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Abstract

The efficiency of a solar panel depends on several factors. In particular, the
ability to operate in the Maximum Power Point (MPP) condition is required in
order to optimize the energy production. The ability to identify and reach the
MPP condition is therefore critical to an efficient conversion of the photovoltaic
energy. Several techniques to tackle this problem are reported in literature.
They differs for the input variables used to compute the MPP as well as the
structure of the controller that makes use of the prediction. We focus only on
the prediction of the MPP which is related only to the former aspect. In this
paper, several computational intelligence paradigms (namely, Fuzzy C-Means,
Radial Basis Function Networks, k-Nearest Neighbor, and Feed-forward Neural
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Networks) are challenged in the task of identifying the MPP power from the
working condition directly measurable from the solar panel, such as the voltage,
V , the current, I, and the temperature, T , of the panel.

Keywords: Solar panel modelling, Neural Networks, Radial Basis Function
Networks, Measurement.

1. Introduction

The renewable energy industry has developed significantly in recent years.
In this context, the solar energy is one of the more accessible and cheaper energy
resources. For this reason, the industry working in this scenario has seen a rapid
expansion in the last ten years with the result that now the electricity produced
by this technology is shared with the grid. Moreover, in more recent years,
the problems associated with the production of electricity are becoming more
important. The more rational use of energy resources, and also the production
from renewable sources, is the strategies currently adopted worldwide in order
to achieve both a reducing emissions of pollutants and a lower environmental
impact.

The interest in the production by means of photovoltaic (PV) systems is
reasonable in country, such as Italy or in Mediterranean area, where sunny days
are particularly frequent and with high intensity. Further consideration that
justify the large use of this plants is that this system can be realized in small
size, can be easily connected to the national grid in order to obtain a network
of distributed generation (grid), or used for combined high efficiency, local level
of thermal and electrical energy. While the short term forecast of the produced
power is useful in order to manage the different energy sources, for this type
of plant the ability to obtain accurate prediction [1] and even to program the
maintenance of the plant without the needs of expensive equipment [2][3] is of
paramount importance.

In this scenario the prediction of the Maximum Power Point (MPP) is of par-
ticular importance [4][5][6][7]. The MPP is the maximum point of the Voltage-
Power graph and represents the most efficient working condition for the actual
context of the panel. The knowledge, or even better, the ability to predict its
value using indirect measurements is of paramount importance to improve the
production performance of the panel. Several techniques to tackle this problem
are reported in literature. They differs for the input variables used to compute
the MPP as well as the structure of the controller that makes use of the pre-
diction. We focus only on the prediction of the MPP, which is hence related
only to the former aspect, while the latter is related to the control of the solar
panel setting. In this paper a methodology for performing the MPP prediction
from measures of some features of the working conditions of a panel will be pre-
sented. In particular, we will consider some features that are extremely simple
to acquire, and prediction will be realized with the soft-computing techniques.
In this contest, the considered variables are: the voltage, the current and the
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temperature. It should be emphasized that, unlike what has been shown in pre-
vious papers, in the present work we propose to perform the MPP prediction
using only electrical quantities directly measurable at the terminal of the panel
or by a sensor installed in the proximity of the panel itself. It will be demon-
strated that measurement much more complicated and expensive, such as the
measurement of the solar radiation, can be replaced by information much more
accessible [8].

The most appreciated property of the soft-computing paradigms is prob-
ably their ability to generalize the knowledge in a dataset. This allows the
direct usage of the product of the measurement process, with no or few pre-
processing. However, the effectiveness of the prediction (for example, in terms
of the achived accuracy) depends on several factors which are related with the
paradigm structure or its learning algorithm (which behavior is controlled by
its hyperparameters). Since there is no way to a-priori state which paradigm
will perform better and for which value of the hyperparameters its learning al-
gorithm will minimize the prediction error, the search for the prediction model
to be used must come through a phase (called model selection) in which sev-
eral models are configured and then compared. Hence, several techniques have
been used in the literature to address different problems in the PV modelling.
Without any claim to completness, in the following we will summarize several
contributions that make use of soft-computing techniques in the modelling of a
PV system with reference to the MPP problem.

