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Abstract—Support Vector Regression is based on a linear
combination of displaced replicas of the same function, called
kernel. When the function to be approximated is non-stationary,
the single kernel approach may be not effective, as it is not
able to follow the variations in the frequency content in the
different regions of the input space. The Hierarchical Support
Vector Regression (HSVR) model presented here aims to provide
a good solution also in these cases. HSVR is constituted of a set of
hierarchical layers, each containing a standard SVR with Gaus-
sian kernel at a given scale. Decreasing the scale layer by layer,
details are incorporated inside the regression function. HSVR
has been widely applied to noisy synthetic and real datasets
and it has shown the ability in denoising the original data,
obtaining an effective multi-scale reconstruction of better quality
than that obtained by standard SVR. Results compare favorably
also with multi-kernel approaches. Furthermore, tuning the SVR
configuration parameters is strongly simplified in the HSVR
model.

Index Terms—Support Vector Machine, Support Vector Re-
gression, Multiple kernels, Multi-scale regression.

I. INTRODUCTION

Support Vector Machines (SVM) have been introduced as a
powerful method for classification [1][2]. They are based on
setting the classification boundary, which divides the points
having different labels, such that the distance of the boundary
from the closest data point is maximized. The boundary be-
tween classes is defined by a hyperplane computed as a linear
combination of a subset of the data points, called Support
Vectors (SV). To identify the SVs and their associated coeffi-
cients, the problem is reformulated as a quadratic optimization
problem that, being convex, guarantees the uniqueness and the
optimality of the solution.

It was soon recognized that the method was able only to
classify the data that exhibit linear separability, which is not
sufficient for many applications. For this reason, a mapping
machinery that transforms the classification problem from its
natural space into a higher dimensional space, called feature
space, is used. Goal of this mapping is to obtain linear separa-
bility in this higher dimensional space. This is not an obstacle
for the computation of the solution since the determination
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of the coefficients does not require the computation of the
mapped value of any single data points, but only the value
of the inner product of mapped data pairs, that is computed
applying a kernel function to the pairs. Therefore mapping is
only implicitly computed (a scheme known as “kernel trick”);
the kernel output gives a similarity measure of a data pair.

The SVM approach was more recently extended to regres-
sion problems [3], domain in which it was Support Vector
Regression (SVR). The output of a SVR is computed as

Ysvr(x) =

n∑
i=1

βi k(x; xi) + b (1)

where βi and xi are respectively the weight and the position
of each SV, n is the number of SVs, b is the bias and k(·; xi)
is the kernel function corresponding to xi. In the standard
approach, a single kernel function is used, which shape is
characterized by a set of parameters. Like other methods based
on kernels, the quality of the regression depends on the choice
of the kernel function and of its parameters, which must
be suitable to the current data. In general, this choice, also
known as kernel selection [4], is a difficult task: the kernel is
often chosen by trial and error, genetic optimization or user
expertize.

Besides, the choice of a single kernel function can be
questioned. In fact, when the data are characterized by space
varying frequency content, the use of a single kernel is not
able to produce accurate solutions and approaches based on
multiple kernels have been recently investigated [5][6][7][8].
In [5][6] the kernel is defined as a mixture of predefined basic
kernels. In this case, the form of the output becomes:

Ysvr(x) =

n∑
i=1

(βi

m∑
j=1

µjkj(x, xi)) + b (2)

where the type and the number, m, of kernels, kj(·; ·), used
in the linear combination have to be chosen a priori and the
mixing coefficients, µj , are determined in the optimization
phase. However, even in this case, the solution is a linear
combination of copies of the same (multiple) kernel function.

The problem of using a single kernel is highlighted in the
example reported in Fig. 1, similar to that discussed in [9].
The data points have been sampled on the curve h(·)

h(x) = sin(2πx4) + x (3)
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Fig. 1. (a) A function with non-stationary frequency content, and (b)–(c) two SVR using a single Gaussian kernel with two different scale parameters, σ.
(b) A large scale kernel provides a smooth regression on the samples taken from the function in (a), but is unable to reconstruct the details, while (c) a small
scale kernel suffers of overfitting providing spurious oscillations and poor generalization.

whose local frequency content increases with x. The sam-
pling step is decreased with the local frequency according to

1
120x . The regression computed with a large kernel fails in
reconstructing the details as shown in Fig. 1b. On the other
side, using a kernel with a small scale, such as the one used
in Fig. 1c, the regression is prone to overfitting and lacks
generalization in scarcely sampled regions.

A possible solution is to adapt the multiple kernel to
the local frequency content as suggested in [7][8] where a
localized multiple kernel model is presented. In this case, the
parameters µi become a function of both the SVs position,
xi, and the data position, x, and therefore µj = µj(xi, x) in
(2). Optimization becomes more complex, but an elegant two
passes solution is shown in [8].

A different solution is based on using the same kernel
with different scales. In [9] the solution is computed using
a set of groups of kernels, where the kernels in each group
have the same scale. The optimization problem is written
to take into account also the multiple scales of the kernel
inside the optimization function. This increases significantly
the computational complexity and the method is just suitable
for small size problems. Furthermore it requires the a priori
selection of the set of the different kernel scales.

In [10] the multiple scales are originated from a wavelet
decomposition. The approach requires that the coefficients of
all the levels are estimated together, which leads again to a
very large number of parameters for the optimization engine.

