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Abstract

The modeling of solar radiation for forecasting its availability is a key tool for
managing photovoltaic (PV) plants and, hence, is of primary importance for en-
ergy production in a smart grid scenario. However, the variability of the weather
phenomena is an unavoidable obstacle in the prediction of the energy produced
by the solar radiation conversion. The use of the data collected in the past can
be useful to capture the daily and seasonal variability, while measurement of
the recent past can be exploited to provide a short term prediction. It is well
known that a good measurement of the solar radiation requires not only a high
class radiometer, but also a correct management of the instrument. In order
to reduce the cost related to the management of the monitoring apparatus, a
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solution could be to evaluate the PV plant performance using data collected by
public weather station installed near the plant. In this paper, two experiments
are conducted. In the first, the plausibility of the short term prediction of the
solar radiation, based on data collected in the near past on the same site is
investigated. In the second experiment, the same prediction is operated using
data collected by a public weather station located at ten kilometers from the
solar plant. Several prediction techniques belonging from both computational
intelligence and statistical fields have been challenged in this task. In partic-
ular, Support Vector Machine for Regression, Extreme Learning Machine and
Autoregressive models have been used and compared with the persistence and
the k-NN predictors. The prediction accuracy achieved in the two experimental
conditions are then compared and the results are discussed.

Keywords: Solar radiation prediction, Autoregressive models, Extreme
Learning Machines, Support Vectors Regression, Measurement.

1. Introduction

The electric power system is mainly composed of units for energy production
i.e. generators, loads and a power grid that connects them. Actual configuration
principally includes large central generators which, through the transformers,
inject electrical power in the transmission grid. The world energy infrastruc-
ture is nowadays subjected to an important transformation such as the growing
number of distributed small generation units, based on different technologies,
directly connected to the power grid. These small generation units put side by
side to the large and traditional ones are defining a grid based on the so called
distributed generation. This kind of network architecture implies new problems
concerning the management. In fact in traditional network the stability of the
power system was achieved by means of the direct control of few large conven-
tional power generators. By introducing distributed generation this approach
cannot be followed, since the small generation units are basically not control-
lable by the network system operator. In particular this scenario is critical
when units based on renewable energy resources are used, since they can only
provide power as long as the source of energy is available. In many situation
the energy production is mainly utilized directly by the producer or by nearby
buildings. When energy production exceed the necessity the excess flows into
the power grid of the utilities. In order to implement an electric grid allowing a
large amount of distributed energy sources, different approach to the problem of
the network stability is required. It is clear that in this scenario the possibility
to predict the plant’s power production during the day greatly helps the man-
agement of such a power system. Besides, the prediction of energy production
becomes extremely important for the trading in the free energy market.

Among the renewable energy sources, the photovoltaic (PV) technology,
which allows to obtain electric energy from solar radiation [1], has the bene-
fit of the low environmental impact. On the other end, its main weakness is
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that its availability cannot be fully controlled. Many aspects need to be consid-
ered such as geographic position, local climate, weather and global efficiency of
the panel [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Among these, the position and the
climate influence on the solar radiation can be easily obtained from astronomical
and statistical data, but the weather is characterized by a high variability and
depends on many physical factors. According to [13], the forecasts required by
the activity related to the grid management can be divided in two categories.
The first is related to grid stability problem (intra-hour, hour ahead, and day
ahead), while the second concerns planning and assets optimization on medium
and long-term (monthly and yearly forecasts, respectively). Since the main
factor for solar radiation availability is the local weather, approaches based on
weather forecast have been widely used in literature. These are based on data
obtained from satellite observations and ground stations. The geographic and
time availability of data are the main aspects that have to be taken into account.
Besides, the sampling rate of the measurement (both in time and in space) have
to be related to the granularity of the forecast.

The solar radiation prediction can be based on data obtained by several
data sources, characterized by the type of data they produce, as well the space-
time granularity they provide. These data source are, for example: Numerical
Weather Prediction models, Satellite-base forecast, All-sky imagers, Ground
measurements.

In this paper we consider the problem of the solar radiation prediction from
data captured by ground weather stations, in two different operational condi-
tions: the local (when the data are captured at the plant site) and the remote
prediction (when the weather station is distant from the plant site).

Several forecasting approaches have been used in literature. Among these,
the most effective in producing hour-ahead predictions are based on empiri-
cal regression, neural networks [14, 15] and time-series models (e.g., ARMA,
ARIMA, Non-Linear autoregressive models) [16, 17, 18]. In particular, in [14]
several prediction techniques have been challenges to forecast the daily solar
radiation in Algeria (using the historical data in the period from 1981 to 2001,
and a wavelet-neural network resulted the best. In [15] a good review of the
literature on the use neural networks for solar radiation prediction is presented.
It highlight how the different approaches differ for the type of solar radiation
predicted, for the input parameters and for the prediction error used. In [16] the
historical data of the period 2003–2009 for the solar radiation in Bogot (Colom-
bia) have been used to determine an autoregressive model in order to provide
a long period forecast useful for assessing the productivity of solar plants. A
similar study have been conducted in [17], where the autoregressive models of
the solar radiation of several Nigerian cities have been built using the 1986–1990
data. Instead in [18] a Non-linear Autoregressive model is used to model the
solar radiation in Edinburgh (UK) using 30 s averages of radiation measured for
8 hours per day for one month.