In [9] a survey of the ANN based techniques to realize a MPP controller and a
classification of the solutions suggested in literature are reported. The proposed
classification is based on both the input variables used by the ANN and the
controller structure. A hybrid approach is used in [10], where a pool of simple
ANNs are used to control a the currents in a PV generating system, but the
MPP tracking is realized using traditional methods. Besides the adaptiveness of
the ANNs to the varying load conditions, the simplicity of the networks allows
also for a realtime implementation. A hybrid approach is also used in [11], where
an ANN is used to model the V-I curve of the panel over which the controller
find the MPP. In [12] an Artificial Neural Network (ANN) is used to predict
the temperature of a given solar panel from ambient air temperature and solar
radiation. The same authors extended this results in [13] where the developed
neural network has been coupled with a mathematical model to predict the
efficiency of the panel in several regions.

Different soft-computing paradigms have also been used. In [14] a Particle
Swarm Optimization (PSO) algorithm is used to find the MPP. Support Vector
Machine (SVM) is instead used in [15] to forecast the reference voltage in the
MPP tracking algorithm.

In Section 2 the theoretical background that motivates this work is presented.
In Section 3, the models used for prediction will be introduced. In Section 4,
the experiments run will be described and the results obtained will be reported
and discussed in Section 5. The conclusion and directions for future works will
be reported in Section 6.
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Figure 1: Equivalent circuit of a PV module.

2. The MPP Tracking Technique

The aim of this section is to derive a model-based MPPT which does not
require the measurement of the solar irradiance G neither during the normal
operation.

A MB-MPPT give a prediction of the MPP voltage during working condi-
tion. This prediction is used as reference for the regulator controlling the power
electronics converter connected to the module. Model uncertainties as well as
the errors related to the control system makes that the MPP can be reached
only approximatively. It has been demonstrated that significant reduction in
the power output is due to even small error in imposing the MPP current. How-
ever, the efficiency is much more robust to an operating voltage which is slightly
different from the actual MPP voltage leading to conclude that it is more effec-
tive to estimate and impose the MPP voltage. The MPP voltage Vmp of a PV
module is [16]:

Vmp = A0 +A1Tc +A2 ln(G) +A3 ln2(G) (1)

In (1) Vmp is a function of the cell temperature denoted as Tc and of the
solar radiation denoted as G. Therefore, after a preliminary estimation of the
coefficients A0, A1, A2 and A3 it can be employed to implement a very simple
MB-MPPT. However this way to operate has many drawbacks [17]. In a recent
paper [18] a novel single diode model for PV panels have been presented (see
Fig. 1). The current-voltage characteristic is:

V = Voc + VT ln

(
1− I

Iph

)
−RsI (2)

where Voc is the open circuit voltage, VT the thermal voltage, Iph the photocur-
rent and Rs the series resistance. Voc, VT and Iph depend both on the solar
radiation and on the cell temperature.

Analytical expressions are introduced in [16] and here reported on for sake
of clarity:

Iph = Iph0
G

G0
[1 + α(Tc − Tc0)] (3)
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Voc = Voc0 [1 + β(Tc − Tc0)] + VT ln

(
G

G0

)
(4)

VT = VT0
Tc
Tc0

(5)

where Voc0 and Iph0 are the open circuit voltage and the photocurrent corre-
sponding to the reference solar radiation G0 and to the reference cell temper-
ature Tc0. The choice of G0 and Tc0 is arbitrary and therefore does not affect
the result. On the contrary, Rs is not significantly affected by T and G. From
the previous equations, it is possible to obtain the analytical expression for the
solar radiation:

G =
G0I

Iph0 [1 + α(Tc − Tc0)]
+G0e

Tc0Voc0[1+β(Tc−Tc0)]
VT0 (6)