A more manageable solution can be obtained when the
regression is built through hierarchical iterative approximation.
Such approach has been explored both in the neural networks
[11][12][13] and in the machine learning domains [14]. In
the neural networks domain, a self-organizing multi-scale
model, called Hierarchical Radial Basis Function (HRBF),
was proposed in [12]. Thanks to the allocation of units with
smaller scales only where the data contain higher frequencies,
a uniform residual error is guaranteed with the use of a limited
number of units. This principle has been explored also in
machine learning domain. In [15] a first approximation at
a very coarse level is first produced with a SVR featuring
a kernel with a large scale and then refined using kernels
with smaller scales. However, in such approach the number
of SVs becomes quickly extremely large with prohibitive

computational time. To reduce the number of training points
and hence the number of SVs, iterative partitioning of the
input space was introduced and the training set formed of the
centroids of the samples inside each partition. This procedure
might reduce the quality of the input data, especially for data
spaces of high dimensionality.

Another approach is based on boosting, originally intro-
duced in the classification domain [16], and then extended
to regression [17][18]. Boosting is a technique that iteratively
uses suboptimal solvers (called weak learners) for increasing
the accuracy of the regression. Recently [14], boosting has
been extended to multi-scale regression: one basis function at
a time is added, to decrease the global error. Each time, the
parameters are updated. The scale is decreased when there is
no error reduction with the actual scale. This produces a very
long configuration time.

Another major problem with SVR, even more impor-
tant when using multi-scale kernels, is the number of
SVs. This problem has been studied in several works
[19][20][21][22][23] targeted to classification. These ap-
proaches can be classified into two main families. The first
redefine the optimization problem in order to control the
number of SVs inserted [20][21]. The second family realizes
the reduction of SVs in two steps: the standard training of
the SVM is performed first and then a pruning procedure
is applied; in general, pruning methods involve a tradeoff
between SVs reduction and accuracy loss.

In [19] the set of row vectors of the kernel matrix (K in (6))
is first partitioned using K-means algorithm. Pruning operates
cluster-wise, deleting a row vector if it is similar enough to
its orthogonal projection in the space spanned by the others
vectors of its cluster. After pruning the coefficients of the SVs
left have to be recomputed. Although this step requires only
0.006 of the optimization time (for each SV pruned), when a
medium/large number of SVs is present (> 100 SVs) pruning
time exceeds that of training.

In [24] the hyperplane found by the SVM is seen from
a mechanical point of view. Each SV exerts a force on the
hyperplane and the minimum of the optimization problem
is determined when the system is in an equilibrium state.
The pruning is operated by substituting two SVs with a SV
that exerts an equivalent force with the rationale that, after
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substitution, the system is, again, in an equilibrium state.
However, the new SVs, generally, do not exert exactly an
equivalent force of those deleted and an approximation is
accepted. The selection of the pairs of SVs for substitution is
performed by means of a greedy heuristic procedure: the pair
such that their substitution determines the minimum deviation
from the previous solution is selected. The stop criterion is
based on monitoring the accuracy loss for each replacement:
when it goes over a given threshold, the pruning procedure is
stopped. This approach has the advantage of controlling the
loss of accuracy in each pruning step, but, as the previous one,
it is very computational expensive.

We present here a novel approach that adapts the local scale
to that of the data keeping the number of SVs and configu-
ration time comparable with classical SVR. The approach is
inspired to the HRBF model [12] and is based on interleaving
a regression estimate step with a pruning step, in a novel way.

The paper is structured as follows. After reviewing the
SVR model in Section II, we introduce our HSVR model in
Section III and show some results in Section IV. We discuss
them in Section V and draw some conclusions in Section VI.

II. SUPPORT VECTOR REGRESSION

Let S = {(x1, z1), ..., (xn, zn)} be the set of n data points
that constitute the training set, where xi (1 ≤ i ≤ n) belongs
to X ⊆ RD and zi ∈ Z ⊆ R. Aim of SVR [3] is to find a
regression function, f : RD → R of this kind:

z = f(x) = ωTφ(x) + b, (4)

where φ(x) maps a data point x into a higher dimensional
space, called feature space. The mapped point is then projected
over Z through the weights ω and the threshold constant b,
b ∈ R, which can be found solving the optimization problem:

min
ω,b,ξ+i ,ξ

−
i

1
2ω

Tω + C
∑n
i=1 ξ

+
i + C

∑n
i=1 ξ

−
i (5)

s.t. zi − ωTφ(xi)− b ≤ ε+ ξ+i
ωTφ(xi) + b− zi ≤ ε+ ξ−i
ξ+i , ξ

−
i ≥ 0, i = 1, . . . , n

where ε ≥ 0 determines a “tube” around the regression curve
inside which the points are considered sufficiently close to the
curve itself and therefore do not contribute to the cost function
(ε-insensitive loss function, see Fig. 2). Stated in a different
way, ε controls the admissible uncertainty on the data points.

The parameter C adjusts the tradeoff between the closeness
of the solution to the data points and its smoothness. ξ+ =
{ξ+1 , . . . , ξ+n } ∈ Rn and ξ− = {ξ−1 , . . . , ξ−n } ∈ Rn are slack
variables that measure the distance of each data point from the
ε-tube: they take into account that some points may be distant
more than ε from the regression curve.

Introducing the Lagrange multipliers α+
i on the constraints

corresponding to ξ+i and α−i on those corresponding to ξ−i ,

−ε ε

Loss

Err

Fig. 2. Loss function commonly used for SVR: data points that are close to
the regression curve for less than ε do not contribute to the penalization of
the current solution.

the following dual problem is obtained:

max
α+,α−

− 1
2 (α

+ − α−)TK(α+ − α−) (6)

−ε
∑n
i=1(α

+
i + α−i ) +

∑n
i=1 zi(α

+
i − α

−
i )

s.t.
∑n
i=1(α

+
i − α

−
i ) = 0

α+
i , α

−
i ∈ [0, C], i = 1, . . . , n

where α+ = {α+
1 , . . . , α

+
n } ∈ Rn and α− =

{α−1 , . . . , α−n } ∈ Rn are the dual variables, and K ∈ Rn×n,
Ki,j = k(xi, xj) [3], is the kernel matrix evaluated from a
kernel function k : X ×X → R.

