Converting Nondeterministic Automata and Context－Free Grammars into Parikh Equivalent Deterministic Automata

Giovanna J．Lavado ${ }^{1}$ Giovanni Pighizzini ${ }^{1} \quad$ Shinnosuke Seki ${ }^{2}$

${ }^{1}$ Dipartimento di Informatica Università degli Studi di Milano，Italy
${ }^{2}$ Department of Information and Computer Science
Aalto University，Finland

DLT 2012
台北，台湾
August 14－17， 2012

NFAs vs DFAs

Subset construction: [Rabin\&Scott '59]

The state bound cannot be reduced
[Lupanov '63, Meyer\&Fischer '71, Moore '71]
What happens if we do not care of the order of symbols in the strings?

This problem is related to the concept of Parikh Equivalence

Parikh Equivalence

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$

- Parikh's image of a language $L \subseteq \Sigma^{*}$:

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- $w^{\prime}={ }_{\pi} w^{\prime \prime}$ iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$
- $L^{\prime}={ }_{\pi} L^{\prime \prime}$ iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

$$
\psi(L)=\psi(R)=\{(n, n) \mid n \geq 0\}
$$

- $R=(a b)^{*}$

Different proofs after the original one of Parikh, e.g.

- [Goldstine '77]: a simplified proof
- [Aceto\&Ésik\&Ingólfsdóttir '02]: an equational proof
- [Esparza\&Ganty\&Kiefer\&Luttenberger '11]: complexity aspects

Our Goal

We want to convert nondeterministic automata and context-free grammars into small Parikh equivalent deterministic automata

Problem (NFAs to DFAs)

Problem (CFGs to DFAs)

$$
\begin{array}{ccc}
\begin{array}{c}
\text { CFG } \\
\text { size } n
\end{array} & \Longrightarrow_{\pi}
\end{array} \quad \text { how many states? }
$$

Why?

- Interesting theoretical properties: wrt Parikh equivalence regular and context-free languages are indistinguishable
- Connections of with:
- Semilinear sets
- Presburger Arithmetics
- Petri Nets
- Logical formulas
- Formal verification
[Dang\&Ibarra\&Bultan\&Kemmerer\&Su'00, Göller\&Mayr\&To'09]
- Unary case: size costs of the simulations of CFGs and PDAs by DFAs
[Pighizzini\&Shallit\&Wang '02]

Converting NFAs

Problem (NFAs to DFAs)

- Upper bound: 2^{n} (subset construction)
- Lower bound: $e^{\sqrt{n \ln n}}$

This bound derives from the unary case: the state cost of the conversion of unary n-state NFAs into equivalent DFAs is $e^{\Theta(\sqrt{n \ln n})}$

Converting NFAs: General Idea

How much it costs the conversion of NFAs accepting only nonunary strings into Parikh equivalent DFAs?

Converting NFAs Accepting Only Nonunary Strings

Problem (NFAs to DFAs, restricted)

NFA s.t. each accepted
string is nonunary
n states
DFA
how many states?

Quite surprisingly, we can obtain a DFA with a number of states polynomial in n,
i.e., this conversion is less expensive than the conversion in the unary case, which costs $e^{\Theta(\sqrt{n \ln n})}$

Converting NFAs Accepting Only Nonunary Strings

The conversion uses a modification of the following result:
Theorem ([Kopczyński\&To '10])
Given $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$, there is a polynomial p s.t. for each n-state NFA A over Σ,
where:

$$
\psi(L(A))=\bigcup_{i \in I} Z_{i}
$$

- I is a set of at most $p(n)$ indices
- for $i \in I, Z_{i} \subseteq \mathbb{N}^{m}$ is a linear set of the form:

$$
Z_{i}=\left\{\alpha_{0}+n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k} \mid n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}
$$

with

- $0 \leq k \leq m$
- the components of α_{0} are bounded by $p(n)$
- $\alpha_{1}, \ldots, \alpha_{k}$ are linearly independent vectors from $\{0,1, \ldots, n\}^{m}$

Converting NFAs Accepting Only Nonunary Strings

Outline: linear sets

Each above linear set

$$
Z_{i}=\left\{\alpha_{0}+n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k} \mid n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}
$$

can be converted into a poly size DFA accepting a language

$$
R_{i}=w_{0}\left(w_{1}+\cdots+w_{k}\right)^{*}
$$

s.t. $\psi\left(w_{j}\right)=\alpha_{j}, j=0, \ldots, k$, and w_{1}, \ldots, w_{k} begin with different letters

Example:

- $\left\{(1,1)+n_{1}(2,1)+n_{2}(2,0) \mid n_{1}, n_{2} \geq 0\right\}$
- $a b(b a a+a a)^{*}$

Converting NFAs Accepting Only Nonunary Strings

Outline: from linear to semilinear

- Standard construction for union of DFAs: number of states $=$ product

$$
\# I \leq p(n) \Rightarrow \text { Too large!!! }
$$

- Strings $w_{0, i}$ can be replaced by Parikh equivalent strings $\hat{w}_{0, i}$ in such a way that $W_{0}=\left\{\hat{w}_{0, i} \mid i \in I\right\}$ is a prefix code
- After this change: number of states \leq sum

Theorem

For each n-state NFA accepting a language none of whose words are unary, there exists a Parikh equivalent DFA with a number of states polynomial in n

Converting NFAs: Back to the General Case

For each n-state NFA there exists a Parikh equivalent DFA with $e^{O(\sqrt{n \ln n})}$ states.
Furthermore, this cost is tight

Converting CFGs

Problem (CFGs to NFAs and DFAs)

$$
\begin{aligned}
& \text { CFG } \\
& \text { size } h
\end{aligned}
$$

NFA/DFA
how many states?

- We consider CFGs in Chomsky Normal Form
- As a measure of size we consider the number of variables
[Gruska '73]

Converting CFGs into Parikh Equivalent Automata

Conversion into Nondeterministic Automata

Problem (CFGs to NFAs)

CFG
Chomsky normal form
h variables

$$
N F A
$$

how many states?

Upper bound:

- $2^{2^{O\left(h^{2}\right)}}$ implicit construction from classical proof of Parikh's Th.
- $O\left(4^{h}\right)$
[Esparza\&Ganty\&Kiefer\&Luttenberger'11]
Lower bound: $\Omega\left(2^{h}\right)$

Converting CFGs into Parikh Equivalent Automata

Conversion into Deterministic Automata

Problem (CFGs to DFAs)

CFG
Chomsky normal form
h variables

- Upper bound: $2^{O\left(4^{h}\right)}$
- Lower bound: $2^{c h^{2}}$

DFA

how many states?
tight bound for the unary case $2^{\Theta\left(h^{2}\right)}$
[Pighizzini\&Shallit\&Wang '02]

Converting CFGs into Parikh Equivalent DFAs

CFG with h variables

Parikh equivalent NFA
Parikh equivalent DFAs

For any CFG in Chomsky normal form with h variables, there exists a Parikh equivalent DFA with at most $2^{O\left(h^{2}\right)}$ states.
Futhermore this bound is tight

Final considerations

We obtained the following tight conversions:
NFA
n states

CFG

Chomsky normal form h variables

$$
\begin{gathered}
\text { DFA } \\
e^{O(\sqrt{n \ln n})} \text { states }
\end{gathered}
$$

DFA
$2^{O\left(h^{2}\right)}$ states

- In both cases the most expensive part is the unary one
- It could be interesting to investigate if for other constructions related to regular and context-free languages similar phenomena happen (e.g., automata minimization, state complexity of operations, ...)

Thank you for your attention!