This equation has been already employed in [19] to implement a MB-MPPT
which does not require a pyranometer during the normal operation. Finally,
from (1) and 6 the expression of the MPP voltage where the solar radiation
does not appear explicitly can be obtained:

Vmp = A0 +A1Tc+

+A2 ln

(
G0I

Iph0 [1 + α(Tc − Tc0)]
+G0e

Tc0Voc0[1+β(Tc−Tc0)]
VT0

)
+

+A3 ln2

(
G0I

Iph0 [1 + α(Tc − Tc0)]
+G0e

Tc0Voc0[1+β(Tc−Tc0)]
VT0

) (7)

Equation (7) is the core of the MPPT algorithm proposed in [18]. A prelimi-
nary training process that requires the measurement of the current, voltage and
cell temperature in different operating conditions allows to obtain the unknown
parameters.

Once the parameters have been properly estimated, (7)) can be used to pre-
dict the MPP voltage, which is the reference for the power electronic converter
connected to the module. Equation (7)) can be rewritten more conveniently as:

Vmp = B1 +B2Tc+

+B3 ln

(
I

1 +B5Tc
+B6e

V+B7I−B8
B9Tc

)
+

+B4 ln2

(
I

1 +B5Tc
+B6e

V+B7I−B8
B9Tc

) (8)

where B1–B9 are the unknown parameters to be estimated. Both the pre-
liminary computation of B1–B9 and the normal operation with the proposed
MB-MPPT algorithm requires measuring the module voltage, current and the
cell temperature. While voltages and currents can be measured inexpensively
with good accuracy, the estimation of Tc is trickier. However, in most cases
the cells are mounted on a frame that acts as a heat sink. Its temperature Tp,
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which can be easily measured, is not much different than that of the cells, and
therefore it can be used instead of Tc. Its impact on the predicted MPP voltage
has been shown fairly low [18][20].

Similarly to those operated by (8), in the present paper we want to build
a model of the MPP behavior as a function of the current, the voltage, and
the temperature of the panel. The tools challenged in this task will be some
computational intelligence models, introduced in the following section.

3. The Prediction Models

In order to be able to predict the MPP from the voltage-current-temperature
state, a mapping between the state space and the MPP space have to be defined.
In the present work, several computational intelligence paradigms have been
challenged in this task. Namely, the Fuzzy C-means clustering (FCM) and the
Radial Basis Functions network (RBF) [21] will be used to this aim. For the
sake of comparison, the k-Nearest Neighbors (k-NN) predictor [22] will be used
as baseline for the performance of the predictors.

The use of computational intelligence paradigms has the advantage that no
model of the input-output mapping have to be provided in advance, since these
paradigms can learn it directly from a finite set of input-output pairs (possibly
affected by error), called training set.

3.1. Fuzzy C-means Clustering

Clustering is an unsupervised process to partition a dataset in order to mini-
mize the dissimilarity inside the partitions (clusters) subject to some constraints,
such as a given number of partitions. Depending on the application, a suitable
similarity measure can be devised. The clusters can be used to give a compact
description of the original dataset, by considering the centroid of each clusters.
This representation can be also exploited to obtain an input-output relation-
ship: the centroids represent the input prototypes, which can be associated to
the average of the output values corresponding to the elements of the cluster.
This representation can then be used to compute the output corresponding to
an input point as in the k-NN predictor.