To determine α+, α−, and b non-linear optimization engines
are used, like [25] and [26]. Using the stationary Karush-
Kuhn-Tucker (KKT) conditions derived from (6) and introduc-
ing the new variables βi = α+

i − α
−
i , the regression function

(4) can be rewritten as:

f(x) =

n∑
i=1

βi k(x, xi) + b (7)

where f(·) is expressed as a linear combination of replicas
of the kernel function, k(·, ·), relative to each point xi. This
substitutes the mapping function, φ(·) used in (4).

For the KKT conditions and (6) the βi coefficients have to
satisfy the following relationships:

|βi| = 0, |zi − f(xi)| < ε

|βi| ∈ [0, C], |zi − f(xi)| = ε

|βi| = C, |zi − f(xi)| > ε

(8)

The points that have non-zero β coefficients are called support
vectors (SV). In practice, a tolerance threshold δ, is introduced
to allow finding a reasonable number of points on the tube
boundary, and relationships (8) are substituted by:

|βi| = 0, |zi − f(xi)| < ε− δ
|βi| ∈ [0, C], ε− δ ≤ |zi − f(xi)| ≤ ε+ δ

|βi| = C, |zi − f(xi)| > ε+ δ

(9)

The SVs that lie outside the ε-tube are called “bounded” and
the absolute value of their associated β is set equal to C. As
a result, the sum in (7) can be limited only to the SVs.
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Among others, the most commonly used kernel for regres-
sion is the Gaussian kernel:

k(x, xi) = G(||x− xi||;σ) = exp

(
−||x− xi||

2

σ2

)
(10)

The parameter σ affects the extension of the influence of
each support vector, xi, in its neighborhood. Using Gaussians
of very small scale would allow reconstructing the finest
details, while a large scale kernel would provide a rough
approximation. However, the use of a single scale kernel may
not be the best choice when the dataset is sampled from
a non stationary source that generates data over a smooth
manifold in some regions, and data with rapid variations in
others (Fig. 1a). In fact, when operating with a kernel with a
small scale, the reconstruction of smooth regions may induce,
in the best case, a waste of computational resources. Moreover,
when the training samples are too spaced with respect to
the scale parameter, the resulting regression does provide
poor generalization. On the other hand, when a kernel with
a large scale is employed, rapidly varying regions could be
reconstructed only at the price of using a very large number
of SVs and a very large value of C is required (which increase
the computational cost and can increase the overfit of the data).

An approximation scheme that would adapt, for each SV,
the scale of the kernel to the frequency content of the region
in which the SV is situated, represents a better solution. This
is the approach proposed in the following.

III. THE HSVR MODEL

The Hierarchical Support Vector Regression (HSVR) model
is composed of a pool of L layers, each constituted of a
single-kernel SVR, {al(·)} characterized by a proper scale.
The different layers are organized as a hierarchy where the
scale, determined by a parameter, σl, decreases when the layer
number increases, that is σl ≥ σl+1 holds. The output of the
HSVR model is obtained as the sum of the output of the layers:

f(x) =

L∑
l=1

al(x; σl) (11)

When the kernel is the Gaussian function, the output of each
l-th layer can be written as:

al(x;σl) =

Ml∑
k=1

βl,kG(||x− xl,k||;σl) + bl (12)

where Ml is the number of SVs, βl,k is the coefficient of the
k-th SV, and bl is the bias of the l-th layer. Therefore, the
l-th SVR layer realizes a reconstruction up to a certain scale,
determined by σl. HSVR configuration proceeds adding and
configuring one layer at a time, proceeding from the layer
featuring the largest scale to that featuring the smallest one.

The first layer is trained such that the distance between
the regression curve produced by the first layer itself and
the data is minimized (5). All the other layers are trained to
approximate the residual that is the difference between the
original data and the output of the HSVR model produced

by the layers configured up to that stage. The measure of the
residual for each layer, rl, is given as:

rl(xi) = rl−1(xi)− al(xi) (13)

The l-th layer will be configured with the training set, Sl,
defined as: Sl = {(x1, rl−1(x1)), ..., (xn, rl−1(xn))} and
r0(xi) = zi is assumed.

The value of the scale parameter of the first layer, σ1, is
somehow arbitrary; for instance it can be chosen proportional
to the size of the input domain (e.g., the length of the
diagonal of the data bounding box). Also the decrease rule
of σ can be arbitrary. Generally, halving the value of σ for
each layer (σl+1 = σl

2 ), as done in wavelet decomposition,
produces satisfactory results. If the σ decreases more slowly
the accuracy of the solution could improve, but the number
of layers (and the number of SVs) increases as well. New
layers are added during training until a given stopping criterion
is satisfied (e.g., when the validation error does not decrease
anymore).

Two other parameters are defined for each layer: Cl, the
tradeoff between the regression error and the smoothness of
the solution, and ε, which controls the amplitude of the ε-
insensitivity tube around the solution itself.