For large plants, the investment to provide the plant with the instrumen-
tation (and the management) for on-site weather measurement is appropriate,
since it can provide data for both a reliable production forecast and an effective
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maintenance scheduling [19, 20, 21, 22, 11, 12]. For small plants, instead, this
cost is questionable and the exploitation of data coming from a remote public
weather station can be appealing. In fact, this plants are mainly intended for
fulfilling the local needs, and only the excess of production is sent to the grid.
Hence some requirements on the prediction accuracy can be relaxed, since only
the integral of the contribution of the small plants is important for the grid
management. On the other hand, there is a clear interest for a reliable schedul-
ing of the maintenance that guarantees the efficiency of the plant as far as a
system with an high level of Dependability features, i.e. Reliability, Availability,
Maintainability, Safety (RAMS requirements) [23, 24, 25, 26, 27, 28].

In our previous works [29, 30, 31], several models (namely, Autoregressive
models, Support Vector Machine, and Extreme Learning Machine) have been
challenged in the task of predicting the global horizontal illuminance. In the
present work, instead, another physical characteristics — the global horizontal
radiation — will be considered and two experiments, already introduced in [32,
33], will be described. The first experiment consists in a short term prediction
of the solar radiation using only data measured in the near past. For this scope,
a two-year hourly dataset of the global horizontal radiation will be used to feed
some autoregressive models in order to obtain a one-hour forecast. In particular,
the dataset has been collected in two years by the MeteoLab [34, 35], Milan,
Italy. In the second experiment, the same prediction will be performed using
data of a different set-up. Data from two public weather stations [36] in the
neighborhood of Milano, separated by ten kilometers in a straight line, are used
for assessing the effectiveness of short term prediction of the production of a
plant using measurements taken in a nearby measurement station. In particular,
a 3-year hourly dataset will be used to model the time series of the global
horizontal radiation using two computational intelligence models, namely the
Support Vector Regression (SVR) and the Extreme Learning Machine (ELM).
The performance of the prediction models will be compared with those of a näıve
predictor, the persistence model, and of a simple predictive model, namely the
k-Nearest Neighbor (k-NN) model.

The paper is organized as follows. In Section 2 the model used in the predic-
tion are described, while the data, the structure, and the results of the experi-
ments are reported in Sections 3 and 4, for the local and the remote prediction,
respectively. The results will be compared and discussed in Section 5. Finally,
conclusions and future research directions are reported in Section 6.

2. Prediction Models

A time series is composed of a sequence of observation {xt} sampled by a
sequence of random variables {Xt}. Usually, the ordering value is related to the
time, while the observations are related to a phenomenon that varies with the
time and are taken in equally spaced instants.

Autoregressive models are designed to work with this kind of data and the
standard algorithm to estimate the parameters that model the given time series
relies on the availability of the elements of the series. Once the model parameters
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Figure 1: The scheme of a kernel based predictor. The input are compared to the centers
{µi} of all the units and their distance weighted with the widths {σi} and used to produce
the units’ output through the Gaussian kernel. The units’ contributions are then modulated
through the units’ weights {βi} and their sum constitutes the predicted value.

have been estimated, a prediction for the future elements of the series can be
computed. For the experiments described in this work, we challenged the most
used Autoregressive models described in Section 2.1.

Although not specifically designed for modeling time series, both the SVR
and the ELM paradigms (described respectively in Sections 2.2 and 2.3) can
also fulfill the time series prediction task. In fact, they can model a mapping
between an input and an output space, described by only a finite set of input-
output pairs (possibly affected by error), called training set. Time series can
hence be modeled as a mapping between some previously observed values and
the value to be predicted. For instance, when using two previous samples to
predict the next (i.e., looking for a R2 → R mapping), the training dataset
will be composed by triples of the form (xt−2, xt−1, xt), and the mapping, f ,
x̂t = f(xt−2, xt−1) will be assumed to approximate xt. Both the two paradigms
uses a linear combination of basis functions (usually Gaussians) to modeling the
mapping:

f(x) =

L∑
i=1

βiG(x; µi, σi) + b (1)

where L is the number of basis functions, G is the Gaussians function, µi,
σi, and βi are respectively the center, the width and the coefficient of the i-th
Gaussian, and b is an optional bias. The scheme in Fig. 2 describes the structure
of a predictor that uses D previous samples. Despite the similarity of their
mathematical description, SVR and ELM differ for the learning algorithm, i.e.
for the procedure that allow to obtain the model parameters (L, {µi}, {σi},
{βi}, b) from the training set.

2.1. Autoregressive Models

An AutoRegressive (AR) model describes the values of a particular time se-
ries in terms of its past values [37]. In particular, the value of Xt is modeled as
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a combination of a part that is determined by the past values of the series and a
part determined by an unpredictable event that happens at the time t (innova-
tion). More formally, given a time series {Xt}, its autoregressive representation
of order p, often denoted by AR(p), is:

Xt = α0 +

p∑
k=1

αkXt−k + εt (2)

where α0 is a constant, the innovation ε, is assumed to be white noise (E(ε) = 0,
E(ε2) = σ2), and {εt} are supposed to be normal independent and identically
distributed (i.i.d.) random variables.