Fuzzy clustering is a generalization of the clustering where each input point
can belong to more than one clusters, with different degrees of membership.
Among the fuzzy clustering techniques, the Fuzzy C-means (FCM) [23][24] is
one of the most used. It is an iterative clustering algorithm in which at every
step each point is assigned to each cluster (i.e., associated to the corresponding
centroid) with a membership degree that is inversely proportional to the distance
from the cluster’s centroid. Then, the centroid positions are updated as the
average of the points belonging to the cluster; the contribution of each point
to the average is weighted with its membership degree. The training can be
stopped when the position of the centroids does not changes or using other
criteria (e.g., the maximum number of iterations). At the end of the training,
the centroids can be used as for the traditional clustering.
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3.2. Radial Basis Functions Networks

Artificial Neural Networks (ANN) constitutes a variegated class of models
for classification and function approximation [25][26]. Among these, the Radial
Basis Function (RBF) networks are very used, because of their simplicity and
approximation power. In fact, they enjoy the universal approximation property
(i.e., for every continuous function, exists an RBF network that approximates
the considered function arbitrarily well). Although several basis functions guar-
antees this property, the RBF model described in (9), with Gaussian basis func-
tions, is generally used. The mapping can be expressed as a linear combination
of basis functions:

f(x) =

L∑
i=1

βiG(x; µi, σi) + b (9)

where L is the number of basis functions, G is the Gaussians function, µi, σi,
and βi are respectively the center, the width and the coefficient of the i-th
Gaussian, and b is an optional bias.

The learning algorithm for a RBF defines a procedure that allow to obtain
the parameters (L, {µi}, {σi}, {βi}, b) from the training set. In particular, sev-
eral learning algorithms has been provided in literature, with different charac-
teristics (e.g., hybrid learning [21], incremental learning [27], global optimization
[28]) and several extensions (e.g., Hierarchical RBF [29][30], Extreme Learning
Machine [31]). Among them, the hybrid learning allows to face the estimate of
the parameters in different subsequent steps, reducing the complexity of the op-
timization. Given the training set {(xj , yj) |xj ∈ RD, yj ∈ R, j = 1, . . . , N},
firstly the centers of the Gaussians, {µi}, are estimated: this is usually operated
through a clustering algorithm, since the number of the Gaussians, L can be de-
rived by the given computational budget, and {µi} is a set of RD points and can
be obtained clustering {xj}. Since the width of the Gaussians determines their
influence region, for each Gaussian it can be set in order to cover at least the
region of the corresponding cluster and allowing a given degree of overlapping
with the neighboring units. Once these parameters have been set, the weights
{βi} can be computed as the solution of a linear system. In fact, the output of
the RBF network (9) give rise to N equations that can be expressed in matricial
notation as:

Hβ = Ŷ (10)

where H is a N × L matrix such that Hj,i = G(xj ;µi, σi), β = [β1 · · · βL]T ,

and Ŷ = [ŷ1 · · · ŷN ]T . Given the training dataset and the hidden neurons
parameters, the weights β are the only unknown of the linear system described
in (10), and, under mild conditions, they can be computed as:

β̂ = (HTG)−1HT Ŷ = H†Ŷ (11)

where H† = (HTH)−1HT denotes the Moore-Penrose pseudo-inverse of the
matrix H.
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3.3. Feed-forward Neural Networks

The feed-forward neural networks (FFN) [32][33][34] are composed of pro-
cessing units (called neurons) organized in layers. Each neuron computes its
output as a function of a linear combination of the output of the neurons of
the previous layer (this function is often called transfer function or activation
function). The information, hence, flows only from the input layer to the out-
put layer. It can be proved that a network with one hidden layer (i.e., a layer
between the input and the output layers) has the universal approximation prop-
erty. A FFN is characterized by the number of neurons of the hidden layer, the
activation function, Ψ, (usually sigmoidal), and by the learning algorithm used
(usually gradient descent based, such as Marquardt algorithm [34]).

More formally, the output, fFNN(·), of a single layer FNN is

fFNN(x) = β0 +

L∑
j=1

βjΨ(γTj · x) (12)

where L is the number of units of the hidden layer, the βj is the weight of each
neuron (β0 is a bias term), the γj represents the weight vector of the linear
combination of input for the j-th neuron.