Although few attempts to determine a proper value of C
have been proposed in regularization theory [27][28], C is
usually experimentally set by trial and error. In this work, Cl
is chosen, for each layer, as J times the standard deviation of
the residuals used to configure the lth layer:

Cl = J std(rl−1(xi)) (14)

with the following motivation. First, we notice that as Cl is
the value assumed by the Lagrange multipliers associated to
the SVs of the l-th layer ((6) and (8)), its value represents the
maximum weight that can be associated to each kernel in (7).
For the input space regions where the Gaussians associated
to SVs have no significant overlap (this depends both on
the Gaussian scale parameter and on the data density), the
value of Cl is approximately the maximum value that can
be assumed by the regression function in those regions as
the Gaussian kernel maximum is equal to one (10)). For this
reason, Cl should be large enough to allow the regression
curve reaching the maximum or minimum value of the data
points inside the whole input domain. On the other hand, a too
large value of Cl could favor overfitting. Experimental results
on different datasets have suggested to choose the value of J
in the interval (0, 5], that represents a tradeoff between these
two requirements. Inside the above range, results are largely
independent on the value of J .

Similar to SVR, the ε parameter cannot be determined from
the dataset. ε could be set proportional to the accuracy required
for the regression as its value is related to noise amplitude [29].

A. Training set reduction

The drawback of the previous scheme is the total number
of SVs, which is significantly higher than in standard SVR.

Moreover, experiments shows that in HSVR the layers with
a larger value of σ have a number of SVs similar to the layers
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Fig. 3. Data points reduction. A smooth function is shown in thin line in both panels. A set of 100 points have been randomly sampled over it and a
Gaussian random quantity has been added to them. These points are displayed as dots. Thick dots represent all the points used by the optimization engine to
determine the regression represented as a thick line. Circled dots represent the SVs. In panel (a) the SVR curve obtained through standard SVR (ε = 0.416,
C = 9.67, σ = 1.66, Errmean = 0.427) and in panel (b) the regression curve obtained considering only the points in S′l (15), where Errmean is the mean of
the absolute reconstruction error. Notice that in the latter case only 32 data points are used in the optimization procedure (the unused points are shown as
small dots). The number of SVs drops from 49 to 5. Both regression curves are contained inside a ε-tube around the real function.

with a smaller σ. This appears in contrast with common sense,
as fewer units should be required to realize a reconstruction at
a larger scale, but it is due to the fact that all the data points
distant from the regression curve by more than ε are selected
as SVs (cfr. Fig. 3). Hence, in the first layers, where the HSVR
output has a low frequency content, many data points lie far
from the curve and are still selected as SVs, thus leading to
an unnecessary high number of SVs.

To avoid this, after each layer has been configured, a pruning
step is carried out to reduce the number of the SVs. The cost
function (6) is then minimized a second time, considering only
the reduced training set to obtain the final approximation for
each current layer.

To reduce the number of the SVs, we first notice that the
distance of a training point from the regression curve measures
the suitability of the current curve to describe the information
conveyed by that data point. In this sense, points too distant
from the regression curve cannot be “explained” by the curve
and their utility can be questioned: they can be regarded as
outliers. For these reasons, an acceptable approximation of the
regression curve should be obtained using only those points
that lie close to the curve.

This intuition has been confirmed experimentally. We have
observed that the quality of the regression at a given scale
does not degrade significantly if we compute the regression
considering only the points close to the ε-tube (cf. Fig. 3).
The closeness of a point to the ε-tube can be assessed only
after the computation of the regression itself, that is carried
out considering all the training points. Afterwards, in a second
pass, the regression is computed again considering only the
points close to the ε-tube. More formally, let us consider the
l-th layer and the regression computed for that layer, al(x),
using the complete training set, Sl. Let us define S′l the set
constituted only of those SVs which lie on the border of the
ε-tube and those whose distance from al(x) is less than ε/2

(i.e., those that belong to the most internal part of that tube):

S′l =
{
(xi, rl−1(xi))

∣∣∣ ||rl(xi)| − ε| < δ

∨ |rl(xi)| <
ε

2

}
(15)

where δ is the tolerance parameter that determines the thick-
ness of the ε-tube margin (9).

Therefore, we have structured the configuration phase of
each layer in two sequential steps: the first one provides the
regression curve, al, considering all the training points, while
the second one, a′l, realizes an efficient representation of the
regression curve by considering only a selected subset of these
points. It should be noticed that when pruning takes place, a′l
substitutes al in (11) and (13).

In order to cope with the diminished points density in S′l ,
the value of the parameter Cl is increased proportionally in
the second optimization step:

C ′l = Cl
|Sl|
|S′l |

= J std(rl−1(xi))
|Sl|
|S′l |

(16)

It should be remarked that, similarly to [12][13], any
reconstruction error induced by the information loss due to
the reduction of the training set will flow into the residual,
rl, which is used to configure the next layer of the model.
Therefore such error is not critical, as it will be taken care
by the next layers. The reduction procedure could be applied
also to standard SVR. However, as in standard SVR there is
no chance to recover the error introduced by pruning, more
care should be taken in selecting the points in the reduced
training set. Results on the reduction procedure is discussed
in Section V.

IV. RESULTS

We report here the results obtained using the HSVR model
on both simulated and real data and compare them with those
obtained with standard SVR [3], in terms of number of SVs,
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TABLE I
ACCURACY ON SYNTHETIC DATASET

Errmean Errstd RMSE #SVs Time [s]

HSVR 0.0282 0.0262 0.0385 1545 0.308
HSVR (red.) 0.0313 0.0338 0.0460 243 0.382

SVR 0.0816 0.167 0.186 149 0.451

computational time and accuracy. The accuracy is assessed
through the root mean square error (RMSE), and the mean
absolute error (Errmean) and its standard deviation (Errstd).
These are computed over a test set, different from the training
one. A third set, different from both, called validation set, is
used for choosing the optimal value of the parameters, which
are ε, σ, and C for the standard SVR model, and of ε and
C only for the HSVR model. C is set according to (14) and
(16) and the value of σ for the first layer, σ0 , is set equal to
the size of the input domain for the HSVR model in order to
cover the entire domain.

The validation set is used also to decide when the growth
of the HSVR model has to be stopped: no new layer is added
when the validation error does not decrease anymore and the
last layer is discarded, as it can easily contribute to overfitting.

The optimization problem in (6), which arises for both
the hierarchical and the standard SVR approach, was solved
through the LibCVM Toolkit Version 2.2 [25]. This software
has shown the same accuracy of SVMlight [26] (that is one of
the most used software packages for SVM) with a substantial
saving in computational time. This was measured, on a PC
equipped with an Intel Pentium 4, at 2.40 GHz, 512 KB of
cache, and 512 MB of memory.

A. Regression on synthetic data

The space-varying function h : R → R, defined in (3) and
plotted in Fig. 1a, is considered here as it allows stressing the
limits of the single scale SVR approach. The training dataset
has been obtained sampling (3) in 252 points such that the
sampled data density is proportional to the local frequency
content, and adding a random uniform quantity in [−0.1, 0.1]
to simulate sampling error. The regression has been evaluated
using a test set and a validation set, each composed of 500
points sampled from h(·) with a uniform distribution.

The accuracy of standard SVR was evaluated on the vali-
dation set for all the possible combinations of the following
values of the parameters ε, σ, and C:

ε ∈ {0.0, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2} (17)

σ ∈ {0.015, 0.022, 0.0313, 0.0625, 0.125, 0.25} (18)

C ∈ {0.5, 1, 1.5, 2, 5, 10, 20} (19)

and the best SVR is considered in the comparison. This is
shown in Fig. 4a and it was obtained with ε = 0.05, σ =
0.022, and C = 20. Notice the poor approximation on the
right side of the curve and the spurious oscillations on the left
side. These are not present in the curve provided by the HSVR
model shown in Figs. 4b–c.
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Fig. 5. (a) Mean test error and (b) number of SVs used, as a function of ε.
For reference, in panel (a) the value of ε has been reported as a dot-dashed
line in panels (a)-(c).

This observation is supported by the quantitative data re-
ported in Table I on the accuracy of the different models.

The computational time for the HSVR model is referred to
the entire process of configuring the 9 layers required before
the growth stops, while for the SVR model it does not consider
the process for searching for optimum value of ε, C and σ,
but is referred only to the computation of the solution with
the best parameters, ε = 0.05, σ = 0.022, and C = 20.

If we considered also the search for the optimal value of
the parameters, the total configuration time would increase
significantly to 43.8 s. For sake of comparison, the configura-
tion time for HSVR increases to 3.27 s and 4.49 s for HSVR
without and with reduction, to test the eight values of ε.

Enlarging the search space of C up to 100,000, the accuracy
of SVR improves. In fact, the test error decreases from 0.0816
down to 0.0517, although it remains higher than that of HSVR.
However, the time required to compute this solution increases
enormously to 3,129 s.

We have also investigated the role of ε. As it can be seen in
Fig. 5, the test error produced by the HSVR model is below
ε for ε > 0.05. This is much smaller of the optimal value of
0.075. This means that the data points, on average, lie inside
the ε-tube around the curve. Instead, for SVR the optimal value
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Fig. 4. Reconstruction provided by standard SVR (a) with the best parameters (ε = 0.05, σ = 0.0313, C = 20). Notice the poor approximation on the
right side of the curve and spurious oscillations on the left. Reconstruction provided by HSVR (b) and HSVR with data points reduction (c) with ε = 0.075.
The dashed lines limit the ε-insensitive region (i.e., the data points that lie inside this region do not increase the cost function value (5)).

TABLE II
PERFORMANCE OF THE HSVR MODEL (ε = 0.075) ON THE SYNTHETIC DATASET

HSVR HSVR red.
# Layer Errmean Errstd RMSE #SVs (tot.) time [s] Errmean Errstd RMSE #SVs (tot.) time [s]

1 0.479 0.333 0.583 237 (237) 0.017 (0.017) 0.520 0.302 0.602 3 (3) 0.017 (0.017)
2 0.458 0.337 0.569 240 (477) 0.02 (0.037) 0.453 0.341 0.567 4 (7) 0.018 (0.035)
3 0.412 0.368 0.552 227 (704) 0.019 (0.056) 0.436 0.361 0.566 6 (13) 0.02 (0.055)
4 0.359 0.366 0.511 220 (924) 0.02 (0.076) 0.373 0.380 0.532 9 (22) 0.021 (0.076)
5 0.294 0.367 0.470 201 (1125) 0.047 (0.123) 0.321 0.385 0.501 15 (37) 0.052 (0.128)
6 0.212 0.329 0.391 171 (1296) 0.078 (0.201) 0.237 0.344 0.418 35 (72) 0.102 (0.23)
7 0.104 0.221 0.244 131 (1427) 0.065 (0.266) 0.141 0.273 0.307 51 (123) 0.073 (0.303)
8 0.0328 0.0390 0.051 82 (1509) 0.036 (0.302) 0.0367 0.0446 0.0577 79 (202) 0.067 (0.37)
9 0.0282 0.0262 0.0385 36 (1545) 0.006 (0.308) 0.0313 0.0338 0.046 41 (243) 0.012 (0.382)

of ε is 0.05, which is smaller than the test error achieved
(0.0816). This means that a relatively large number of data
points are not contained inside the ε-tube as can be seen in
Fig. 4a. Moreover, as expected, the number of SVs decreases
with the increase of ε.