A Moving Average (MA) model describes the time series values in terms
of linear combination of (unobserved) innovation values. A moving average
representation of order q, often denoted by MA(q), of the time series {Xt} is:

Xt = µ+

q∑
h=1

βhεt−h + εt (3)

The autoregressive and moving average models can be combined in the Au-
toregressive Moving Average (ARMA) model. An ARMA representation of
autoregressive order p and moving average order q, ARMA(p, q) is formally
described as:

Xt = α0 +

p∑
k=1

αkXt−k +

q∑
h=1

βhεt−h + εt (4)

When the time series is sampled from a stationary process, it can be repre-
sented by the above mentioned models. However, when the time series shows
a trend or a seasonality, a more advanced class of models, namely the AutoRe-
gressive Integrated Moving Average (ARIMA) models, have to be used. The
ARIMA model take into consideration also the difference series (i.e., the series
resulting by computing the difference of time lagged series). In particular, the
notation ARIMA(p, d, q) is commonly used for indicating the ARIMA model
with p, d, and q order of respectively autoregression, differencing, and moving
average. The formalization of this model is operated through the backward
shift operator, B: Xt−1 = BXt. This allows to express Xt−k as BkXt. The
ARIMA(p, d, q) representation of the time series {Xt} is:(

1−
p∑

k=1

αkB
k

)
(1−B)dXt =

(
1 +

q∑
h=1

βhB
h

)
εt (5)

2.2. Support Vector Regression

Support Vector Machines (SVM) is a powerful method for classification [38,
39] and regression [40]. In the latter domain, the method is usually named
Support Vector Regression (SVR). In its original formulation, the regression
function is obtained as the linear combination of some training samples, called

6



(a) (b)

Figure 2: Loss function computation in SVR. (a) The closeness of the solution (solid line) to
the data points (circles) is computed up to a given accuracy, ε. (b) Those points that are
closer than ε to the solution do not contribute to the loss, while the others contributes only
for the part that exceed ε.

Support Vectors (SV), but it can be extended to non-linear mapping through the
use of suitable functions called kernels. The solution to the regression problem
is obtained as the minimization of a suitable cost function, which can be chosen
such that the optimization problem results to be convex. The cost function is
usually composed of two parts, a functional, Hc, that takes into consideration
the closeness of the solution, f , to the training data and a functional, Hs, that
measures the smoothness of the solution; the two parts are balanced by means
of a a trade-off parameter, C:

min
f
H[f ] = C ·Hc[f ] +Hs[f ] (6)

The closeness of the function to the data is often measured up to a given
accuracy, ε, and all the points that are closer than ε to the solution do not
contribute to the loss function, as depicted in Fig. 2.2. The cost function is
hence ruled by three hyperparameters: the accuracy, ε, that represents the
accepted distance between the training data and the solution; the trade-off, C,
that balance the closeness of the solution to the training data and the robustness
of the solution; and the width of the Gaussians used as kernels, σ, which in the
basic SVR algorithm are constrained the have the same width. The convexity
of the problem guarantees that the optimal solution (which identifies the SVs,
{µi}, and the corresponding coefficients, {βi}) is unique.

2.3. Extreme Learning Machines

Neural networks constitutes a very variegated class of models for classifi-
cation and function approximation [41, 42]. Among these, the Radial Basis
Function (RBF) networks are well-known, because of their simplicity and ap-
proximation power. In fact, they enjoy the universal approximation property
(i.e., for every continuous function exists a RBF network that approximates
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arbitrarily well this function). The Extreme Learning Machine (ELM) is a
RBF with a fixed architecture and randomly assigned hidden nodes parameters
[43, 44]. In particular, with the model described in (1), the parameters {µi}
and {σi} are randomly chosen with a given probability distribution. Given the
training set {(xj , yj) |xj ∈ RD, yj ∈ R, j = 1, . . . , N}, the output of the ELM
network (1) gives rise to N equations that can be expressed in matricial notation
as:

Hβ = Ŷ (7)

where H is a N × L matrix such that Hj,i = G(xj ;µi, σi), β = [β1 · · · βL]T ,

and Ŷ = [ŷ1 · · · ŷN ]T . Given the training dataset and the hidden neurons
parameters, under mild conditions, the weights β can be computed as:

β̂ = (HTG)−1HT Ŷ = H†Ŷ (8)

where H† = (HTH)−1HT denotes the Moore-Penrose pseudo-inverse of the
matrix H.

The ELM learning paradigm exploits the robustness of the solution with
respect to the optimal value of the parameters of the neurons, and instead
of spending computational time for exploring the parameters’ space, choose
them by sampling a suitable distribution function (which encode the a-priori
knowledge on the problem), and compute the weights as the solution of the

above described linear system. It can be shown that the solution β̂ in (8) is an
optimal solution in the least square sense, and has the smallest norm among the
least square optimal solutions.

2.4. Persistence
In order to assess the performance of model in the short-term prediction of

a time series, the persistence model, fP, is often used. It is a näıve predictor
that assumes that the next value of the time series, xt will be equal to the last
known, xt−1: x̂t = fP(xt−1) = xt−1. It is obviously inappropriate for long-
term prediction of time series of interest in real cases, but it can be used as a
baseline forecast: it is supposed that any other model will perform better than
the persistence model.

