

Architettura degli Elaboratori e delle Reti Turno 2 – Prof. Federico PEDERSINI I prova in itinere – 30 aprile 2009

Cognome, nome: Matricola:

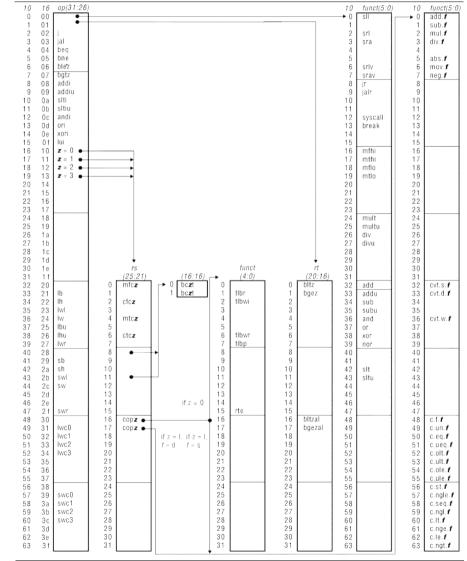
Per superare la prova è necessario totalizzare almeno 18 punti, di cui almeno 9 negli esercizi 6 e 7.

- **1.** [1.5] Si converta il numero **0xFC18**: a) in base 2 e b) in numero decimale supponendo che si stia utilizzando la notazione in complemento a 2 per numeri negativi.
- 2. [1.5] Si rappresenti il numero -13,6875 in formato IEEE-754 singola precisione.
- **3.** [3] Si disegni la struttura interna di un full-adder. Si disegni la struttura di un sommatore a propagazione di riporto a 4 bit e se ne calcoli il cammino critico.
- 4. [4] Si progetti un circuito caratterizzato da un ingresso a 4 bit rappresentante un numero binario intero senza segno A, e un'uscita che vale '1' se e solo se: (A<4 ed è divisibile per 2) oppure (4≤A<8) oppure (A≥8 ed è divisibile per 4).</p>
 - a) Determinare la tabella di verità della funzione logica di uscita;
 - b) scrivere la funzione nella forma canonica più adatta;
 - c) semplificarla mediante mappa di Karnaugh;
- **5.** [9] Si sintetizzi una macchina a stati finiti (di Moore) che comanda un display costituito da 3 lampade, le quali vengono accese in modo da produrre, in sequenza, le configurazioni mostrate in figura (si consideri la corrispondenza: uscita "1" = lampada "ON", uscita "0" = lampada "OFF").

La macchina passa da una configurazione alla successiva ogni qualvolta si presenta un fronte di salita sull'ingresso ${\bf I}$ della macchina. Il valore dell'ingresso viene controllato ogni centesimo di secondo.

Si determinino STG, STT, STT codificata e struttura circuitale del <u>sistema completo</u>, avendo cura di semplificare il più possibile le funzioni prima di tradurle in circuito.

6. [10] Si traducano in linguaggio Assembly le seguenti procedure. Si seguano le convenzioni MIPS per l'utilizzo dei registri argomento e valore delle funzioni.


7. [6] Si traducano le seguenti pseudoistruzioni: **a)** in Assembly MIPS nativo e **b)** in linguaggio macchina MIPS, specificando anche la dimensione in bit dei campi dell'istruzione.

```
li $t0, 65600
divi $t0, $t1, 5
lw $s2, $s1($s0)
bgei $a0, -20, -20  # (branch on greater or equal than immediate)
```

Registri MIPS general purpose:

0	zero	24-25	t8 - t9
1	at	26-27	k0 - k1
2-3	v0 - v1	28	gp
4-7	a0 - a3	29	sp
8-15	t0 - t7	30	s8
16-23	s0 - s7	31	ra

MIPS Instruction Set:

