
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007 161

Reducing and Filtering Point Clouds With
Enhanced Vector Quantization

Stefano Ferrari, Giancarlo Ferrigno, Vincenzo Piuri, Fellow, IEEE, and N. Alberto Borghese, Member, IEEE

Abstract—Modern scanners are able to deliver huge quantities
of three-dimensional (3-D) data points sampled on an object’s
surface, in a short time. These data have to be filtered and their
cardinality reduced to come up with a mesh manageable at
interactive rates. We introduce here a novel procedure to accom-
plish these two tasks, which is based on an optimized version of
soft vector quantization (VQ). The resulting technique has been
termed enhanced vector quantization (EVQ) since it introduces
several improvements with respect to the classical soft VQ ap-
proaches. These are based on computationally expensive iterative
optimization; local computation is introduced here, by means of an
adequate partitioning of the data space called hyperbox (HB), to
reduce the computational time so as to be linear in the number of
data points N , saving more than 80% of time in real applications.
Moreover, the algorithm can be fully parallelized, thus leading
to an implementation that is sublinear in N . The voxel side and
the other parameters are automatically determined from data
distribution on the basis of the Zador’s criterion. This makes the
algorithm completely automatic. Because the only parameter to be
specified is the compression rate, the procedure is suitable even for
nontrained users. Results obtained in reconstructing faces of both
humans and puppets as well as artifacts from point clouds publicly
available on the web are reported and discussed, in comparison
with other methods available in the literature. EVQ has been
conceived as a general procedure, suited for VQ applications with
large data sets whose data space has relatively low dimensionality.

Index Terms—Clustering, filtering, point-clouds reduction,
reconstruction error, space partitioning, three-dimensional (3-D)
scanner.

I. INTRODUCTION

THE use of digital models of real-life artifacts is becoming
a fundamental tool in many fields ranging from virtual ar-

chitecture to image processing, from medicine to reverse engi-
neering, three-dimensional (3-D) fax and videoconferencing. A
common approach is to create these models from a set of 3-D
points sampled over the artifacts’ surface through 3-D digitizers
[1], [2] (cf. Fig. 1). These points are then transformed into a
continuous surface in the form of a triangular mesh (cf. Fig. 2),
which is the de facto standard for handling 3-D surfaces [3].

Manuscript received July 13, 2005; revised June 19, 2006. This work was
supported in part by the Italian CNR-MIUR under Grant 449/97: “Robocare.”

S. Ferrari and V. Piuri are with the Department of Information Technologies,
University of Milano, Crema (CR) 26013, Italy (e-mail: ferrari@dti.unimi.it;
piuri@dti.unimi.it).

G. Ferrigno is with the Bioengineering Department, Politecnico di Milano,
Milano 20133, Italy (e-mail: ferrigno@biomed.polimi.it).

N. A. Borghese is with the AIS-Lab, Department of Computer Science, Uni-
versity of Milano, Milano 20135, Italy (e-mail: borghese@dsi.unimi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2006.886854

Fig. 1. Set made up ofN =100 000 points sampled over the doll face in panel
(d) is plotted in panels (a), (b), and (c). The points were sampled with a home-
made scanner inspired by [2] and are not uniformly distributed over the surface.

The solutions adopted by real scanning systems are based on
pipeline processing [1], [4]–[6] (cf. Fig. 3). Because the whole
shape of complex real objects cannot be captured in a single ac-
quisition session, different sets of 3-D point clouds are acquired
in several acquisition sessions, each taken with a different sensor
location and at a different orientation. Each cloud can be made
up of several hundred thousand data points and represents part of
the scanned object. These clouds are first registered (rototrans-
lated) so that they are represented in the same Cartesian refer-
ence system, obtaining a single very large cloud of data points,
from which the final model can be constructed (e.g., [4] and
[6]–[9]).