2.5. k-Nearest Neighbor Interpolator
The k-Nearest Neighbor (k-NN) model is a instance-based or lazy learning

paradigm used both for function approximation and classification [45]. It is used
to predict the value of a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For an unknown point, x,
the value of f(x) is estimated from the value of its k nearest neighbors, for a
given k, using a suitable voting scheme or an average. The simplest scheme,
often used in classification, estimates f(x) as the most common output value
among its neighbors, while in function approximation the average output value
is often used. More complex schemes, such as the use of weighted averaging, or
a sophisticated norm for computing the distance can be used as well. The k-NN
can be used in time series prediction using some previously observed values for
composing the input vectors.
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Year M. D. H.
T

[◦C]
Hum.
[%]

Global
horiz.

irradiance
[W/m2]

Diffuse
horiz.

irradiance
[W/m2]

Global
horiz.

illuminance
[klux]

2005 12 22 9 1.7 71.9 25.9 22.5 1.5
2005 12 22 10 3.1 60.7 123.6 114.6 6.2
2005 12 22 11 4.0 52.6 216.6 205.5 12.0
2005 12 22 12 5.1 47.7 272.8 264.5 15.8
2005 12 22 13 6.4 48.5 284.2 119.8 16.1
2005 12 22 14 7.3 48.5 296.4 106.2 16.4
2005 12 22 15 8.0 49.2 209.1 96.4 11.8
2005 12 22 16 7.4 54.3 123.5 60.1 6.6
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3: Excerpt from the dataset used for the local prediction experiment.

3. Prediction Based on Local Measurements

In the first experiment here described, the solar radiation prediction is oper-
ated on data captured at the plant site. The dataset used has been collected by
the MeteoLab [34, 35] between October 2005 and October 2007 has been used.
The MeteoLab station (located in Milan, Italy) measures and collects every ten
minutes the following data: air temperature, relative humidity, global horizontal
irradiance, diffuse horizontal irradiance, and global horizontal illuminance. The
released dataset provides their hourly average (as illustred in Fig. 3).

For this work, only the global horizontal radiation has been considered.
Subsets of the available samples are reported in Fig. 4. In particular, Fig. 4a
describes the global horizontal radiation measured in the year 2006, in Fig. 4b
only one week is reported (the first week of June). It can be noticed that
regularities are apparent both in the yearly and in the daily scale, but also that
large deviations from the average behavior are possible, due to meteorological
variability.

As shown by surface depicted in Fig. 5, the global horizontal radiation varies
both on daily and seasonal basis. The surface has been obtained by averaging
the samples acquired in the same hour of the same day of the year. Although
a trend is clearly recognizable, the variability of the global horizontal radiation
(which depends also by fast changing meteorological phenomena) makes the
surface very wrinkled.

Figure 6, instead shows the relation between the global horizontal radiation
acquired at two consecutive hours. In Fig. 6a the distribution of the points
along the identity line supports the use of the persistence predictor. However,
the maximum of the prediction error of the persistence can be considerably
high since the length of the vertical section of the cloud of points is at least
300, where the maximum value of the radiation is about 900. The histogram in
Fig. 6b resembles a mixture of two normal distributions with the same mean.
This is due to the fact that in the early and the late daylight hours the global
radiation does not change very much (especially in the winter). Hence, the
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Figure 4: One year (a) and one week (b) of the measured global horizontal radiation. Note
the trend in the year and in the day, but also the strong variability in the intraday values.
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Figure 5: The average global radiation for each day of the year and hour have been is plotted
as a surface. The roughness of the surface is due to variability, although a clear trend of the
phenomenon can be acknowledged.

11



0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

global horizontal radiation

g
lo

b
al

 h
o
ri

zo
n
ta

l 
ra

d
ia

ti
o
n
 o

n
e 

h
o
u
r 

la
te

r

One hour global horizontal radiation variation

(a)

−800 −600 −400 −200 0 200 400 600 800
0

0.02

0.04

0.06

0.08

0.1

0.12

σ = 115

global horizontal radiation variation

p
ro

b
ab

il
it

y

One hour global horizontal radiation variation distribution

(b)

Figure 6: The persistence predictor uses the global radiation value measured one hour earlier
as predicted value. Panel (a) shows the relationship between the two measurements of the
global horizontal radiation performed at the distance of one hour. Apparently, the samples
are distributed along the identity line. In panel (b), the estimated probability density function
of the difference between subsequent samples (with a standard deviation of 115).
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consecutive samples acquired in those periods of time are quite similar, while
the other moments of the day show a larger variability.

3.1. Dataset Pre-Processing

Since autoregressive models require equally time spaced values, the few val-
ues that are missing are interpolated using a simple rule that exploits the
daily seasonality of the solar radiation. For each missing value, xt, the set
{xt−1, xt+1, xt−24, xt+24}, i.e., the set composed of the global radiation one
hour earlier and later, and one day earlier and later is considered. The missing
value is then replaced with the average of the collected values. Since the missing
data are few, the selected set has a meaningful number of elements even though
some of the selected elements are missing too.

The resulting dataset is composed of 18096 samples. Since the dataset covers
a period of time of two years, and the autoregressive models require a training
set composed of consecutive data, the first year has been used as training set. In
this way, the yearly variability have a chance of being captured by the models.
The data belonging to the second year has been randomly partitioned in the
validation and training set. Hence, training, validation, and testing set are
composed of, respectively, 9048, 4524, and 4524 samples.