The function Ψ, which can be chosen among different functions, is often the
hyperbolic tangent

Ψ(z) =
1− exp(−2z)

1 + exp(−2z)
. (13)

3.4. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based or lazy learning
paradigm used both for function approximation and classification [22]. It is
used to predict the value of a function, f , in unknown points, given a sampling
of the function itself (training data), {(xi, yi) | yi = f(xi)}. For an unknown
point, x, the value of f(x) is estimated from the value of its k nearest neighbors,
for a given k, using a suitable voting scheme or an average. The most simple
scheme, often used in classification, estimates f(x) as the most common output
value among its neighbors, while in function approximation the average output
value is commonly used. More complex schemes, such as the use of weighted
averaging, or a sophisticated norm for computing the distance can be used as
well.

4. Experimental Activity

The experiments have been carried out on a Linux machine equipped with
an Intel Core i7 vPro CPU and 16 GiB RAM. The simulations has been imple-
mented and run on Matlab 2012a.
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Figure 2: A typical Voltage vs. Current curve for a solar panel. The sampled data are reported
as red points, while the solid line is the curve resulting by filtering the data with a lowpass
Gaussian filter.

4.1. Dataset preprocessing

The solar panel dataset includes a set of measured voltage-current (I-V )
characteristic curves, the working temperature and solar radiation which cover
most of the possible working conditions of the photovoltaic panel. In fact, the
produced power depends also on the applied load. The rated parameters of the
panel are the following: the maximum power, PMAX = 5 W; the voltage and
the current at which maximum power is produced, VPM = 17.5 V and IPM =
0.285 A; the open circuit voltage, VOC = 21.3 V; and the short circuit current,
ISC = 0.31 A. In order to explore the behavior of the panel under different
working condition, a measurement campaign has been performed and starting
from the I-V curves the corresponding MPP values have been estimated.

A typical I-V curve is described in Fig. 2, where the sampled data are re-
ported as red points. It has been sampled by increasing the electrical load
connected to the panel from to 0 (short circuit condition) to (virtually) infinite
(open circuit condition). The sampling of each curve has been repeated every
69 seconds. Since the measurement noise, the data belonging to each curve
sampling have been filtered through convolution with a Gaussian filter. The re-
sulting I-V data have been used to compute the power provided for each sample
and the MPP of the curve (as reported in Fig. 3). Each of the filtered data,
joined with the temperature of the panel and the MPP of the corresponding
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Figure 3: A typical Power vs. Voltage curve for a solar panel. The power provided by a solar
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Table 1: Cardinality of the datasets used in the experiments

subsampling step, s training validation testing
15 000 5 512 41 334 613 41 334 613
10 000 8 268 41 333 235 41 333 235
5 000 16 535 41 329 102 41 329 101
1 000 82 675 41 296 032 41 296 031

curve constitutes a sample of the dataset to be used for the experiments.
The data has been collected from May to June 2013 for a total of 15862

curves sampled and more than 82 millions of samples.
The input domain of the resulting dataset is reported in Fig. 4, where the

space of the states is represented. Since it is a 3D point cloud, several view
have been used. In particular, in panels (a)–(c), the data are projected on a
bidimensional subdomain, while in panel (d) the three-dimensional space occu-
pied by the samples is rendered as the surface that encloses the large part of
the samples. It can be noticed that the samples are not uniformly distributed
in the input domain, since some regions are densely populated while others are
empty. Hence, some correlation between the input variables can be present and
can be exploited. The two views in panels (e) and (f), where the value of the
MPP is depicted by the color, show that the function under study is smooth in
almost all the input space, but in the region close to the open circuit condition.

Since the size of the dataset is too large, we subsampled it to obtain a
representative training set and randomly distribute the remaining examples in
the validation and in the testing datasets. The training set is used to set the
parameters of the approximation model. The performance of the trained models
on this dataset are not meaningful to assess the ability of generalization (a 1-NN
always achieves zero error on the training dataset). For this task, a set of data
never used in the training process have to be used. Besides, since we want to
compare several models, another dataset is needed. So, we use the validation
dataset to choose the best model, and the testing set to assess the performance.

We experimented several subsampling step to assess the performance of the
predictors on different level of knowledge of the problem. In particular, we set
the sampling step to the following values:

s = {15000, 10000, 5000, 1000} (14)

Depending on the size of the training set, the size of the validation and the
testing sets change. In Table 1 the dataset cardinality resulting by the the
subsampling step in (14) are reported. It can be noticed that while the size of
the training set changes considerably, in the experimented set-up the size of the
validation and testing sets remains substantially the same.

Since RBF, FCM, and k-NN require to evaluate distances in the input do-
main, the input data have been normalized using the standard deviation of each
variable as normalizing factor. The normalization has been carried out using
only the training data.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The space of the states of a solar panel. In panels (a)-(c), the data are projected
onto the I-T , V -T , and I-V subspaces, respectively. Here the MPP value is depicted as a
color. In panel (d), the surface encloses most of the samples and is used to visualize the region
effectively occupied by the data. The two views in panels (e) and (f), where the value of the
MPP is depicted by the color, allow to appreciate the smoothness of the function under study
in almost all the input space, but in the region close to the open circuit condition (i.e., where
the voltage is high and the current is low).
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4.2. Performance Evaluation

For the evaluation of the performance, the prediction error has been mea-
sured by means of the average of the absolute error achieved on the testing set
data:

Err(f) = E(|y − f(x)|) (15)

where f(x) is the value predicted by the model for the sample (x, y), where x
is a point in the I × V × T space, while y is the corresponding measured MPP.

In order to have a figure of merit that provides the accuracy with respect to
the order of the measured value, we choose the average relative error, weighted
with the relative importance of each measure:

Rel(f) =
∑
i

|yi|∑
j |yj |

|yi − f(xi)|
|yi|

=

∑
i |yi − f(xi)|∑

j |yj |
(16)

4.3. Prediction through FCM models

Since the starting position of the centroids is arbitrary and is usually cho-
sen randomly, to some extent the FCM algorithm is subjected to randomness.
However, for smooth function and for a small number of centroid with respect
to the number of points, the effect of the randomness is negligible.

The behavior of the FCM predictor is ruled by the number of training points
and the number of clusters, L. The former depends by the subsampling step, s,
while L has been arbitrarily chosen in a wide range of values. In particular

• s, the subsampling step: {1 000, 5 000, 10 000, 15 000};

• L, the number of clusters:
{100, 200, 500, 1 000, 2 000, 5 000}.

The Euclidean norm has been used to compute the distance in the input space.
For each value of s, the FCM clustering has been carried out and the average
output of resulting clusters has been associated to the corresponding centroid.
The output of the FCM predictor has been defined as the output of the cluster
which the input point belongs to. For all the training set-ups the maximum
number of iterations has been set to 100.

4.4. Prediction through RBF models

We choose to train the RBF predictors using the hybrid learning technique.
In order to improve the comparison between the computational intelligence tech-
niques, the centroids resulting from the FCM training sessions have been used
as the position of the center of the units, {µi}, and width of each Gaussian, σi
has been set as proportional to the average distance of the points in the cluster
from the centroid, µi. Once these parameters has been chosen, the weights, {βi}
can be computed as the solution of a linear system.

The hyperparameters challenged are hence:

• s, the subsampling step: {1 000, 5 000, 10 000, 15 000};
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• L, the number of units:
{100, 200, 500, 1 000, 2 000, 5 000};

• r, the width proportionality factor: {1, 2, 3, 4, 5, 6, 7, 8}.

4.5. Prediction through FFN

Since the FFN is a very variegated class of models, with different architec-
tures and different learning algorithms, some a-priori choices are required in
order to limit the number of simulations. For this experiment, only one archi-
tecture has been considered: single hidden layer (as described in (12)), with
hyperbolic tangent activation function for the hidden layer neurons, (13), and
the linear function for the output layer.