The transformation of the cloud of 3-D points into a 3-D
mesh is a critical task. The simple connection of the points
would produce a rather wavy surface, because measurement
noise at the data points is transferred into the 3-D mesh. A
model like the one in Fig. 2(b) would be useless. Moreover,
this approach produces a very large number of triangles, many
more than required by most applications. Therefore, a stage

1045-9227/$20.00 © 2006 IEEE

162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

Fig. 2. (a) Mesh constructed with a Delaunay triangulation [3] from the set of N sampled points of Fig. 1 (�200 000 triangles), is plotted in wireframe
in panel (a) and Gouraud shaded in panel (b). High-frequency noise makes the model useless and should be removed. Moreover, the number of
triangles is far greater than needed to represent this model, for many applications. This is made evident in panels (c) and (d) were the same surface
is represented with the set of M =2000 RVs (�4000 triangles) obtained by processing the data set in Fig. 1 with EVQ. Noise was removed and
the size of the data set was reduced to 2%. The parameters used were: � = 0.02, T = 5N = 500 000, and L = 12.20 mm, which produce
11� 13� 8 boxes, " = 0.344, � = 0.2, and M = 9.9.

devoted to filtering and data reduction is required; this can
be viewed as a nonlinear optimization problem [4], [6], [8],
[10]; cf. also [9], [11], and [12].

Two main approaches have been proposed in the literature. In
the first approach [Fig. 3(a)], a partial mesh is constructed for
each set of data points. These partial meshes are then zippered
together to obtain a single large mesh. A few algorithms, which
incorporate filtering, have been proposed for constructing the
partial 3-D meshes. Most of these are based on “warping” [8], a
two-dimensional (2-D) manifold, like a lattice, e.g., a Kohonen
map, [10], [13], [14] or a general mesh [9], [15]. The quality
of the result depends heavily on the initial configuration of the
mesh and on the degree of similarity between the mesh and
the surface topology. Moreover, these approaches are extremely
time-consuming (e.g., [10] requires more than 40 min to create
a 52 52 mesh from 30 000 range data points on a Pentium
II 350-MHz machine). A different strategy is based on fitting a
set of small piecewise linear [7] or nonlinear [16] patches, with

continuity constraints (cf. also [17]). Construction time is sev-
eral hundred minutes on a HP 735, 105-MHz machine. Here, the
size of the patch is critical in achieving a reliable reconstruction,
because it must be adapted to the data’s density and local spatial
frequency (cf. also [18]). Once a 3-D mesh has been constructed,
a mesh simplification stage may follow, so as to reduce the
number of vertices and faces according to geometric/topolog-
ical criteria. The computational time of these algorithms varies
greatly, the fastest one reducing a mesh of 75 000 vertices in

120 s with a compression rate of 2% [19, Table IV], on an
SGI Indigo2, R4400, 250-MHz machine. Overall, this two-stage
pipeline [Fig. 3(a)] requires heavy memory use because both
the data points and the mesh connectivity should be stored for
each scan and because out-of-core techniques, which require
that subsets of data be resident in main memory, have to be em-
ployed [20], [21].

The second approach uses volumetric techniques [22]
[Fig. 3(b)]. It is based on the analysis of the entire set of all the

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 163

Fig. 3. Two pipelines commonly used to convert clouds of points into a 3-D mesh. (a) Partial meshes are first created, and then zippered together to produce
a single large mesh. (b) Data points obtained by different partial scans are first fused together and then filtered; only afterwards is a unique mesh created. This
pipeline is the one adopted here.

data points sampled [6], [22]–[24]: 3-D points from different
scans are pulled together and analyzed. First, the number of
3-D points is reduced, so as to eliminate measurement noise,
producing a reduced set of points whose position is error
free. In the second stage, a host of standard, fast-interpolating
algorithms, like marching cubes, can be reliably used to convert
the reduced points cloud into a mesh [19], [25]. Because the
approaches belonging to this second pipeline do not require
building and storing intermediate meshes, their additional
memory-allocation needs are greatly diminished. The decrease
in main-memory loading and unloading may save processing
time [21].

The simplest algorithms in this class subdivide the volume oc-
cupied by the object into microvoxels: All the points contained
in the same voxel are replaced by a single point obtained as a
weighted average of these points [6], [22], [23]. The appeal of
this approach lies in the local nature of the computation, which
makes it especially fast. However, it suffers from a few draw-
backs. The reduced set of data points tends to be uniformly dis-
tributed in the object’s space. This is often not optimal, because
greater point density would be required in regions with greater
detail than in shallow regions. Moreover, this method perfor-
mance is critically affected by the voxel sidelength, which has
to be accurately defined a priori.

An improved version of this technique has been proposed by
Low and Tan [26]. In their approach, the points are put in an
ordered list according to their perceptual importance. A box,
centered on the first point on the list, is generated, and a single

point is substituted for all the points inside the box. Since for
assessing the perceptual importance of each data point a mesh
has to be built, this approach has not been further developed for
reducing and filtering point clouds.

Adaptive solutions have recently been introduced to adapt the
voxel size locally to the data. In [6], a region-growing approach
is reported: A point is selected at random and a cluster is grown
by iteratively grouping its nearest neighboring points until a cer-
tain criterion is met (cluster size or variation). A second data
point is then chosen and the cluster is grown by considering
only the remaining data points. The algorithm terminates when
all the data points have been considered (cf. also [27]). The ini-
tial choice of the first data point examined is critical to this ap-
proach. Different choices may produce very different results.
The opposite approach is hierarchical clustering [22], [28], [29],
where clusters are generated by recursively splitting clusters that
do not meet predefined criteria (e.g., cluster size and estimated
curvature). The whole data set is considered the initial starting
cluster.

Both these approaches suffer from the drawbacks posed by
disjunctive subdivision of the data set (each point belongs to
only one cluster), which can produce a suboptimal solution and
may lead to unsatisfactory quality overall. Spurious brisk varia-
tions in surface orientation or thickening effects do occur, since
neighboring points on the surface may be assigned to two dif-
ferent voxels [6], [22]. These are well-known problems asso-
ciated with hard clustering [30] and call for substantial post-
processing. Moreover, because clusters are created sequentially,

164 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

these algorithms cannot be parallelized and the appeal of the mi-
crovoxel approach disappears.

We introduce here soft vector quantization (VQ) techniques
to overcome these problems. VQ techniques have long been ap-
plied to lossy compression in multidimensional signal transmis-
sion; they are used here to lose the digitization noise as well as to
reduce the cardinality of the input data set. In a VQ framework,
a set of points, called reference vectors (RVs), is used to rep-
resent a set of data points, such that a certain cost func-
tion (e.g., reconstruction error) is minimized. Since VQ is an
NP-hard problem, suboptimal solutions, which can be obtained
through iterative adaptation of the RVs position [30]–[32], are
generally accepted. Algorithms of this class have been devel-
oped mainly in the connectionist domain. They are based on
combining soft-max strategies to move the RVs with a deter-
ministic annealing schedule for the parameters. However, they
share two main drawbacks: The annealing-based optimization
procedure takes a long time to converge even to a suboptimal
result, and the parameter setting is critical.

Another main contribution of this paper is the introduc-
tion of a regular volume subdivision into disjointed regions
(macrovoxels) named hyperboxes (HBs), in association with
soft-clustering. This is fully exploited to achieve a great speed
increase during the optimization phase. Moreover, it allows
deriving a fully parallel implementation of the algorithm.

The last main contribution is the derivation, from theoretical
issues, of an automated procedure for reliably setting all the
parameters by analyzing data distribution, which, as far as we
know, is one of the very few examples of this kind. Because the
only parameter specified by the user is the compression rate, the
procedure can be used by not-trained users.

The overall procedure has been called enhanced vector
quantization (EVQ). Results on reducing and filtering 3-D
point clouds are reported and discussed.

The paper is organized as follows. After introducing soft VQ
in Section II, we introduce HBs processing in Section III and
the computation of the parameters in Section IV. Results are
reported in Section V and discussed in Section VI.

II. SOFT VQ

VQ techniques [33] use a set of RVs, , to
approximate an input data set of cardinality
where . The RVs are positioned such that they minimize
the following reconstruction error, :

(1)

where is the RV closest to or the “winning” RV.
To determine the optimal position of the RVs, different iter-

ative techniques, based on soft-max adaptation, have been pro-
posed [30]. In this approach, at each iteration , a single data
point , is randomly extracted from the input data set, and
the position of all the RVs is updated according to an adequate
weighting function. Among soft VQ techniques, “neural gas”

(NG) [34], [35] has been chosen here as the “computational
engine.” NG has been shown to be superior to other VQ al-
gorithms (Kohonen maps, k-means, or maximum-entropy clus-
tering), at least for dense problems of low dimensionality [34].
Other choices [30] may be successful as well. On the other hand,
we have experimentally verified that EVQ based on NG is ef-
fective for point clouds reduction and filtering.

In NG, the RVs are updated according to the following
soft-max rule:

(5)

where is the ranking of with re-
spect to the actual data vector , assessed through the Eu-
clidean distance. controls the amplitude of the region
of influence of each and is implemented with the following
soft-max weighting function:

(6)

The function controls the number of RVs that are meaning-
fully updated by the data point . and decrease as
optimization progresses according to

(7a)

(7b)

where is the number of iterations. The role of and
is to reduce, as optimization progresses, the number of RVs

effectively displaced and the extent of the displacement asso-
ciated with , respectively. If, at the beginning, each point
sampled induces an appreciable displacement of most RVs, in
the end, only the winning RV is significantly displaced. This
behavior has been called “first-search-then-converge” [36] [cf.
Fig. 4(a) and (b)]. Initial optimization iterations are devoted to
homogenizing the RVs inside the input space; the refinement to-
wards optimal distribution takes place afterwards.

III. EVQ

For large data sets, soft VQ optimization can be extremely
time-consuming. To meet high throughput specifications, we
have developed several improvements. These are described in
this section. They are aimed to reduce the initial search phase
and the computational cost of each iteration. To this purpose,
data locality and data partitioning into a regular structure were
fully exploited (cf. also [37] and [38]).

A. HB and RV Initialization

In the asymptotic condition, the statistical distribution of the
RVs is proportional to that of the data points according to the
Zador’s criterion [34], [39]

with (8)

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 165

Fig. 4. Evolution of the position of the 2000 RVs used to construct the model in Figs 2(c) and (d) is plotted at different iteration steps: t = 0, t = 33 350, t =
66 650, t = 133 350, t = 200 000, t = 300 000, t = 400 000, and t = 500 000, when standard (a) NG or (b) EVQ was used. In standard NG, at the outset, each
sampled point causes an appreciable displacement of most RVs, while, at the end, only the winning RV is significantly displaced. This behavior has been called
“first-search-then-converge” [36]: The initial optimization iterations are dedicated to homogenizing the RVs inside the input space; refinement towards optimal
distribution takes place afterwards. In EVQ, the search stage can be skipped as the RVs are initialized near to their optimal position.

where and are, respectively, the density of the RVs
and the probability density of the data points, whereas is the
dimensionality of the data space (3 and 0.6 for clouds
of 3-D points). Following the central limit theorem, we will ap-
proximate with the local density of the data points .

From (8), an efficient initial distribution of the RVs can be im-
plemented.

Let us call the desired compression rate

(9)

166 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

and the region of that contains all the data points. Parti-
tioning into disjointed regions , it holds that

with (10a)

(10b)

where and are the volumes of and , respectively.
As a result

and (11)

where and are the number of data points and of RVs
inside , respectively. Applying (8) to the data points inside

, the RVs’ mean density can be determined as

(12)

where and are the mean density of the data
points and the RVs inside . From (10) and (11), it follows:

(13)

The number of RVs to be inserted inside each region
can, therefore, be computed through (9), (12), and (13) as

(14)

The partitioning schema can be applied, in principle, to dis-
jointed regions of any shape. If the regions are polyhedrons with
their faces parallel to the axes, they are called HBs. In 3-D space,
the HBs are parallelepipeds, which are usually termed voxels
[3].

Whenever is an HB and all the subregions have the
same shape and volume, (14) can be simplified as

(15)

which does not depend on any volume measurement. Equation
(15) will be called partitioning function.

If (15) gives noninteger values for any , one possibility is
to round these to the superior integer. In this case, the total
number of RVs, , will be slightly larger than that prescribed
by the compression rate (9). This is sufficient in all cases where
the compression rate is an estimate. When the exact number of
RVs prescribed by (9) has to be met, the following two-step
procedure can be adopted. First, all the ’s are rounded down
to the nearest integer as a result; for each , a fraction

of RVs is left out. The sum of these fractions
represents the total number of RVs,

which still have to be distributed inside the ’s. To distribute
them, the relative partitioning error

(16)

Fig. 5. Macrovoxels in which data space is partitioned through HB are shown.
The data points are plotted as small dots and the initial position of the refer-
ence vectors, determined as in Section III-A, is represented by “+.” For the sake
of clarity, only 10 000 points of the original 100 000 points of the data set, are
plotted. For each iteration, a data point is randomly extracted. With HB parti-
tioning, all computation is restricted to the RVs inside the macrovoxel to which
the data point belongs or inside the adjacent ones.

is computed for each . The ’s are then sorted by decreasing
, creating a priority list. The RVs are assigned to the
’s, one per box, to the first boxes. The choice of relative

error (16) favors those ’s that contain fewer data points.
Once the number of RVs for each has been decided, their

position inside must be defined. If inserted randomly, they
might be far from the object’s surface and it might take too long
to be attracted to it. A better (and simpler) solution is to make the
RVs coincident with one of the points sampled that belongs to
the region. An example of HB partitioning is reported in Fig. 5.

The HBs are stored into a -dimensional array. The box as-
sociated with each data point (or RV) can be directly addressed
through the set of indices , computed as

(17)

where is the minimum coordinate along the th axis of
the input space and is the length of side of the box along that
direction.

B. Speedup Through HB Data Partitioning

In NG, the most costly operation in the optimization phase
(5) is ordering the RVs by their distance from , so as to
compute their ranking. This operation, common to most soft VQ
techniques, is very expensive, being equal to . Taking
full advantage of HB, a drastic reduction in processing time can
be achieved by considering only the RVs closest to in (5).

In fact, at the beginning of the optimization procedure,
[see (6) and (7a)] must be large enough to allow all RVs max-
imum freedom of motion, since RVs may have to move through
the whole data space to reach the region of their final destination

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 167

Fig. 6. Reconstruction errorE(V;W) for four different models, (a) doll face, (b) bunny, (c) dragon and (d) happy Buddha, is reported as a function of the number
of iterations when standard NG (continuous line with asterisks) and EVQ (dotted line with triangles) were used. The error achieved by NG after 5N = 500 000
iterations is achieved by EVQ already after t iterations. t ranges in 6%�13% of the total number of iterations (see Table I for numerical details on the figures of
merit). E(V;W) has been averaged over 40 trials. The parameters used are the ones suggested by experimental results: M = 12 and � = 0.2.

[36] (cf. Fig. 4). Therefore, initial optimization steps are spent
distributing the RVs inside the data space. Only in a second
phase are the RVs directed towards their final destination [cf.
Fig. 4(a)]. With HB processing, the first optimization phase can
be skipped: Because RV distribution (15) is already close to op-
timal [cf. Figs. 4(b) and 6], there is no need to apply function
(5) to all the RVs, but only to those RVs near the data point an-
alyzed , which have to be displaced.