3.2. Performance Evaluation

For the evaluation of the performances, only the daylight hours data ([8, 19])
has been considered. Besides, since the solar radiation cannot be negative, all
the negative values predicted by the models are set to zero.

The prediction error has been evaluated as the average of the absolute error
achieved on the testing data:

Err(f) = E(|xt − f(xt)|) (9)

where f(xt) is the value for xt predicted by the model f .
Although others error metrics can be used to assess the optimality of the

model, the use of the absolute error is motivated by the target application for
our models. In fact, we are interested in using the prediction to economical
evaluation and the absolute error allows to directly relate the prediction error
with the economical cost.

3.3. k-NN Models Prediction

The performance of a k-NN predictor depends on several hyperparameters,
which operate only in the prediction stage, since the k-NN predictor does not
requires other training process than just storing the training values. In particu-
lar, the behavior of the k-NN predictor is ruled by the number of the considered
neighbors, k; the number of dimension of the input space, D, which corresponds
to the number of previous values used for the prediction; the weighting scheme,
i.e., the law to assign the weights for the weighted averaging prediction.
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The following values for the k and D hyperparameters have been challenged:

k ∈ [1, 30] and D ∈ [1, 10] (10)

Three weighting schemes have been tried: equal weight, weight proportional to
the inverse of the neighborhood rank, and weight proportional to the inverse of
the distance. Only the Euclidean norm has been used to compute the distance
in the input space.

For the sake of comparison, the rules for generating the training, validation
and test set will be the same used for the autoregressive models, described in
Section 3.1.

3.4. Autoregressive Models Prediction

In order to train an autoregressive predictor, a suitable value for the hyper-
parameters that rule the optimization procedure (i.e., the autoregression order,
p, the moving average order, q, and the differencing order, d), have to be cho-
sen. Several combination of the hyperparameters values have been tried and
their effectiveness have been estimated through cross validation. In particular,
the AR models have been challenged with p ∈ {1, . . . , 100}; the ARMA mod-
els have been challenged with the combination of p and q for p ∈ {1, . . . , 50}
and q ∈ {1, . . . , 50}; and the ARIMA model have been challenged with the
combination of the following values of p, d, and q:

p ∈ {1, . . . , 30}, d ∈ {1, . . . , 3}, q ∈ {1, . . . , 30} (11)

Since the training of the ARMA and ARIMA models requires consecutive train-
ing data, for avoiding of considering two separated periods of time for evaluating
the validation and training error (which involves the risk of biased estimation
due to the seasonality of the phenomenon under study), the prediction on the
data not used to train the predictor has been carried out first and then the pre-
dicted period has been randomly sampled to obtain the validation and testing
data.

3.5. Local Prediction Results

The persistence and k-NN predictors, described in Section 2, have been coded
in Matlab, while for the autoregressive models (AR, ARMA, and ARIMA) their
implementation in R have been used. Their performances have been evalu-
ated using the prediction error, Err(f), described in (9). Since the persistence
predictor configuration does not need any hyperparameters, the whole dataset
described in Section 3.1 has been used to assess its performances. Instead, the
training of the k-NN and the autoregressive models are regulated by a pool of
hyperparameters. Hence, the training set has been used to compute the model’s
parameters for each combination of the hyperparameters, then the validation
dataset has been used to identify the best model and the prediction error of
that model on the testing set has been used to measure the performance of the
class of the predictors.
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Table 1: Test error achieved by the predictors (local prediction).

Predictor Err(f) std
Persistence 88.3 74.2
k-NN 47.7 59.7
AR 43.5 56.9

ARMA 42.7 56.5
ARIMA 43.3 56.5

As reported in Table 1, the persistence predictor has achieved an error
Err(fP) = 88.3, while the k-NN achieved an error Err(fk-NN) = 47.7, for D = 4,
k = 17, and using the inverted distance weighting scheme.

The AR model that scores the lower validation error has been trained using
p = 97 and achieved Err(fAR) = 43.5; the best ARMA model has been trained
using p = 28 and q = 22, achieving Err(fARMA) = 42.7; the best ARIMA
model, trained using p = 23, d = 1, and q = 16, achieved a testing error
Err(fARIMA) = 43.3.

Figure 7 shows the distribution of the prediction error of AR, ARMA and
ARIMA models. Hardly some differences can be spotted in Figs. 7a–c, although
Figs 7d–f reveal a slightly compact histogram for ARMA and ARIMA. In par-
ticular, the error peaks in Figs 7a–c are in the same position, probably due to
some fast changing meteorological events happened in that period that modified
the usual global radiation pattern.

4. Prediction Based on Remote Measurements

The second experiment concerns the solar radiation prediction operated with
data captured at a remote site. For this experimental session, two datasets
collected by ARPA Lombardia [36] between October 2005 and September 2008
have been used. The datasets contain the hourly measurement of the global
radiance in two sites (Lambrate and Rodano, Italy) separated by about 10 km.

Both the datasets shows a distribution similar to that illustrated in Figs. 4
and 5 and considerations reported in Section 3 similarly holds here. In Fig. 8,
the relation between the global horizontal radiation acquired at two consecutive
hours at the two sites is shown. Also in this case, considerations for the validity
of the persistence predictor and the distribution of the difference in the values
of the two sites are very similar to those made in the previous experiment.
However, it is worth noting that here the standard deviation of the difference
distribution (Fig. 8) is higher than in the previous case (127 instead of 115).
This is reasonable, because the variation due to the meteorological phenomena
is improved by the geographical displacement of the two sites.

4.1. Dataset Pre-Processing

Since our work requires the corresponding values of the two sites, each
database has been purged of the samples that do not have a matching sam-
ple in the other database measured at the same time of the same day. After this
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Figure 8: The persistence predictor uses the global radiation value measured one hour earlier
as predicted value. Panel (a) shows the relationship between the two measurements of the
global horizontal radiation performed at Lambrate and that performed at Rodano one hour
later. The samples are evidently distributed along the identity line. In panel (b), the estimated
probability density function of the variation (which standard deviation is 127).
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operation, the datasets are composed of 22961 samples which have been used for
composing the input vectors for the prediction as described in Sect. 2. In par-
ticular, we tried to predict the global radiation in Rodano from measurements
in Lambrate. Hence, each input vector has been composed by D consecutive
samples from Lambrate, for D ∈ {1, . . . , 10}, taken at time {t −D, . . . , t − 1},
which has been related to the sample from Rodano at the time t. Besides,
also the temporal information of t (hour of the day and day of the year) has
been provided as input. The data has been randomly partitioned in training,
validation, and testing set (using a proportion of 50-25-25%, respectively). In
order to assign the same importance to all the components, the data have been
normalized using the maximum of the measurement in the training set for the
global radiation components, 23 for the hour of the day, and 364 for the day of
the year.

4.2. Performance Evaluation

The performances of the predictors have been evaluated using the same set-
up described in Section 3.2.

4.3. k-NN Models Prediction

The k-NN models challenged have been the same described in Section 3.3.

4.4. Prediction through ELM models

In order to train an ELM neural network as a time series predictor, the
hyperparameters that regulate the optimization procedure (i.e., the probability
distribution of the neuron parameters, µi and σi, the input space dimension, D,
and the number of the neurons, L), have to be set to the proper value.

The dimensionality of the input training data, D (i.e., the number of previous
samples considered for the prediction) has been chosen in the interval [1, 10] like
in (10), while networks of several sizes, L, have been challenged:

L ∈ {10, 25, 50, 100, 250, 500, 1000, 2000, 3000} (12)

Since the Gaussian has a meaningful output only in a neighborhood of its cen-
ter, the distribution of the centers, µi, here indicated as the random variable
A, is usually derived from the position of the input training data. In particu-
lar, three distributions have been tried for A: A1, uniform distribution in the
bounding box of the input training data; A2 and A3, respectively sampling with
and without replacement from the input training data. The width of the Gaus-
sian, σ, regulates the extent of its influence region (in regions further then 3σ
from µ, the output is negligible). Since when the dimensionality of the input
space increases the data become sparse (a problem often referred to as “curse
of dimensionality”), for fairly comparing the effects of the dimensionality, we
chosen a set of relative values for the width, r, that are then customized to the
actual value of D when the width of the neurons are computed. This is realized
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assigning to σ the relative width, r, multiplied by the diagonal of the bounding
box of the input training data. The value challenged for r are:

r ∈ {0.01, 0.05, 0.1, 0.5, 1} (13)

Once the proper value of σ has been computed for the considered dimensionality,
the width of the neurons, {σi} are sampled from B ∼ N(σ, σ/3) (i.e., {σi} are
distributed as a normal with mean σ and standard deviation σ/3). Negative
values for σi, that are possible but unacceptable, are discarded and resampled.

Since the parameters of the network are chosen by chance, five trials with the
same combination of the hyperparameters has been run and the performance of
the parameter combination has been averaged.

4.5. Prediction through SVR

In order to train a SVR predictor, the hyperparameters that regulate the
optimization procedure, have to be set to the proper value. Since the optimal
values cannot be estimated a-priori, several combinations have to be tried and
their effectiveness assessed by cross validation.

The hyperparameters values that we challenged are:

• the input dimensionality, D: [1, 10], as in (10);

• the accuracy, ε: {0.01, 0.1, 0.5, 1};

• the regularization trade-off, C: {0.1, 1, 10, 100};

• the width, σ: similarly to the ELM case, the proportionality factor r in
(13) has been experimented to set σ depending on D.

4.6. Remote Prediction Results

The persistence, k-NN, and ELM predictors have been coded in Matlab,
while for the SVR models we used the SVMlight [46], and their performances
evaluated using the prediction error, Err(f), described in (9). Since the per-
sistence predictor configuration does not need any hyperparameters, the whole
dataset described in Section 4.1 has been used to assess its performances. In-
stead, the training of the k-NN, the ELM and SVR models are regulated by a
pool of hyperparameters. Hence, similarly to what operated in the local pre-
diction experiment (Section 3.5), the training set has been used to estimate
the model’s parameters for each combination of the hyperparameters, then the
validation dataset has been used to identify the best model (i.e., the one that
achieved the lowest prediction error on the validation dataset) and the pre-
diction error of that model on the testing set has been used to measure the
performance of the class of the predictors.

