
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010 275

A Hierarchical RBF Online Learning Algorithm
for Real-Time 3-D Scanner

Stefano Ferrari, Member, IEEE, Francesco Bellocchio, Vincenzo Piuri, Fellow, IEEE, and
N. Alberto Borghese, Member, IEEE

Abstract—In this paper, a novel real-time online network model
is presented. It is derived from the hierarchical radial basis func-
tion (HRBF) model and it grows by automatically adding units at
smaller scales, where the surface details are located, while data
points are being collected. Real-time operation is achieved by
exploiting the quasi-local nature of the Gaussian units: through
the definition of a quad-tree structure to support their receptive
field local network reconfiguration can be obtained. The model has
been applied to 3-D scanning, where an updated real-time display
of the manifold to the operator is fundamental to drive the acqui-
sition procedure itself. Quantitative results are reported, which
show that the accuracy achieved is comparable to that of two batch
approaches: batch HRBF and support vector machines (SVMs).
However, these two approaches are not suitable to real-time online
learning. Moreover, proof of convergence is also given.

Index Terms—Multiscale manifold approximation, online
learning, radial basis function (RBF) networks, real-time parame-
ters estimate, 3-D scanner.

I. INTRODUCTION

O NLINE learning is a widely diffused neural networks
learning modality [1]–[3]. It is applied to nonstationary

problems, where the statistical distribution of the analyzed data
changes over time [4], [5], and to real-time learning [6], where a
manifold is constructed and adapted, while data points are being
sampled from it.

This second domain, although less common, has interesting
applications in all the problems in which the availability of an
updated manifold is required to effectively drive the acquisition
process itself. For instance, in active 3-D scanning where a laser
stripe or spot is projected over an artifact to sample data points
over its surface [7], a real-time display of the current recon-
structed surface would allow driving the laser toward the areas
where the details are still missing in the reconstructed surface
[8], [9]. This allows large improvement in the effectiveness of
the scanning procedure. In fact, up to now, feedback is provided
only by methods based on splatting [10]. These methods dis-
play for each data point an elliptical shape centered in the point,
whose gray level depends on the estimated normal to the sur-

Manuscript received September 17, 2008; revised August 15, 2009; accepted
October 29, 2009. First published December 11, 2009; current version published
February 05, 2010.

S. Ferrari, F. Bellocchio, and V. Piuri are with the Department of Information
Technology, Università degli Studi di Milano, Crema 26013, Italy (e-mail ste-
fano.ferrari@unimi.it; francesco.bellocchio@unimi.it; vincenzo.piuri@unimi.
it).

N. A. Borghese is with the Department of Computer Science, Università degli
Studi di Milano, Milano 26013, Italy (e-mail: alberto.borghese@unimi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2009.2036438

face. If the cloud of data points is sufficiently dense, it may pro-
vide the perception of a continuous surface, but it does not pro-
vide any analytical 3-D description of the surface that could be
further processed. We introduce here online learning as a pow-
erful tool to obtain the current manifold while data are being
collected.

Different approaches have been developed in the connec-
tionist domain to achieve such a goal, most of them have been
derived from analogous methods developed for batch learning.
Gradient-descent methods are the most studied algorithms
[11]–[14]. They were introduced in the 1960s [11] for linear
networks and they have then been successively extended to
more complex neural networks models, like multilayer percep-
trons [12] and radial basis function (RBF) networks [13], [14].
More recently, approaches based on extended Kalman filter
(EFK) [15]–[17] have been introduced to speed up learning.

Although, theoretically, the same universal approximation
properties have been shown for both batch and online learning
[18], gradient-descent-like methods get often stuck in local
minima in real applications. For this reason, hybrid approaches
to learning have been developed in both batch and online
learning domains [3], [13], [19], [20], that are particularly
suitable to RBF networks, constituted of linear combinations
of quasi-local units, Gaussians in particular.

Platt was the first to propose a growing network model
named resources-allocating network (RAN) [21]. In this model,
Gaussian units, at decreasing scales, are inserted as training
proceeds. For each new point, an additional Gaussian unit is
inserted only if both the local reconstruction error, measured in
the point, is over threshold and there are no units close enough
to that point. If these two conditions are not met, the parame-
ters of the unit closest to the input point are updated through
gradient descent. As training proceeds, both the neighborhood
size and the width of new units shrink; as a result, the units
inserted at the beginning feature a large width, covering most
of the input domain, while the units inserted at the end feature
a smaller scale, reconstructing the details.

When the unit width shrinks too quickly the model may easily
produce a bad reconstruction due to poor coverage of the input
domain caused by the lack of units with sufficiently large width.
On the contrary, when it shrinks too slowly, many units are in-
serted, which may require an unacceptable learning time and
may produce overfitting.

To partially solve these problems, Fritzke introduced an RBF
network model called growing cell structures [22]. Here each
unit stores additional information: a neighborhood list to iden-
tify the closest units, and an accumulator to store the reconstruc-
tion error inside the region covered by the unit. The neighbor-

1045-9227/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

hood list is used to adapt the units’ width in order to maintain a
given overlapping rate between neighbor units, while the accu-
mulator guides the insertion of new units in those regions where
the local reconstruction error is higher. For each point presented
to the network, the position of the unit closest to the point is
updated along with that of the units that lie inside such unit’s
neighborhood. The width of each unit is also implicitly updated
as the average distance from its neighbors while the weights
are updated through the delta rule. Moreover, the value of the
accumulator associated to the unit closest to the input point is
increased. The need to insert a new unit is evaluated periodi-
cally, after a fixed number of points has been examined. The
new unit’s parameters are set as the mean value of the parame-
ters of all its neighbor units.

In order to reduce the total number of units, several pruning
techniques, aimed at discarding the units that less contribute to
the reconstruction, have been proposed [15], [17], [22]–[24].
They are generally based on an aging rule [3], [22] to select the
less used units.