Hence, the hyperparameters challenged are:

• s, the subsampling step: {1 000, 5 000, 10 000, 15 000};

• L, the number of units:
{10, 20, 50, 100, 200};

The networks have been trained using the Levenberg-Marquardt backprop-
agation algorithm.

The simulations have been run in MATLAB, using the Neural Network Tool-
box V7.0.3 (R2012a).

4.6. Prediction through k-NN Models

The performance of a k-NN predictor depends on several hyperparameters.
Since it does not requires other training process than just storing the training
values, all the hyperparameters of a k-NN predictor operate in the prediction
stage. In particular, the behavior of the k-NN predictor is ruled by:

• k: the number of neighbors;

• the weighting scheme: the law to assign the weights for the weighted
averaging prediction;

• the norm of the input space.

The following values for the hyperparameter k have been challenged:

k ∈ [1, 15] (17)

Three weighting schemes have been tried: equal weight, weight proportional to
the inverse of the neighborhood rank, and weight proportional to the inverse
of the distance. Only the Euclidean norm has been used to compute the dis-
tance in the input space. All the above described training set-ups have been
experimented with the three dataset configurations characterized by s, the sub-
sampling step: {1 000, 5 000, 10 000}.
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Table 2: Performance
Model Err (std) [W] Rel
FCM 0.111 (0.174) 0.134
RBF 0.0151 (0.0432) 0.0227
FNN 0.0147 (0.0410) 0.0222
k-NN 0.0323 (0.0737) 0.0438

5. Results and Discussion

The test error of the challenged models are reported in Table 2 from which
can be noted that the best performing model is the FNN network, both in term
of average absolute error, Err, and relative weighted error, Rel.

In particular, all the other paradigms outperform the FCM predictor, which
achieve the best performance of 0.111 W (corresponding to a relative error of
13.4%) using L = 5 000 centroids on the smallest set (s = 15 000). The best
performing k-NN makes use of of the largest set, s = 1 000, and achieve the
absolute error of 0.0323 W (Rel = 4.38%) combining the output of k = 10
neighbors using the inverted rank weighting scheme.

The RBF model that achieved the lowest average validation error used L =
500 Gaussians with a width proportionality r = 8. Using the largest set as
training set (s = 1 000), it achieved an error of 0.0151 W and a relative error of
2.27%.

Similarly, the best performing FNN model makes use of the largest training
set (s = 1 000) and is composed of L = 1 000 units. It achieves an error of
0.0147 W and a relative error of 2.22%.

The comparison between the error achieved by FCM and k-NN shows that,
despite the similarity between the operation of the two paradigms, the k-NN
can exploit better the knowledge of the training set. However, the better per-
formance of the k-NN is obtained at a higher computational cost. In fact, while
the FCM makes use of only L = 5 000 clusters, the k-NN stores 82 675 training
points. This fact affects both the computational time for obtaining the output
(both the models require to find the nearest centroids or training points) and
the memory requirements to store the model parameters, although the compu-
tational costs can be mitigated by using a suitable data structure to store the
units of the models. Besides, the computational costs for the FCM training are
obviously higher than that for the k-NN, which need only to store the data.
Since the best FCM model uses the smallest training set, the limitation on
the training iterations can be questioned. Moreover, as the number of clusters
increases. also the initial position of the centroids can affects the resulting clus-
tering. However, when both the number of training points and the number of
clusters increase, the computational time required to allow a slow convergence
becomes unfeasible.