As reported in Table 2, the persistence predictor has achieved an error
Err(fP) = 95.4. This value should also be compared to the persistence measured
at each site, which is 89.9 for Lambrate and 83.6 for Rodano. The fact that the
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Table 2: Test error achieved by the predictors (remote prediction).

Predictor Symbol Err(f) (std) Err(f∗)
Persistence Err(fP) 95.4 (84.2) —
k-NN Err(fk-NN) 41.4 (57.0) 53.1
ELM Err(fELM) 42.7 (57.0) 58.5
SVR Err(fSVR) 40.5 (59.3) 57.2

Table 3: Test error achieved by the ELM predictor.

#trial Err(fELM) mean std
1 42.9

42.7 0.322
2 42.9
3 42.2
4 43.0
5 42.6

these three values are quite similar supports our working hypothesis, i.e., the
data from one site can be used to predict the measurement on the other site.

In fact, as shown in Table 2, all the models have been able to halve the
prediction error with respect to the persistence. In particular, the k-NN achieved
an error Err(fk-NN) = 41.4, for D = 2, k = 9, and using the inverted distance
weighting scheme.

The best ELM model, which achieved an error of Err(fELM) = 42.7, resulted
the one trained using the following combination of hyperparameters: D = 2
r = 0.1, L = 500, and using the A2 distribution for choosing the centers position.
The performance achieved in each of the five trials for this model is reported
in Table 3, with their average (42.7) and standard deviation (0.322). Since the
standard deviation is very small with respect to the average, the ratio between
the two values witnesses the stability of the learning.

The lowest error has been obtained by the best SVR model, which achieved
an error of Err(fSVR) = 40.5, using L = 3853 support vectors. The training has
been realized with D = 2, r = 0.1, ε = 0.01, and C = 1.

The distribution of the test error with respect to the hour of the day and
the period of the year for the ELM and SVR models are reported in Figs. 9
and 10, respectively. Since the test set does not include all the possible time
combinations, the error have been reported averaging those of seven consecutive
days. It can be noticed that both the distribution are very similar (although
the SVR distribution is slightly smoother); the error is reasonably low in the
most of the domain, with few noticeable exceptions.

For the sake of comparison, we challenged the predictor on datasets purged
of temporal references. The performance achieved in this situation have been
reported in Table 2, as Err(f∗). It can be noticed that the error significantly
improves. Moreover, the dimension of the input space also increases (D = 7,
for all the models).
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Figure 9: ELM test error distribution. In panel (a), the average test error achieved in all the
trials is reported with respect to the day of the year and the hour. The error is almost uniform
on the domain, although it slightly follows the seasonal and daily variability. In panel (b), the
estimated probability density function of the test error (which standard deviation is 52.0).
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Figure 10: SVR test error distribution. In panel (a), the test error is reported with respect
to the day of the year and the hour. The error is almost uniform on the domain, although
it slightly follows the seasonal and daily variability. In panel (b), the estimated probability
density function of the test error (which standard deviation is 55.9).
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5. Discussion

5.1. Distribution of the prediction error

Figure 7 shows the distribution of the prediction error of AR, ARMA and
ARIMA models for the local prediction experiment. They are very similar and,
in particular, the peaks in the error in Figs 7a–c are in the same temporal
positions, which means that the corresponding values in the dataset are quite
departed from the usual radiation pattern. Similar considerations are also valid
for the comparison of Figs. 9 and 10, where the distribution of the error of ELM
and SVR models for remote prediction are represented.

5.2. Sensitivity of the hyperparameters

While Fig. 7 shows the substantial equivalence of the autoregressive predic-
tors, Figs. 11 and 12, show the robustness of the optimal pool of hyperparame-
ters selected through cross validation. In these figures, the testing error for all
the combinations of the hyperparameters are reported as circles.

In Fig. 11a, the performance of the AR models for each value of p is repre-
sented. It can be noted that the testing error decreases step-wise as the number
of previous values used for the estimate increases, and, in particular, that drops
in the error can be found around multiples of 24 hours. This is intuitively
explained by the 24 hours seasonality of the dataset. Although the error can
possibly decrease for larger values of p, the search has been stopped because
of the long time consumed by the computation of the model parameters for a
large values of p. Besides, for large values of p, numerical errors can arise in
the optimization routine, which results in failure in the estimate of the model
parameters. In fact, it can be noted that in the graph some testing errors are
missing (e.g., for p = 60).

In Fig. 11b–c, the performance of the ARMA models with respect to the
values of p and q are represented. The solid line connects the error for each
value of p and q when, respectively, q = 19 and p = 24, i.e., the behavior of
the error when one hyperparameter is fixed to the optimal value. It can be
noticed that, although the the variance of the error tends to decrease with the
increase of both p and q, the testing error does not exhibit a stable trend. This
means that the solution is not very robust: for a different randomization of
the validation and the testing sets, the best model could be characterized by
different values of p and q. In particular, the error tends to decrease when p
increases. Like for the AR model, larger values of p could be considered, but
at large computational cost and numerical instability of the model parameters
estimate.