The increase in the detail of the HSVR model is shown
in Fig. 6, where the output of each layer is shown. Notice
that data reduction makes the approximation smoother in the
first layers, but smoothing tends to disappear in the last layer.
This is highlighted in Fig. 7 where the test error obtained with
data reduction is superimposed to that obtained without data
reduction. Quantitative figures are summarized in Table II.

B. Regression on real data

Figure 8 shows a typical point cloud sampled from a
real artifact (a panda mask) through a 3D scanner [13]. As
the points have been sampled from a single point of view,
they belong to a 2.5D surface that can be described as a
R2 → R function. These points are therefore suitable to
SVM regression. The dataset is composed of 22, 000 points,
18, 000 of which, randomly chosen, are used for training,
2, 000 for validation, and 2, 000 for testing. Since the input
features can be measured in different domains, the data are
often normalized before optimization. Here, each coordinate
of the points was normalized to fit inside [−1, 1].

Besides, in order to limit border effects, validation and test
error has been computed in the inner region of the dataset,

considering only points distant from the closest boundary by
more than 0.1.

SVR was computed with all the combinations of the fol-
lowing values of the parameters (ε, σ, and J):

ε ∈ {0, 0.0025, 0.005, 0.01, 0.02} (20)

σ ∈ {0.188, 0.0938, 0.0469, 0.0234} (21)

J ∈ {0.5, 1, 2, 5} (22)

The parameter C, similarly to (14), was set proportionally to
the standard deviation of the height, z, of the points through
the proportionality factor J :

C = J std(z) (23)

The HSVR was computed using all the combinations of the
values of J in (22) and ε in (20). The surface associated to
the lowest test error is shown in Fig. 9a–c for SVR and HSVR
with and without reduction. However, although sampled points
lie inside the ε-tube region, the results are not nice due to
high frequency variability. A better visual appearance can be
obtained only from HSVR models, discarding a few of the last
layers. This is clearly evident in Fig. 9e–f.

The test error and number of SVs for HSVR and SVR,
averaged over five different randomizations of the dataset
have been reported in Fig. 10. For each ε the best, the
average and the worst case are plotted with respect to the
other configuration parameters. The best results are reported
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Fig. 9. Panels (a), (b), and (c) show the surfaces that determine the lowest test error for SVR, HSVR and HSVR with reduction. The parameter used were
J = 0.5, ε = 0.005 and σ = 0.0469 for SVR, J = 0.5 and ε = 0.01 for HSVR, and J = 1 and ε = 0.01 for HSVR with reduction. Although these
surfaces are optimal in terms of test error, their visual appearance is not of good quality. A better result is shown in panels (d), (e), and (f). In (d) the surface
obtained through SVR with a suboptimal set of parameters (J = 5, ε = 0.005, and σ = 0.0938) is shown. In panels (e) and (f) the surface from the same
HSVR models for (b) and (c) are used, but discarding some of the last layers (one of seven for (e) and three of ten for (f)).

TABLE III
RESULTS FOR “PANDA MASK” DATASET

Errmean Errstd RMSE #SVs time [s]

HSVR 0.0110 0.0115 0.0160 100 448 682
HSVR (red.) 0.0112 0.0119 0.0163 11 351 1 104

SVR 0.0111 0.0117 0.0161 12 442 382

in Table III that show that the best test error is similar in
all the three models (all in the range [0.0110, 0.0112]). This
consideration can be extended to all the best models obtained
for a given value of ε (Fig. 10a).

On the contrary, the average and worst case test error (com-
puted over all the other considered parameters combinations)
are much higher for SVR than for HSVR. In fact, the average
(worst) test error is 0.0113 (0.012), 0.0116 (0.015), and 0.0140
(0.019) for respectively HSVR, HSVR with reduction, and
SVR.

Although the test error for all the three optimal models is

very similar, the configuration time is very different: 682 s
for HSVR, 1,104 s for HSVR with reduction, and 382 s for
SVR. This large difference becomes smaller when suboptimal
configuration parameters are considered. In fact, average con-
figuration time is 1,024 s, 1,241 s, and 1,093 s for HSVR,
HSVR with reduction and SVR.

However, the time required to explore the parameters space
has to be added to this time. The dimensionality of this space is
smaller for HSVR, as σ has not to be considered. In the present
case, where 80 parameters combinations have been used for
SVR and 20 combinations for HSVR, a time saving of 25.4%
has been observed. In fact, for SVR the total configuration
time, including parameters space search, is 87,410 s, while for
HSVR and HSVR with pruning the total configuration time is
16,845 s and 22,168 s respectively. If we set a predefined value
of J = 1, that was almost optimal for all the analyzed data
sets, the configuration time of HSVR drops further to 4,472 s,
less than 1/20th of standard SVR.

We have challenged HSVR also on datasets reported in the
literature. Table IV summarizes the results on the “motorcycle”
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Fig. 10. Test error (a–c) and number of SVs (d–f) used by the SVR and HSVR model for the Panda dataset as a function of ε are reported for the best,
average and worst cases, with respect to the different parameter combinations (20)–(22). For reference, the value of ε has been reported as a dot-dashed line.

dataset [30]. Results of HSVR are averaged over ten different
randomizations of the data set to create different training and
test sets, and they are compared with the multi-scale approach
of [9]. We were not able to replicate the same error reported
in [9] using SVR: the error obtained by our implementation
of SVR was in fact of 0.2272 against 0.2334 reported in
[9]. This may depend on different randomizations of the data
set and/or on the different optimization engine used. In any
case, we remark that both HSVR and MS-SVR do produce
a regression error smaller than standard SVR. HSVR uses
less SVs than standard SVR demonstrating its ability to catch
local frequency content, although spending more time for the
configuration (0.003 s for SVR versus 0.011 s for HSVR);
it should be noticed that no search for the hyperparameters
has been carried out, since, for sake of comparison, we used
the same values reported in [9]. As expected, the approach
in [9] does use even less SVs but it requires solving a
global optimization problem in one pass for all the scales;
this requires a much larger configuration time and makes
this approach feasible only for small datasets. Moreover, the
number of scales has to be defined a-priori; this can lead to
over or under-fitting the data.