To simplify the learning procedure, grids of Gaussians with
the same width, equally spaced, have been introduced [3], [20],
[25], [26]. This allows to take full advantage both of the quasi-
locality of the Gaussian and of linear filtering theory, to design
efficient learning algorithms that can work locally on the data
and can adapt the scale locally to the data. Such algorithms, for
instance, do not require pruning or maintaining complex data
structures.

Grid arrangement can be exploited to achieve real-time ap-
proximation and hence is valuable for online applications. The
main contribution of this paper consists in a new training pro-
cedure applied to the hierarchical radial basis function (HRBF)
network model [20], which allows obtaining a multiscale, on-
line, real-time, reconstruction of a manifold [27]. The proce-
dure has been implemented and compared to the batch version
of HRBF and to support vector machines (SVMs) [28].

In Section II, the batch version of the HRBF training pro-
cedure is summarized. Its online version is introduced in
Section III. Results on real data are reported in Section IV and
compared with batch HRBF and SVM. They are discussed in
Section V and closing remarks are reported in Section VI.

II. THE HRBF MODEL

Let us assume that the manifold can be described as a
function. In this case, the input data set can be given as:

, and the man-
ifold assumes the explicit analytical shape: .

The HRBF model is an RBF network where the units of the
hidden layer are partitioned in sets, each of them characterized
by a scale parameter . These sets will be considered sequen-
tially at configuration time, with , while their output

is added together to provide the overall network output,
as follows:

(1)

Each is indeed a hidden layer of an RBF network, and
the HRBF can be considered as a pool of RBF subnetworks

operating in parallel, each at a different scale. In the following,
we will refer to the th RBF subnetwork as the th layer.

If the units are equally spaced on a grid and a normalized
Gaussian function is
taken as the basis function, the output of each layer can be
written as a linear low-pass filter [25], [29]

(2)

where is the number of Gaussian units of the th layer.
The actual output of each RBF network layer depends

on the number of the Gaussian units in the th layer , their
position , and their variance that
constitute the structural parameters of the network. The value
of depends also on the , which are termed
synaptic weights.

Considering only a single layer, the function realizes
a reconstruction of the surface up to a certain scale, deter-
mined by . In this case, signal processing theory allows
setting the Gaussian spacing (grid size,) according to

[29]: the smaller is , the shorter is , the
denser are the Gaussians, and the finer are the details which can
be reconstructed. Gridding allows also to automatically set
and the position of the Gaussians, ’s, which is coincident
with the grid crossings. With these choices, the weights
can be computed as [27].

As the data set usually does not contain the ’s, these
values can be estimated as a weighted average of the data points
that lie inside the neighborhood of the , called receptive
field, . This can be chosen as the spherical region, centered
in , with radius proportional to . A possible weighting
scheme, related to Nadaraya–Watson regression [30], is

(3)

This scheme allows also filtering out measurement noise on
the data points.

It should be noticed that the single layer of the HRBF model
is configured directly using the data points value (2), without the
iterations required by gradient-based configuration procedures
used both in RBF models (e.g., [13]), or SVM models (e.g.,
[31]). Such direct configuration is derived from linear filtering
theory and it requires that the Gaussian energy is unitary. For
this reason, normalized Gaussians are employed in the HRBF
model.

Although a single layer with Gaussians of very small scale
could reconstruct the finest details, this would produce an un-
necessary dense packing of units in flat regions and an unreliable
estimate of the where too few points fall inside . A
better solution is to adopt a hierarchical scheme by adding and
configuring one layer at a time, starting from the largest scale.
Although each new layer often features half the scale of the pre-
vious one, arbitrary scales could be used for the different layers.

All the layers after the first one are trained to approximate
the residual of the previous layer that represents the differ-
ence between the original data and the actual output produced

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

FERRARI et al.: A HIERARCHICAL RBF ONLINE LEARNING ALGORITHM FOR REAL-TIME 3-D SCANNER 277

by the network through the already configured layers. Hence,
is computed as

(4)

and it is used in place of in (3) for estimating the
for .

The quality of the local approximation around is evalu-
ated through the local residual error that is defined as

(5)

The -norm of the local residual inside has been used to
limit the impact of the outliers.

Only if is over a given error threshold , a Gaussian
of a lower scale is inserted in the corresponding grid crossing

; otherwise, the Gaussian is not inserted. As a result, at the
end of the learning procedure, Gaussian units, at smaller scales,
are present in those regions where the most subtle details are
located: units were adaptively allocated, each with an adequate
scale, in the different regions of the input domain, forming a
sparse approximation of the data. The introduction of new layers
ends when the residual error goes under threshold over the entire
input domain (uniform approximation).

This approach has been compared with classical multiresolu-
tion analysis through wavelet basis [20]. While wavelet are most
suitable to multiscale analysis, HRBF does produce an output of
higher quality when data are affected by noise (approximation
problems).

This HRBF training procedure is a batch procedure, which
exploits the knowledge of the entire input data set and adopts
local estimates to setup the network parameters. This produces
a very fast configuration algorithm, which is also suitable to
be parallelized; however, all the data points should be available
before starting the network configuration.

We summarize here the HRBF configuration steps.
• If the scale is divided by two in each layer, the Gaussians

width and position for each layer are completely specified
starting from the scale of the first layer .

• Given the scale parameter of the first layer and the data
bounding box, the grids of all the layers are defined along
with the maximum number of Gaussians for each layer .
We explicitly recall that a Gaussian is inserted only when
the local residual error in (5) is over threshold.

• For the first layer, the weight of each Gaussian is estimated
through a local weighted average of the input data and
through a local weighted average of the residuals for the
next layers [cf., (3)].

As the Gaussian function quickly decreases to zero with the
distance from its center, processing time can be saved com-
puting the contribution of each Gaussian to the residuals, only
for those points that belong to an appropriate neighborhood of
the Gaussian center, , called influence region . may
be coincident or not with .