In Fig. 12a–c, the performance of the ARIMA models with respect to the
values of p, d, and q are represented. In each graph, the solid line represents the
error as a function of the considered hyperparameter, when the other two are
fixed at their optimal value. Although the error variance appears to be larger
than in the ARMA model, the testing error becomes closer to the minimum for
a large number of combinations of the parameters. For the p hyperparameter,
it is clear from the graph that for value of p greater than 14, the performance
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Figure 13: Test error (averaged over five trials) wrt. the ELM hyperparameters.

of the predictor tends to improve (circles are more dense in the region close to
the minimum). Larger values of p has not been considered in the experiment
because of the increase in computational time and the numerical instability of
the optimization procedure. The differencing parameter, d, that characterize
ARIMA with respect to the other models here considered, shows a slight im-
provement in the prediction performance when it is assumed to be equal to one
(the distribution of the error seems to be more sparse for higher values of d).

In Fig. 13, the test error achieved with all the challenged ELM models and
for all the trials are reported with respect to the hyperparameter values used for
the training. In order to understand the influence of the single hyperparameter
on the performance of the ELM network, the graph of the error (averaged on
the five trials) achieved using the hyperparameter values that achieved the best
validation error with respect to the value of the considered hyperparameter is
also plotted. In particular, Fig. 13a shows the error wrt. the number of previous
values in input. It should be noticed that the minimum is here achieved for the
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Figure 14: Test error wrt. the SVR hyperparameters.
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value D = 1, while the best ELM model has D = 2. This is due to the fact
that the best model is selected using the validation dataset, while here the
performance on the test dataset are reported. Again, this is a symptom of the
variability of the dataset: with another randomization the best model could be
different. However it should be noticed that the excursion in the error for the
different values of D (less then ten) is well below the standard deviation of the
error (57) reported in Table 2. The analysis of the other subpanels suggests that
the optimal values found the the other parameters, instead, are more robust. In
particular, the Fig. 13b shows the error wrt. the size of the ELM network. It
can be noted that although the minimum error for each value of L is close to the
absolute minimum, the distribution for the higher value of L (1000, 2000, and
3000) seems to be more sparse. This means that the opportunities offered by
the large number of units are not fully exploited by the distribution laws chosen
for the neuron parameters (A and B). Hence, when the number of neurons is
large, a great number of them is wasted.

In Fig. 14, the test error achieved with all the challenged SVR models are
reported with respect to the hyperparameter values used for the training. The
distribution of the errors wrt. the hyperparameter D (Fig. 14a) is similar to
that of the ELM model (reported in Fig. 13b); hence, similar considerations
holds also in this case. Also the distributions wrt. r (Figs. 13d and 14d) show
that for values lower than 0.1 the error greatly increases, while mildly increases
for larger values.

5.3. Comparison of the two esperiments output

Although the two experiments have been conducted under different experi-
mental condition and with two different datasets, to some extend they can be
compared. This is due to the fact that they have been conducted on the same
geographical area and using data measured in largely overlapping period of time.

The first common property is that the prediction models in both the exper-
iments achieve an accuracy that is almost the half of the persistence accuracy.
In the second experiment the ratio can seem also better, but it decreases when
the results of the prediction without the time information are considered. The
second consideration is that a simple predictor as the k-NN is able to achieve
performance comparable to those of more sophisticated models. In fact, the
difference in the mean of the testing error of all the models is well below the
standard deviation of the error (hence, such a difference cannot considered re-
ally meaningful). It should be noted, however, that since the k-NN stores all
the training data, it makes use of more actual parameters than the other models
and hence it is impractical for real implementation.

5.4. Comparison with other approaches

The comparison of our experiments with the results in literature is a difficult
task due to the differences in both the experimental conditions and the target
application. The experimental condition can differs for the geographical position
and the historical data period. The target application, instead, affects the
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comparison because different applications may induce the use of different error
metrics to measure the performance of the predictors. Ultimately, this is the
main obstacle to the comparison.

For instance, if for the target application the overall energy production is
the goal, the absolute error like in (9) is the proper performance metrics, since
its value is directly related to the economical cost of the prediction error. Differ-
ently, a normalized error like the mean absolute percentage error (MAPE) used
in [15] is suitable to make comparison among different datasets. Percentage
error are also used, for instance, in [14, 16, 17].

Considering the maximum value of the solar radiation in the considered pe-
riod as a normalization factor, the relative error achieved by both the ELM
and the SVR predictors is about 5%. Since according to [15], a relative er-
ror below 10% means high prediction accuracy, while 10%≤MAPE≤20% means
good prediction, 20%≤MAPE≤50% means reasonable prediction, MAPE≥50%
means inaccurate forecasting, our predictors have a more than satisfactory per-
fomance.

6. Conclusion

In this paper two experiments for the solar radiation prediction have been
described and discussed. In the first experiment, the data from a local mea-
surement station have been used to build a model of the solar radiation. In
the second one, the data from a remote public weather station have been used
to predict the solar radiation on a ten kilometers distant site. In both the
experiments the challenged models provided a comparable average prediction
error, well below the persistence error and compatible with the results found in
literature.

These results allow to consider as promising the use of data captured from
remote stations for both short-term prediction and maintenance scheduling. In
fact, once the ability to use data from remote public weather stations to predict
the radiation condition in the plant site will be assessed, this value can be used
to compare the theoretical power output of the solar panels through a suitable
model and to identify through a cost analysis the optimal scheduling of the
maintenance intervention.
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