We have challenged HSVR also on the “housing” dataset
[31], in which data lie in a 13 dimensions manifold and
compare the results with the multi-kernel method described
in [32] in Table V. Both HSVR and MKSVR, outperform
standard SVR in terms of accuracy. We also remark that HSVR
requires a larger number of SVs with respect to both SVR
and MKSVR. However the advantage of HSVR of searching a
smaller parameters space is reflected in a shorter configuration
time (a total of 6.97 s for 125 hyperparameter combinations

TABLE IV
RESULTS FOR “MOTORCYCLE” DATASET

σ ε C #SVs RMSE

SVR 1 0.1436 10 51.8 0.2272
HSVR red. 10 0.1436 1 26.1 0.2216

SVR [9] 1 0.1436 10 49.3 0.2334
MS-SVR(E) [9] 0.7–2.8 0.1436 5 8 0.2322
MS-SVR(Q) [9] 0.7–2.8 — 5 7.5 0.2329
MS-SVR(H) [9] 0.7–2.8 0.1436 1 9 0.2329

TABLE V
RESULTS FOR “HOUSING” DATASET

σ ε C #SVs MSE

SVR 5 0.1 30 268 0.0829 (0.0262)
HSVR red. 10 0.025 5 737 0.0816 (0.0208)

SVR [32] — — — 205 0.137 (0.122)
MKSVR [32] — — — 159 0.099 (0.022)

of SVR and 5.43 s for 20 hyperparameter combinations of
HSVR).

V. DISCUSSION

The approach presented here is based on two key elements:
a multi-scale incremental approximation and a reduction of the
number of the data points passed to the optimization engine.
The latter allows reducing also the number of SVs.

As clearly shown in Fig. 4a and Table I the use of a single
kernel function comes short in providing a regression of good
quality when the structure of the data changes in the input



10

0

2

4

a1(x)

−1

0

1
a2(x)

−1

0

1
a3(x)

−1

0

1
a4(x)

−1

0

1
a5(x)

−1

0

1
a6(x)

−1

0

1
a7(x)

−1

0

1
a8(x)

0 0.5 1 1.5 2
−1

0

1

a9(x)

x

Fig. 6. Reconstruction operated by the different layers of the HSVR model
when all the data points (dashed line) and when only the points in S′l
(continuous line) are considered . The residual of each layer (i.e., the training
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smoothing the regression in the first layers, but smoothing tends to disappear
in the last layers, where the two curves are almost coincident.

domain. In particular, spurious oscillations are produced in the
region of low frequency content when a high frequency kernel
is adopted (Fig. 1c). In the multi-scale approach presented
here, instead, this low frequency region is reconstructed by the
first layers, while the higher layers improve the reconstruction
in the high frequency region (Fig. 6). This is made clear in
Fig. 11 where the relative contribution to the final reconstruc-
tion of each layer, ηl, along the input domain is shown:

ηl(x) =
Yl(x)∑L
j=1 Yj(x)

(24)
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Fig. 7. Evolution of the test error (Errmean) of the HSVR models as new
layers are inserted. The continuous line represents the error of the HSVR
model with no data reduction. The dashed line represents the error of the
model when data reduction was applied in all the previous layers, but not in
the current one (1-st optimization pass). The dot dashed line represents the
error of the HSVR model when data reduction is applied to all the layers
(2-nd optimization pass).
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Fig. 8. Panel (a) shows the artifact (a panda mask) that has been digitized
obtaining the data for the experiment (b).

where

Yl(x) =

Mk∑
k=1

|βl,k| exp
(
−||x− xl,k||

2

σ2
l

)
(25)

The other key element of HSVR is pruning that aims here
at identifying the data points that can be meaningful for the
reconstruction at each level. To achieve this a careful analysis
of the points is carried out subdividing them into three sets
(15): those inside, outside and on the border of the ε tube. The
inner points constitute a “reference”: after optimization they
have to lie inside the ε tube and, therefore, they constitute
a sort of constraint for the function. The outer points and
those on the border of the ε tube (SVs) play the role of
basis for the computation of the surface. Data reduction is
based to the closeness (or relevance) of each point to the
surface evaluated as point to surface distance (15). In this
respect this pruning procedure can be regarded as an instance
of active learning [33] as the points most relevant to the
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reconstruction are identified. Other criteria to determine the
relevance of each point could be based on a ranking measure
as for instance in [34]. The evaluation of points with respect
to a reference function is different from classical clustering
paradigms in which data points are reduced according to a
similarity measure between the points themselves [35]. While,
in clustering, sub-sets of points are substituted by a single
point that usually lie in a position different from that of any
point in the sub-set, here the selected points lie in the same
position of the data points. This allows avoiding smoothing out
valleys and ridges of the function. Pruning allows reducing
the number of SV by one order of magnitude as shown in
Tables II and III, making regression inside the framework of
SVR feasible.

