out in advance, so that the number of
actual decision variables is not too large. After looking at an initial solution, you may
want to rule out some more assignments — in our example, perhaps no assignment to
lower than fifth choice should be allowed — or you may want to force some assignments
to be made a certain way, in order to see how the rest could be done optimally. These sit-
uations require models that can deal with subsets of pairs (of people and offices, or ori-
gins and destinations) in a direct way. AMPL’s features for describing pairs and other
‘‘compound’’ objects are the subject of Chapter 6.
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Exercises

3-1. This transportation model, which deals with finding a least cost shipping schedule, comes
from Dantzig’s Linear Programming and Extensions. A company has plants in Seattle and San
Diego, with capacities 350 and 600 cases per week respectively. It has customers in New York,
Chicago, and Topeka, which order 325, 300, and 275 cases per week. The distances involved are:

New York Chicago Topeka

Seattle 2500 1700 1800
San Diego 2500 1800 1400

The shipping cost is $90 per case per thousand miles. Formulate this model in AMPL and solve it
to determine the minimum cost and the amounts to be shipped.

3-2. A small manufacturing operation produces six kinds of parts, using three machines. For the
coming month, a certain number of each part is needed, and a certain number of parts can be
accommodated on each machine; to complicate matters, it does not cost the same amount to make
the same part on different machines. Specifically, the costs and related values are as follows:

Part
Machine 1 2 3 4 5 6 Capacity

1 3 3 2 5 2 1 80
2 4 1 1 2 2 1 30
3 2 2 5 1 1 2 160

Required 10 40 60 20 20 30

(a) Using the model in Figure 3-1a, create a file of data statements for this problem; treat the
machines as the origins, and the parts as the destinations. How many of each part should be pro-
duced on each machine, so as to minimize total cost?

(b) If the capacity of machine 2 is increased to 50, the manufacturer may be able to reduce the total
cost of production somewhat. What small change to the model is necessary to analyze this situa-
tion? How much is the total cost reduced, and in what respects does the production plan change?

(c) Now suppose that the capacities are given in hours, rather than in numbers of parts, and that it
takes a somewhat different number of hours to make the same part on different machines:

Part
Machine 1 2 3 4 5 6 Capacity

1 1.3 1.3 1.2 1.5 1.2 1.1 50
2 1.4 1.1 1.1 1.2 1.2 1.1 90
3 1.2 1.2 1.5 1.1 1.1 1.2 175

Modify the supply constraint so that it limits total time of production at each ‘‘origin’’ rather than
the total quantity of production. How is the new optimal solution different? On which machines is
all available time used?

(d) Solve the preceding problem again, but with the objective function changed to minimize total
machine-hours rather than total cost.

3-3. This exercise deals with generalizations of the transportation model and data of Figure 3-1.

(a) Add two parameters, supply_pct and demand_pct, to represent the maximum fraction of
a mill’s supply that may be sent to any one factory, and the maximum fraction of a factory’s
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demand that may be satisfied by any one mill. Incorporate these parameters into the model of Fig-
ure 3-1a.

Solve for the case in which no more than 50% of a mill’s supply may be sent to any one factory,
and no more than 85% of a factory’s demand may be satisfied by any one mill. How does this
change the minimum cost and the optimal amounts shipped?

(b) Suppose that the rolling mills do not produce their own slabs, but instead obtain slabs from two
other plants, where the following numbers of tons are to be made available:

MIDTWN 2700
HAMLTN 4200

The cost per ton of shipping a slab from a plant to a mill is as follows:

GARY CLEV PITT
MIDTWN 12 8 17
HAMLTN 10 5 13

All other data values are the same as before, but with supply_pct reinterpreted as the maximum
fraction of a plant’s supply that may be sent to any one mill.

Formulate this situation as an AMPL model. You will need two indexed collections of variables,
one for the shipments from plants to mills, and one for the shipments from mills to factories. Ship-
ments from each mill will have to equal supply, and shipments to each factory will have to equal
demand as before; also, shipments out of each mill will have to equal shipments in.

Solve the resulting linear program. What are the shipment amounts in the minimum-cost solution?

(c) In addition to the differences in shipping costs, there may be different costs of production at the
plants and mills. Explain how production costs could be incorporated into the model.

(d) When slabs are rolled, some fraction of the steel is lost as scrap. Assuming that this fraction
may be different at each mill, revise the model to take scrap loss into account.

(e) In reality, scrap is not really lost, but is sold for recycling. Make a further change to the model
to account for the value of the scrap produced at each mill.

3-4. This exercise considers variations on the assignment problem introduced in Section 3.3.

(a) Try reordering the list of members of DEST in the data (Figure 3-2), and solving again. Find a
reordering that causes your solver to report a different optimal assignment.

(b) An assignment that gives even one person a very low-ranked office may be unacceptable, even
if the total of the rankings is optimized. In particular, our solution gives one individual her sixth
choice; to rule this out, change all preferences of six or larger in the cost data to 99, so that they
will become very unattractive. (You’ll learn more convenient features for doing the same thing in
later chapters, but this crude approach will work for now.) Solve the assignment problem again,
and verify that the result is an equally good assignment in which no one gets worse than fifth
choice.

Now apply the same approach to try to give everyone no worse than fourth choice. What do you
find?

(c) Suppose now that offices C118, C250 and C251 become unavailable, and you have to put two
people each into C138, C140 and C246. Add 20 to each ranking for these three offices, to reflect
the fact that anyone would prefer a private office to a shared one. What other modifications to the
model and data would be necessary to handle this situation? What optimal assignment do you get?
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(d) Some people may have seniority that entitles them to greater consideration in their choice of
office. Explain how you could enhance the model to use seniority level data for each person.