The use of the FCM clustering as processing step of the hybrid learning for
the RBF models allows to compare directly the performance of the models. This
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Figure 5: In panel (a), the relative weighted error with respect to the number of units of the
FCM, RBF, and FFN approximators is reported. The FNN and RBF curves are substantially
overlapping. Panels (b), instead, report the relative weighted error achieved by the RBF
approximator with respect to the width factor (the other paradigms do not depend on this
parameter), while in panel (c) the error of the FCM, RBF, and FFN approximators vs. the
subsampling step is reported. The performance achieved by the different set-ups are reported
using the circle for the RBF models, the plus for FCM and the cross for FFN. The lines
traces the performance of the model when the other parameters of the training are set to
their best value. Hence, in panel (a) the continuous line joins the performance of the RBF
approximator when r = 8 and s = 1 000, the dashed line describes the performance of the
FCM approximator as a function of the number of clusters when s = 10 000, and the dotted
line traces FFN for s = 1 000. Similarly, in panel (b) the continuous line describes the RBF
performance for s = 1 000 and L = 500, while in panel (c) the continuous line refers to the
RBF approximators when r = 8 and L = 500, the dashed line refers to the FCM approximator
when L = 5 000, and the dotted line describes the accuracy of FFN when L = 100.
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(a) (b)

Figure 6: Distribution of the current, I, with respect to the relative error for FFN approxi-
mator.

perspective can also be reversed: the RBF can be considered a post-processing
of the FCM clustering in order to improve its performance. In this sense, the
RBF apparently improves the achievements of the FCM: results reported in
Table 2 clearly shows that the errors are one order of magnitude smaller for
the RBF and considering also the standard deviation of the absolute error, Err,
it is evident that the distributions of the error are different. Moreover, the
RBF makes use of only 500 units vs. the 5 000 of FCM. Similar considerations
apply also to the k-NN and RBF comparison. The FFN model requires even
less computational resources for storing the approximation, since it requires
only 100 neurons. However, it should be noted that the difference in the test
error between the RBF and the FFN models is much smaller than the standard
deviation of the error. It means that the distribution of the errors are quite
overlapping.

Although the FFN approximator achieves a relative weighted error 2.22%,
the distribution of this error in not uniform in the I-V -T space. In Fig. 6,
the distribution of the current I is studied in two cases: the testing cases are
partitioned depending on their relative error, computed as the ratio between
the error achieved and the measured value. The threshold of 100% has been
arbitrarily chosen for distinguishing the cases where the error is small from
those where the error is considered large. For this two sets, the histogram of
the corresponding values of I are depicted in panels (a) and (b) respectively.
Two considerations can be done: first, the number of occurrences of the large
error is about 100 times smaller than the small error cases; second, the large
errors occur when the current is very small (open circuit condition). Similar
conditions are verified also for the RBF approximator.
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6. Conclusions

The MPP estimate is an important factor for the efficiency of a photovoltaic
panel and hence for an effective exploitation of a solar plant. Several ANN-
based techniques have been proposed to tackle this problem [9]. According to
the classification proposed in [9], they differs for both the input variables and
the controller structure. The here presented solutions belong to the mixed elec-
trical/non electrical input variables, since they use voltage, current (electrical)
and temperature (non electrical) of the panel.

Since the MPP depends both on the implementation of the panel and its
electrical load, data on the possible states of the panel could be used to build a
model of the electrical behavior of the panel. This dataset can be collected by
measuring the most important quantities for the description of this phenomenon,
i.e., the temperature of the panel, and the operating voltage and current at
different working conditions. In this paper several computational intelligence
paradigms have been challenged, in the task of estimating the MPP from its
working condition.

Among the challenged paradigms (FCM, RBF, k-NN, and FNN) the FFN
model achieve the lowest error, which is 2.20 and 7.55 times smaller than the
error of k-NN and FCM respectively, but comparable with the RBF error.

The analysis of the condition under which the large errors occur reveals
that they are limited to low current regions of the input space. Although the
low current condition can be scarcely appealing for practical uses, it can be a
challenge from the theoretical point of view. In order to tackle this problem, a
more advanced learning strategy (e.g., in [29]) can help to improve the accuracy,
while preserving the simplicity of the approach to provide good MPP estimate
using basic measurements. In this case, a hierarchical RBF model can take
advantage of the locality property of its units and specialize the sub-networks
for the different working conditions.
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