The reduction of the SVs that effectively contribute to the
output of each layer does not degrade the reconstruction (cf.
Fig. 7) and it allows producing a very similar output with much
less SVs (243 vs. 1,544 for the synthetic dataset and 11,351
vs. 100,448 for the panda mask dataset). The same is true for
the output of the intermediate layers as shown in Fig. 7 and
Table II. From this we can draw the conclusion that most of
the SVs employed especially in the first layers of a multi-scale
reconstruction (cf. Table II) are wasted in the vain attempt of
approximating details with a kernel that operates at a too large
scale. These SVs can be pruned without degrading the output
quality of the model.

Fig. 7 shows also the part of the residual error that can be
attributed to data points reduction (this is the height difference
between the error “2-nd pass” and the error “HSVR”). This
error is recovered in each next layer as can be seen by
comparing the error produced when no data reduction is
applied to the current layer but it was applied to all the
previous layers (“1-st pass”), with that produced when no
data reduction is applied (“HSVR”): the two errors are almost
coincident. Data reduction is particularly efficient when data

sampling is relatively dense; if a few data points are present
and these are sparse, pruning might turn out not as efficient.

As can be seen in Table III, the accuracy of HSVR and the
number of SVs used are similar to those of standard SVR.
The analysis of the configuration time is more critical. When
the configuration parameters C, σ, and ε are set properly,
the configuration time for SVR is about one third of HSVR:
382 s versus 1,182 s. However, in practice, most of the time
required to determine an SVR regression is devoted to the
search of good values for C, σ, and ε as the quality of the
regression depends critically on these parameters [3]. This
makes standard SVR regression extremely time consuming as
a three dimensional parameters space has to be searched by
the optimization procedure. This search space is reduced to a
bidimensional space in HSVR as σ has not to be optimized.
This allows a reduction in configuration time that largely
overcompensates the need of computing a SVR two times
for each level. Moreover, as shown in Fig. 10a–c, the HSVR
approach is much less sensitive to the initial value of these two
parameters. This is due to the robustness of the hierarchical
structure in which the data not explained in one layer can be
recovered by the next layers.

Moreover, the parameter C can be set proportional to the
standard deviation of the data points value (14), through the
factor J . This has been experimentally computed analyzing
different datasets: values in the range [0.1, 20] were considered
and values of J around 1 have always been sufficient to
achieve very good results as shown in Fig. 10a–c where best,
average and worst case error with different combinations of
J and ε are almost similar. If we accept this value for J ,
we come up with a configuration time of HSVR that is about
1/20th than SVR.

As kernels with a different σ are chosen in the different
layers, the criticality in choosing a single value of σ, adequate
for the data, disappears: starting from a large σ and halving
it in each layer, guarantees that a value of σ adequate to the
data is found as shown in Fig. 6. It should be remarked that, in
case of equally spaced SVs, (7) represents an approximation in
terms of Riesz basis. Moreover, the angle between the spaces
spanned in two consecutive layers is quite small, which allows
slowly incorporating the details on one side, but also stopping
adding new layers when regression starts becoming noisy [12].

Therefore, the HSVR regression cannot be considered the
direct result of the minimization of the cost function (5) as
in [9][32]. However, we notice that (5) constitutes a regular-
ization function that produces a smooth regression penalizing
both the norm of the error and the norm of the kernel
coefficients. We do consider the two norms at each layer with
the aim of producing a smooth regression incrementally. We
favor smoothness, also decreasing the maximum amplitude
of the coefficients in each layer (cf. (14)). As shown in the
experimental results, this allows finding a good regression with
a limited computational time.

The number of layers may be critical to avoid overfitting,
that is a problem shared by all incremental approaches. Differ-
ent strategies can be used to stop the configuration procedure.
If no a-priori information is available, the use of validation
error guarantees that a good generalization is obtained: the
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introduction of a new layer can be stopped when the vali-
dation error does not decrease anymore with the new layer.
Alternatively, the growth can be stopped when the residual
drops below a given threshold, which can be associated to
measurement noise [13]. Other criteria, depending on the
applicative context, can be adopted. We explicitly remark that,
at the end of the configuration phase, the regression at all the
considered scales is available (cf. Fig. 6). This can be of great
value, for instance, for the construction of models from points
clouds in the graphical domain: a smoother surface, although
with a slightly larger test error, Fig. 9d–f, can be preferred to
a surface with a smaller test error, featuring less smoothness
Fig. 9a–c. This would be not possible with classical SVR
approach that produces only one regression.

Although, in principle a linear combination of kernels
featuring a single large scale can be used to realize an accurate
estimate of a function with high frequency content [36], the
computational effort required in this case would be too high.
In fact, the use of large scale kernels involves large coefficients
(high value of C), which may cause numerical instability of the
solution. Besides this, the configuration time tends to increase
with the value of C and makes using high values of C almost
unfeasible for real cases.

In principle, the HSVR configuration scheme can work with
kernels other than Gaussians. However, the Gaussian kernel
has two main properties: the scale parameter, σ, allows shaping
the kernel such that the SVs are sensitive to different frequency
ranges, and the non orthogonality, which allows recovering
in the next layers the reconstruction error possibly left by
the previous layers (13). Although other kernels that enjoy
these properties could be used, adequate optimization engines,
different from LibCVM Toolkit, should be developed for these
kernels, which goes beyond the aim of this work.

VI. CONCLUSION

A novel approach to multi-scale kernel regression, called
HSVR, has been here presented. It is based on an incremental
model, adding layers which employ kernels at decreasing
scales until an adequate output is obtained. The number of
SVs used is similar to that employed by standard SVR, while
the configuration time is much lower as a full search in the
parameters space is not required. The approach is based also
on a data reduction step: only the data that can be considered
meaningful for the output of each layer are passed to the
optimization procedure with a substantial reduction in the
number of the SVs selected that makes this approach feasible
also for very large data sets.
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