III. ONLINE TRAINING PROCEDURE

When the entire data set is not available all together but
the points come one after the other, the scheme described in

Fig. 1. Close neighborhood � of the Gaussian centered in � , belonging
to the �th layer, is shown in pale gray in panel (a). The close neighborhoods
tessellate the input domain, partitioning it in squares which have side equal to
that of the �th grid �� and are offset by half grid side. In the next layer, �
is split into four close neighborhoods, � (quads) according to quad-tree
decomposition, as shown in panel (b). Each � has a side half the length of
� , and it is centered in a Gaussian � positioned in “�.”

Section II cannot be applied. When a new point is added
to the data set , the estimate in (3) becomes out of date
for the first layer and has to be reestimated with the
new data set constituted of . As a result,
changes inside the influence region of all the updated units
and the residual changes for all the points inside this area.
This requires updating the weights of the second layer for
those Gaussians whose receptive field intersects with this area.
This chain reaction may involve an important subset of the
HRBF network’s units. Moreover, the new point can prompt
the request of a new layer, at a smaller scale.

One possibility is to reconfigure the entire network com-
puting all the parameters every time a new point is added to
the input data set. This solution is computationally expensive
and unfeasible for real-time configuration. To avoid this, a few
approximations have to be introduced.

The most limiting factor to real-time operation is the shape of
the receptive field: as the Gaussians have radial symmetry, their
receptive field comes out with a spherical shape that does not
allow an efficient partitioning of the data points. To overcome
this problem, the receptive field is approximated with a cubic
region [27]; this approximation can be accepted as far as the
input space has a low dimensionality [32].

Cubic approximation allows organizing the incoming data
points and the HRBF parameters into an efficient data structure.
For each layer , the input space is partitioned into nonoverlap-
ping regular boxes , each centered in a different Gaussian
center . As shown in Fig. 1, for a mapping, the
input domain is partitioned into squares , where each
is called the close neighborhood of the th Gaussian .
We explicitly remark that the vertices of each are shifted of
half side with respect to the grid centers.

A particular data structure is associated to each Gaussian .
This contains the Gaussian’s position , its weight , the
numerator , and the denominator of (3). The structure
associated to the Gaussian at the top of the hierarchy (current
highest layer) contains also all the data points that lie inside

. To obtain this, when a Gaussian is split during learning, its
associated points are sorted locally through qsort algorithm and
distributed among the new Gaussians of the higher layer.

As , the close neighborhood of each
Gaussian of the th layer (father) is formed as the union of the
close neighborhoods of the corresponding Gaussians of the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 2. Schematic representation of the online HRBF configuration algorithm.

th layer (children). This relationship depicted in Fig. 1(b)
is taken advantage to organize the data in a quad-tree: the points
which lie inside are efficiently retrieved as those contained
inside the close neighborhood of its four children Gaussians.

In the following, we will assume that the side of the receptive
field and of the influence region of a Gaussian are set
to twice the size of the Gaussian’s close neighborhood to
allow partial overlapping of adjacent units. However, any rela-
tionship such that and cover an integer number of close
neighborhoods produces an efficient computational scheme.

The configuration algorithm is structured as a sequence of
steps of weights updating followed by a single step in which
residual is evaluated and Gaussians possibly inserted. These two
phases, depicted in the schema in Fig. 2, are iterated until new
points are added.

The algorithm starts with a single Gaussian positioned ap-
proximately in the center of the acquisition volume, with a width
sufficiently large to cover the volume. An estimate of the dimen-
sion of the acquisition volume is therefore the only a priori in-
formation needed by the configuration algorithm.

A. First Learning Phase: Parameters Updating

When a new point is given, the quantities , and
(3), associated to the Gaussians such that , are

updated

(6a)

(6b)

(6c)

where is computed, likewise as in (4), as the differ-
ence between the input data and the sum of the output of the first

layers of the actual network computed in .
We explicitly notice that the modification of the weight of a

Gaussian in the th layer modifies the residual of that layer
inside the Gaussian’s influence region. Hence, the terms in

(6) should be recomputed for the next layer for all the (already

acquired) data points inside the influence region of . This
would require to recompute the residual of the next layer and so
forth up to the last configured layer.

However, this would lead to an excessive computational load,
and, in the updating phase, the terms in (6) are modified only by
adding the contribution of to and . The rationale
is that increasing the number of points, (6c) tends to (3). The
residual is then recomputed only in , which is sufficient to
obtain a good estimate of (3).

After updating the weights, is inserted into the data
structure associated to the Gaussian of the highest layer , such
that .

B. Second Learning Phase: Splitting

After points have been collected, the need for new Gaus-
sians is evaluated. To this aim, the reconstructed manifold is ex-
amined inside the close neighborhood of those Gaussians which
satisfy the following three conditions: i) they do not have any
children, ii) at least a given number of points has been sam-
pled inside their close neighborhood, and iii) their close neigh-
borhood includes at least one of the last points acquired.
These are the Gaussian candidates for splitting. Let us call
their ensemble.

For each Gaussian of , the local residual (5) is
reevaluated for all the points inside its close neighborhood
using the actual network parameters. If is larger than
the given error threshold , splitting occurs: new Gaussians
at half scale are inserted inside . The points associated to
the Gaussian are distributed among these four new Gaus-
sians depending on which they belong to [cf., Fig. 1(b)].

We explicitly remark that the estimate of requires the
computation of the residual, that is the output of all the previous
layers of the network, for all the points inside . To this aim,
the output of all the Gaussians (of all the layers) whose receptive
field contains is computed.

As a result, the parameters of an inserted Gaussian
, and in (6) are computed using all the points contained

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

FERRARI et al.: A HIERARCHICAL RBF ONLINE LEARNING ALGORITHM FOR REAL-TIME 3-D SCANNER 279

in its close neighborhood; for this new Gaussian, no distinction
is made between the points sampled in the earlier acquisition
stages and the last sampled points. The quantities ,
and are set to zero when no data point is present inside
and the Gaussian will not contribute to the network output.

It should be noticed that, as a consequence of this growing
mechanism, the network does not grow layer by layer, as in the
batch case, but it grows on a local basis.

C. Proof of Convergence

In [20], the capability of a single-layer HRBF, with a scale
adequate to approximate a given function , has been proven
showing that the residual can be made smaller than any given
threshold . Moreover, it has been shown that the sequence of
the residuals obtained with the HRBF schema converges to zero
under mild conditions on .

As the online configuration procedure is different from the
batch one, the convergence of the residuals obtained with the
schema described in Section III has to be proven.

The online schema differs from the batch one for both the
computation of the weights [(6) versus (3)] and for the rule of
insertion of new Gaussians (in the batch scheme, this occurs
layerwise, while in the online schema, it occurs locally during
the splitting phase).

We first show that the output of each layer of the online HRBF
is asymptotically equivalent to that of the batch HRBF. Let us
first consider the case of the first layer.

Let be the input data set constituted of the first points
sampled from and denote with the operation such that

(7)

is the output of the first HRBF layer, configured using . It can
be shown that when tends to infinite, the function computed
in (7) converges to the value computed in (2) for the batch case.

This is evident for this first layer, whose weights are estimated
as , and holds. In this case, the following
asymptotic condition can be derived:

(8)

where are the weights computed in the batch algorithm
through (3) and are those computed in the online algorithm
through (6). It follows that:

(9)

where is the residual at the point computed through
(3), and is the same residual computed through (6).

If a second layer is considered, the estimate of its weights can
be reframed as

(10a)

(10b)

As and always increases
with , the contribution of the initially sampled data

Fig. 3. Typical data set acquired by the autoscan system [8]. The panda mask
in (a) is reconstructed starting from 33 000 3-D points automatically sampled
on the surface by the autoscan system; these constituted the input to the HRBF
network. Notice the higher point density in the mouth and eyes regions.

points becomes negligible as increases. As a result,
, and also the approxima-

tion of the residual of the second layer tends to be equal for
the batch and online approaches. The same applies also to the
higher layers.

Splitting cannot introduce a poor approximation as the
weights of the Gaussians inserted during the splitting phase are
robustly initialized with an estimate obtained from at least
points.

IV. RESULTS

We have extensively applied the online HRBF model to laser
scanning. Digitization was performed through the autoscan
system [8], [33], which allows sampling more points inside those
regions which contain more details: a higher data density can
therefore be achieved in those regions that contain higher spatial
frequencies. To this aim, real-time feedback of the reconstructed
surface is of paramount importance as shown in [34].

A typical set of sampled data is reported in Fig. 3(b): it is
constituted of 33 000 points sampled over the surface of the ar-
tifact (a panda mask) in Fig. 3(a). As can be seen in Fig. 4, the
reconstruction becomes better with the number of points sam-
pled. Acquisition was stopped when the visual quality of the
reconstructed surface was judged sufficient and no significant
improvement could be observed when new points were added
[compare Fig. 4(e) and (f)].

To assess the effectiveness of the online algorithm, a quan-
titative analysis of the local and global error has been carried
out. Since the true surface is not available, a cross-validation
approach has been adopted [35]; from the data set in Fig. 3(b),
32 000 points, randomly extracted, were used to configure the
network parameters (training set), and 1000 for testing (test set).

The error, expressed in millimeters, was measured in -norm,
, and in -norm, root mean squared error (RMSE) as

(11a)

(11b)

where is the reconstruction error on the th point of the
test set, . To avoid border effects, (11a) and (11b)

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 4. Panels show the reconstruction with online HRBF after 1000, 5000, 10 000, 20 000, 25 000, and 32 000 points have been sampled.

TABLE I
ACCURACY AND PARAMETERS OF EACH LAYER OF THE HRBF NETWORKS

have been computed considering only the points that lie inside
an internal region of the input domain; this region has been de-
fined as the region delimited by the convex hull of the data set,
reduced by 10%.

Results have been compared with those obtained by the batch
configuration algorithm and by SVM through the widely dif-
fused SVM package [36] applied on the same data sets.

The experiments have been carried out on a machine equipped
with Intel Pentium 4, 2.4-GHz, 512-KB cache, 512-MB RAM.

A. Comparison With the Batch HRBF

Results of the comparison with the batch HRBF approach are
reported in Table I. These figures have been obtained with the
following parameters: and layers.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

FERRARI et al.: A HIERARCHICAL RBF ONLINE LEARNING ALGORITHM FOR REAL-TIME 3-D SCANNER 281

TABLE II
RECONSTRUCTION WITH SEVERAL DATA SETS

Fig. 5. Reconstruction with (a) HRBF batch and (b) HRBF online. The difference between the two surfaces is shown in panel (c). In panels (d)–(f), the center of
the Gaussians allocated by the online algorithm in the last three layers is shown.

The error threshold was set for all the layers equal to the
nominal digitization error that was 0.4 mm. The final recon-
struction error of 0.391 mm is very close to ; a total of 9222
Gaussians were allocated over the eight layers, and produce a
sparse approximation [cf., Fig. 5(d)–(f)].

The network complexity and the reconstruction error have
been compared with those obtained when the network was con-
figured using a batch approach, with the same number of layers
of the online version.

Two batch modalities have been considered. In the first one,
“pure batch,” the configuration procedure summarized at the end
of Section II [20] is adopted. In the second approach, “batch
constrained,” the Gaussians are placed in the same position, and
have the same width, of those of the online approach, while
the weights are computed through (3), considering all the data
points inside the receptive field of each Gaussian, as described
in [29].

As shown in Fig. 5, the surface reconstructed by the batch
HRBF has a slight better appearance than the online one, es-
pecially at the object border as shown by the difference image
[Figs. 5(c) and 6]. This was obtained at the expense of a larger

Fig. 6. Difference in the reconstruction error on the points of the test set: (a)
online versus pure batch, and (b) online versus batch constrained.

number of Gaussians: about 12.7% more than those used in the
online approach, being 10 393 versus 9222 (Table I).

Despite the difference in the computational resources used,
the global accuracy of the batch approach is only slightly better

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 7. Number of (a) Gaussian units and (b) mean error as a function of the
number of data points used to configure the networks. Data set is grown of 500
data points at a time.

TABLE III
COMPARISON BETWEEN SVM AND HRBF

than the online one, being of 0.373 mm versus 0.391 mm
(4.82%).

We remark here that acquisition was stopped when the vi-
sual appearance of the model (reconstructed with the online ap-
proach) was considered sufficient.

We have therefore investigated if there was room for further
accuracy improvement by acquiring more data points. To this
aim, we have plotted in Fig. 7 the rate of Gaussian allocation and
of error decrease as a function of the number of data points. As
is clearly shown, the batch version grows and converges faster
than the online version: it achieves of 0.391 mm using
only 8500 data points. The figure shows also that the error of the
online model can be slightly lowered adding new points down
to 0.381 mm, closer to the batch approach. To achieve such an
error, only 99 more Gaussians are required.

B. Comparison With Support Vector Machine

SVMs [31], [37] are a supervised learning paradigm for clas-
sification and regression. In the basic formulation of SVM for
regression, the approximation is formulated as a linear combina-
tion of kernel functions. The configuration phase selects a subset
of the training points [support vectors (SVs)], which are used as
centers of the kernels. The estimate of the weights and, hence,
the selection of the SVs, is obtained as the solution of a quadratic
programming optimization problem.

Although different kernels can be used, Gaussian kernel is
used here for sake of comparison; a value of 2.84 mm was
chosen that is equivalent to the smallest scale parameter used by
the HRBF network. The error parameter was set to 0.4 mm,
the same value used for the HRBF models. Results are reported
in Table III. The regularization parameter , which bounds the
weights magnitude and is usually set through cross validation,
was set here to several values (1, 10, and 100) for evaluating
its impact on the SVM performances. Results are reported in
Table III.

Fig. 8. Test error and number of Gaussian units (a) with respect to� with �
fixed to 100, and (b) with respect to � with� fixed to 3.

V. DISCUSSION

Results are consistent for different artifacts (cf., Fig. 10);
real-time visualization of the actual surface has been of great
value in directing the laser spot for more time in the most critical
regions, collecting more points there. The best results are ob-
tained when the points are sampled mostly uniformly in the first
few layers. This allows a more robust estimate of the weights of
the Gaussians of these layers, as the Gaussians of the first layers
cover all a large portion of the input space. In all the experi-
ments, data acquisition was stopped when the visual appearance
of the reconstructed model was considered satisfactory. Alterna-
tively, data acquisition could be stopped when splitting no more
occurs. The error was measured as the mean value of the test
error averaged over ten randomizations on the same data set.

The online configuration algorithm contains two parameters:
and (Section III); their influence has been experimentally

assessed by training the model with different combinations of
and . This gives an insight on the general behavior of the

online algorithm as a function of these parameters.
Fig. 8(a) shows that the number of Gaussians decreases while

the test error increases with . This is due to the fact that, in-
creasing , more points are collected inside the close neigh-
borhood of a Gaussian, before splitting it. Therefore, in this
case, given the same total number of points, although the single
weights can be estimated better, a smaller number of split opera-
tions would occur. This suggests to use a very low value of ; in
fact, produces the smallest test error of 0.378 mm. This
is paid with a larger number of Gaussians that reaches a total
of 9968 for . A tradeoff has been adopted here choosing

, which produces a total number of Gaussians of 9222,
about 92.5% of those obtained setting .

The behavior of the test error as a function of is shown
in Fig. 8(b). For small values of , the behavior is almost the
same: the error starts increasing after 1000, although the
increase is of small amplitude (about 0.01 mm from 1000
to 2500). The number of Gaussian units instead decreases
monotonically with , with a marked decrease above .
This can be explained by the fact that, when a new Gaussian is
inserted, its weight is initialized using all the already acquired
points that belong to its close neighborhood (Section III-B). Af-
terward, its weight is updated considering only the points in-
serted inside its receptive field, as in (6). Therefore, increasing

, the weight associated to each new Gaussian can be com-
puted more reliably as more points are available for its estimate.
However, when assumes too large values with respect to the

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

FERRARI et al.: A HIERARCHICAL RBF ONLINE LEARNING ALGORITHM FOR REAL-TIME 3-D SCANNER 283

Fig. 9. Test error and number of Gaussian units reported with respect to� for
small and large values of �: (a) � was fixed to 100, and (b) � was fixed to
1000.

Fig. 10. HRBF online reconstruction of the data set (a) “cow” (33 861 points,
9501 Gaussians), and (b) “doll” (15 851 points, 6058 Gaussians).

number of available data points, not enough splits occur, and
the reconstruction becomes poorer. This situation is depicted in
Fig. 8(b) where for a relatively large value of , the test error
tends to increase as an effect of the decrease in the number of the
allocated Gaussians. From the curve in Fig. 8, one could derive
that the optimal value of would be 1000, as it allows a low
reconstruction error with a reduced number of Gaussians. How-
ever, the price to be paid for such saving in computational units
is the loss of interactivity. In fact, increasing , the split oper-
ation occurs less frequently in time. As this operation produces
the largest decrease in the reconstruction error, a long time has
to elapse before the user can see a large change in the appear-
ance of the reconstructed model, and the improvement in the
model quality is not smooth in time. Moreover, the reconstruc-
tion error decreases less quickly; this is well captured in Fig. 9.
Hence, the use of large values of is not interesting for such ap-
plications where interactive online learning is required and the
value of has been adopted here as it is approximately
twice the data sampling rate, that is, of 60 points/s.

Therefore, although the value of and may be subjected
to optimization with respect to network accuracy or size, the re-
sulting values may not be adequate for real-time applications.
In particular, as produces a very similar test error over a wide
range of values, it has been set here according to the data sam-
pling rate to guarantee interactivity; this value is lower than the
one that would produce the smallest network. This value could
be even lowered, but at the price of a large overhead, as the

split phase is the most computationally expensive. Therefore,
a value of related to a data rate seems the most reasonable.
In any case, we remark that using more Gaussians than the min-
imum required is not very sensitive to overfitting, because of the
mechanism of local weights computation, provided that enough
points have been sampled inside the receptive field of the Gaus-
sians, that is guaranteed by a reasonable value of . This is
shown in Fig. 9, where the test error does not increase with the
number of Gaussian units.

As is concerned, its value is related to the amount of noise
on the sampled points: the larger the noise, the greater should
be to reduce the estimate error on the weights. However, pos-
sible bias in the weights estimate can be recovered in the higher
layers thanks to the incremental optimization construction. For
this reason, a very low value of can be chosen: a value of

worked well in all our experiments and produced a good
reconstruction with a reasonably low number of Gaussians.

The parameter decides the level of detail in the recon-
structed surface as it sets the smallest value of that is related to
the local spatial frequency. It could be set in advance when this
information is available to avoid the introduction of spurious
high-frequency components; otherwise, is incremented until
the error in (11) goes under threshold or a maximum number
of Gaussians is inserted. It should be remarked that in this latter
case, if were too small, could increase more than necessary.

The mechanism used in the weight update phase that does
not require the reconfiguration of the whole network produces
a slight bias in the weights. This can be appreciated in Table I,
where the accuracy obtained when the weights are estimated
considering all the data points (batch constrained) is compared
with that obtained with the online approach described here. In
fact, the manifold height in (3) is estimated as the ratio be-
tween and , obtained as the runtime sum of the values
derived from each sampled point. However, this value is equal
to that in the batch model only for the first layer (where all the
Gaussian weights are computed using the height of all sampled
points inside their receptive field). In the higher layer, where the
residual in the already acquired points is not updated, the es-
timate of the weights may contain a bias. This, in turns, may
produce a reconstruction error. However, in the splitting phase,
the bias in the weights and the reconstruction error are corrected
in the close neighborhood of the splitted units, as the residual
is recomputed there, using all the data points inside the .
Moreover, due to the nonorthogonality of the Gaussian basis
function, the HRBF model is able to compensate the reconstruc-
tion error in one layer, with the approximation achieved by the
next layer [38].

The maximum number of layers does not determine only the
maximum spatial frequency that can be reconstructed, but it has
also a subtle effect. In fact, the online configuration approach,
differently from the batch one, can introduce Gaussians at the

th level also when th level has not been completed:
a Gaussian can be split before the neighbor Gaussians of the
same layer. This is the case when higher frequency details are
concentrated inside the receptive field of that Gaussian, as the
parameters of each Gaussian are updated independently from
those of the others. Therefore, one branch of the network can
extend before another branch.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 2, FEBRUARY 2010

TABLE IV
NUMBER OF GAUSSIANS OF THE LAST FOUR LAYERS OF NETWORKS

CONFIGURED WITH DIFFERENT MAXIMUM NUMBERS OF LAYERS �

When the maximum number of layers of the network is too
low for the frequency content of the given data set, the error
inside the close neighborhood of some Gaussians of the last
layers will contain also the highest frequency details. As a con-
sequence, the weights in these regions may contain a bias that
produces a local poor reconstruction. This error affects also the
close neighborhood of the adjacent units through the influence
region and the receptive field of the corresponding Gaussians.
This, in turns, may induce splitting of these adjacent units and
produces networks of different structures when a different max-
imum number of layers is prescribed (cf. Table IV).

Differently from other growing networks models [3], [17],
[22], pruning is not adopted here, as all the units participate in the
reconstruction because of the configuration mechanism; pruning
can be considered useful when dealing with time-variant sys-
tems or when some of the data are not pertinent, but the problem
addressed here does not belong to this class, and the additional
complexity for managing pruning does not seem justified here.

Online HRBF shares with other growing networks models
the criterion for inserting new units: the insertion is decided
on the basis of a local error measure, which is fundamental to
achieve real-time operation. The other element which allows
real-time operation is the grid support, which guides Gaussian
positioning. This is shared also by [3]. However, in [3], all the
weights are recomputed after the insertion of new Gaussians,
while here only a subset of the weights is recomputed thanks
to the hierarchical close neighborhood structure. This produces
a large saving, especially for large networks. It should be no-
ticed that this growing strategy implicitly implements an active
learning procedure [39], as the data points that participate in the
configuration of the new Gaussians are only those that carry an
overthreshold error. Grid support has been also adopted by [25]
and [26]; however, in their approach, global optimization is used
that makes the configuration procedure computationally heavy.

Global optimization is also adopted by SVM; this has an im-
pact on the computational time required for the configuration
that is 3 10 s for , which produces a high error of 0.645
mm and 21.1 10 s for , which reduces the error to
0.288 mm. For , the test error does not improve, while
the processing time becomes unbearable.

Besides the computational time, SVM reconstruction is
heavily affected from the value of the parameter (cf.
Table III). As this value cannot be estimated a priori, the
usability of the SVM for large data sets is limited only to the
cases in which can be given a priori. Moreover, an adequate
value of should also be given, while in HRBF models, is
decreased layer by layer from an arbitrarily large value.

As other kernel methods, SVMs can be declined in an online
training version (e.g., [40]); in this case, starting from the op-
timal solution for a given data set, the solution is updated when

a new point is added to the data set. For very large data sets, the
incremental optimization can be more efficient than searching
the global optimal solution over all the data sets. However, at
least for the data sets used for our experiments, the use of an
incremental version did not produce improvement both in com-
putational time and accuracy with respect to the batch SVM ap-
proach [41], resulting in unsuitable for such real-time interactive
applications.

VI. CONCLUSION

An online training procedure for real-time, online, manifolds
estimation is here presented along with its application to 3-D
scanning. The procedure allows a more effective scanning pro-
cedure, providing as a feedback to the operator the surface ob-
tained up to that time. The presented model, derived from the
batch HRBF model, produces results comparable to it, and can
be effectively used in all the domains of low dimensionality. A
proof of the equivalence between the two models in the asymp-
totic case has been provided.

REFERENCES

[1] D. Saad, On-Line Learning in Neural Networks. Cambridge, U.K.:
Cambridge Univ. Press, 1998.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford,
U.K.: Oxford Univ. Press, 1995.

[3] A. Alexandridis, H. Sarimveis, and G. Bafas, “A new algorithm for
online structure and parameter adaptation of RBF networks,” Neural
Netw., vol. 16, no. 7, pp. 1003–1017, 2003.

[4] A. Rubaai, R. Kotaruand, and M. Kankam, “Online training of par-
allel neural network estimators for control of induction motors,” IEEE
Trans. Ind. Appl., vol. 37, no. 5, pp. 1512–1521, Sep./Oct. 2001.

[5] R. Kiran, S. Jetti, and G. Venayagamoorthy, “Online training of a gen-
eralized neuron with particle swarm optimization,” in Proc. Int. Joint
Conf. Neural Netw., 2006, pp. 5088–5095.

[6] J. Fan, N. Dimitrova, and V. Philomin, “Online face recognition system
for videos based on modified probabilistic neural networks,” in Proc.
Int. Conf. Image Process., 2004, vol. 3, pp. 2019–2022.

[7] Z Corporation, Burlington, MA, 2009 [Online]. Available: http://www.
zcorp.com/Products/3D-Scanners/ZScannerandtrade-700/spage.aspx

[8] N. A. Borghese, G. Ferrigno, G. Baroni, S. Ferrari, R. Savaré, and
A. Pedotti, “AUTOSCAN: A flexible and portable 3D scanner,” IEEE
Comput. Graphics Appl., vol. 18, no. 3, pp. 38–41, May/Jun. 1998.

[9] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model
acquisition,” in Proc. 29th Conf. Comput. Graph Int. Tech., 2002, pp.
438–446.

[10] S. Rusinkiewicz and M. Levoy, “QSplat: A multiresolution point
rendering system for large meshes,” in Proc. SIGGRAPH, 2000, pp.
343–352.

[11] B. Widrow and M. Hoff, “Adaptive switching circuits,” in IRE
WESCON Conv. Record, 1960, pp. 96–104.

[12] W. G. U. Muller and A. Gunzinger, “Fast neural net simulation with
a DSP processor array,” IEEE Trans. Neural Netw., vol. 6, no. 1, pp.
203–213, Jan. 1995.

[13] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.

[14] J. Freeman and D. Saad, “Dynamics of online learning in radial basis
function networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 56, no. 1, pp. 907–918, 1997.

[15] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequential
learning scheme for function approximation using minimal radial
basis function neural networks,” Neural Comput., vol. 9, no. 2, pp.
461–478, 1997.

[16] C. Takenga, K. Anne, K. Kyamakya, and J. Chedjou, “Comparison
of gradient descent method, Kalman filtering and decoupled Kalman
in training neural networks used for fingerprint-based positioning,” in
Proc. IEEE 60th Veh. Technol. Conf., 2004, vol. 6, pp. 4146–4150.

[17] Q. Meng and M. Lee, “Error-driven active learning in growing radial
basis function networks for early robot learning,” Neurocomputing, vol.
71, no. 7–9, pp. 1449–1461, 2008.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

FERRARI et al.: A HIERARCHICAL RBF ONLINE LEARNING ALGORITHM FOR REAL-TIME 3-D SCANNER 285

[18] N. Murata, , D. Saad, Ed., “A statistical study of on-line learning,” in
On-Line Learning in Neural Networks. Cambridge, U.K.: Cambridge
Univ. Press, 1998, pp. 63–92.

[19] J. Moody and C. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Comput., vol. 1, pp. 281–294, 1989.

[20] S. Ferrari, M. Maggioni, and N. A. Borghese, “Multi-scale approxi-
mation with hierarchical radial basis functions networks,” IEEE Trans.
Neural Netw., vol. 15, no. 1, pp. 178–188, Jan. 2004.

[21] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, no. 2, pp. 213–225, 1991.

[22] B. Fritzke, “Growing cell structures—A self-organizing network for
unsupervised and supervised learning,” Neural Netw., vol. 7, no. 9, pp.
1441–1460, 1994.

[23] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Neural Information Processing
System. Cambridge, MA: MIT Press, 1993, vol. 5, pp. 164–172.

[24] M. Orr, J. Hallam, K. Takezawa, A. Murray, S. Ninomiya, M. Oide,
and T. Leonard, “Combining regression trees and radial basis function
networks,” Int. J. Neural Syst., vol. 10, no. 6, pp. 453–465, 2000.

[25] R. M. Sanner and J.-J. E. Slotine, “Gaussian networks for direct adap-
tive control,” IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 837–863,
Nov. 1992.

[26] J. I. M. Martinez, “Best approximation of Gaussian neural networks
with nodes uniformly spaced,” IEEE Trans. Neural Netw., vol. 19, no.
2, pp. 284–298, Feb. 2008.

[27] S. Ferrari, I. Frosio, V. Piuri, and N. A. Borghese, “Automatic multi-
scale meshing through HRBF networks,” IEEE Trans. Instrum. Meas.,
vol. 54, no. 4, pp. 1463–1470, Aug. 2005.

[28] P.-H. Chen, C.-J. Lin, and B. Schölkopf, “A tutorial on �-support
vector machines,” [Online]. Available: http://www.kernel-ma-
chines.org

[29] N. A. Borghese and S. Ferrari, “Hierarchical RBF networks and local
parameter estimate,” Neurocomputing, vol. 19, no. 1–3, pp. 259–283,
1998.

[30] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219–269,
1995.

[31] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support Vector Regression Machines,” in Neural Information Pro-
cessing Systems, M. Mozer, M. I. Jordan, and T. Petsche, Eds. Cam-
bridge, MA: MIT Press, 1996, pp. 155–161.

[32] S. Ferrari, G. Ferrigno, V. Piuri, and N. A. Borghese, “Reducing and
filtering point clouds with enhanced vector quantization,” IEEE Trans.
Neural Netw., vol. 18, no. 1, pp. 161–177, Jan. 2007.

[33] N. A. Borghese and S. Ferrari, “A portable modular system for auto-
matic acquisition of 3-D objects,” IEEE Trans. Instrum. Meas., vol. 49,
no. 5, pp. 1128–1136, Oct. 2000.

[34] F. Bellocchio and S. Ferrari, Università degli Studi di Milano, Mi-
lano, Italy, 2009 [Online]. Available: http://www.dti.ummi.it/ferrari/
hrbf_online/hrbf_online.wmv

[35] P. Craven and G. Wahba, “Smoothing noisy data with spline functions.
Estimating the correct degree of smoothing by the method of gener-
alized cross-validation,” Numer. Math., vol. 31, no. 4, pp. 377–403,
1978/79.

[36] T. Joachims, “Making large-scale SVM learning practical,” in Ad-
vances in Kernel Methods—Support Vector Learning. Cambridge,
MA: MIT Press, 1999.

[37] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge,
U.K.: Cambridge Univ. Press, Mar. 2000.

[38] S. Ferrari, N. A. Borghese, and V. Piuri, “Multiscale models for
data processing: An experimental sensitivity analysis,” IEEE Trans.
Instrum. Meas., vol. 50, no. 4, pp. 995–1002, Aug. 2001.

[39] M. Hasenjager and H. Ritter, “New learning paradigms in soft com-
puting,” in Active Learning in Neural Networks. Heidelberg, Ger-
many: Physica-Verlag, 2002, pp. 137–169.

[40] J. Ma, J. Theiler, and S. Perkins, “Accurate on-line support vector re-
gression,” Neural Comput., vol. 15, no. 11, pp. 2683–2703, 2003.

[41] G. Montana and F. Parrella, “Learning to trade with incremental sup-
port vector regression experts,” in Proc. 3rd Int. Workshop Hybrid Artif.
Intell. Syst., 2008, pp. 591–598.

Stefano Ferrari (M’09) received the M.Sc. degree in
computer science from the Università degli Studi di
Milano, Milano, Italy, in 1995 and the Ph.D. in com-
puter and automation engineering from the Politec-
nico di Milano, Milano, Italy, in 2001.

Since 2002, he has been an Assistant Professor at
the Dipartimento di Tecnologie dell’Informazione,
Università degli Studi di Milano. His research
interests are related mainly to neural networks and
soft-computing paradigms and their application
to the computer graphics, signal processing, and

measurement systems.

Francesco Bellocchio received the computer science
degree from the Università degli Studi di Milano,
Milano, Italy, in 2007. He is currently working
towards the Ph.D. degree at the Department of
Information Technology, Universita’ degli Studi di
Milano, Crema, Italy.

His research interests are related mainly to neural
networks and soft-computing paradigms and their ap-
plication to the real-time 3-D surface reconstruction
and signal and image processing.

Vincenzo Piuri (S’84–M’86–SM’96–F’01) received
the Ph.D. in computer engineering from Politecnico
di Milano, Milano, Italy, in 1989.

Since October 2000, he has been Full Professor
of Computer Engineering at the Università degli
Studi di Milano, Crema, Italy. His research interests
include biometrics, signal and image processing
for industrial applications, theory and industrial
applications of neural networks, and intelligent
measurement systems. His original results have been
published in more than 250 papers in book chapters,

international journals, and proceedings of international conferences.
Prof. Piuri is a Distinguished Scientist of the Association for Computing Ma-

chinery (ACM). He was an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS and the IEEE TRANSACTIONS ON INSTRUMENTATION AND

MEASUREMENT. He was President of the IEEE Computational Intelligence So-
ciety and Vice President for Publications of the IEEE Instrumentation and Mea-
surement Society. He is Vice President for Publications of the IEEE Systems
Council and Vice President for Education of the IEEE Biometrics Council.

N. Alberto Borghese (M’97) graduated in electrical
engineering with full marks and honors from Politec-
nico di Milano, Milano, Italy, in 1985.

Since 2001, he has been an Associate Professor
at the Department of Computer Science, Università
degli Studi di Milano, Milano, Italy, where he teaches
the courses on intelligent systems and robotics, and is
the Director of the Laboratory of Applied Intelligent
Systems. He was visiting scholar at the Center for
Neural Engineering of the University of South Cal-
ifornia (USC), Los Angeles, in 1991, at the Depart-

ment of Electrical Engineering, California Institute of Technology (Caltech),
Pasadena, in 1992, and at the Department of Motion Capture of Electronic Arts,
Canada, in 2000. He coauthored more than 40 peer-reviewed journal papers and
holds nine international patents. His research is focused on the development and
application of methods and algorithms based on computational geometry and
statistical data analysis. His main areas of application are as follows: machine
learning, medical imaging, 3-D scanning, motion capture and artificial vision,
analysis and modeling human motion control, and cognitive functions. His tight
connections with industry provide both interesting applications and funding for
the research.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on May 12,2010 at 13:36:23 UTC from IEEE Xplore. Restrictions apply.