To this end, for each point sampled , an influence region
is defined. This is the portion of the -dimensional

space that contains all the RVs that are reasonably close to .
These are the ones that have to be moved toward ; hence,
(5) needs to be computed only for those RVs that belong to

. A natural choice for would be the box to
which belongs, . However, this would force all the
RVs in into the convex hull of the data points in that
box, leading to patchy reconstruction. To avoid this,

was defined as the region made up of the boxes, (eight in the
3-D space) nearest . This reduces the computational cost of
ranking the data points to a small fixed quantity, equal approxi-
mately to , where is the mean number of RVs
inside each box. As stated previously, when increases, the
number of boxes also increases, leaving unaffected the expected
number of RVs to be sorted in (5) (i.e., those inside).

IV. AUTOMATIC SETTING OF THE PARAMETERS

Another major contribution of this paper is an original proce-
dure that enables us to derive a reliable value for the parameters

and the ’s side, . For simplicity, all HBs are assumed
to have all sides of the same length , but the procedure
can easily be extended to sides of different length. The initial-
ization procedure is described below.

168 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

A. Setting the HB Side

The HB sidelength is a critical parameter (cf. [1], [6], and
[22]). If were chosen too large, little advantage would be
gained from HB processing; if it were too small, the statis-
tical significance of (15) would be questionable due to exces-
sive fragmentation of the data points. The strategy followed here
guarantees that, on average, a certain number of RVs, , are
placed inside each . An iterative procedure has been devel-
oped for this purpose.

The initial value of is set to

(18)

This value guarantees RVs inside each box, when the data
points are uniformly distributed. The actual mean number of
RVs per box is computed, according to (15), as

If is increased, vice versa if .
This procedure is iterated until , which requires few
iterations.

B. Saving Computational Time and Setting the Value of

The parameter (7a) sets the number of RVs that are ap-
preciably updated at the first iteration step of the optimization
procedure. A reasonable value for can be derived using the
influence region . Let us consider the first point ex-
tracted , and assume that, at the first iteration, only a cer-
tain subset of the RVs inside receives a consistent
update. If, by somehow arbitrary choice, a consistent update is
considered when [see (5)], it follows:

(19)

is, therefore, a function only of the number of RVs contained
inside ; and, it can be different for data points that be-
long to different boxes.

In deterministic annealing, starts from and goes to zero
asymptotically (for). Given the limited number of
iterations available, as to be specified. A natural choice is to
set it as a very small value at the end of the optimization phase
[for , in (7)] [30], [31], [34]. For sake of simplicity,
this value is assumed to be a small fraction of
with 0.001. With this choice, the displacement of the
second closest RV, in the last optimization step, is weighted

, which can be assumed to be reasonably
close to zero.

C. Setting the Value of

The parameter controls the plasticity of the RVs, such that
in the optimization phase, each RV can explore the whole
influence region to which it belongs. This idea is translated
into mathematical terms by setting (5) so that the expected

length of the path followed by each in the optimization phase
can be at least as large as the diagonal of the influence

region

(20)

Using a probabilistic approach and taking into account (5),
(6), and (7), can be modeled as

(21)

which depends on and on three functions: is
the probability that belongs to is the
soft-max weighting function (6), and is the distance
between and the actual data point . To get a reasonable
simple relationship between and the other terms in (21), a few
simplifications are required.

First, can be approximated with the fraction of RVs
inside:

(22)

where the mean number of RVs inside is assumed to be
equal to . Under this hypothesis, the probability that
ranks with respect to is and (21) can be rewritten
as

(23)

where is the estimated mean
distance between and the th RV, , when is the th
closest to . Considering that the displacement of an RV,
aside from the winning one , decays rapidly toward zero
with the number of iterations, (23) becomes

(24)

where only the contribution of the winning RV is taken into
account. If we hypothesize that the mean distance between an
RV and the closest data point is approximately constant in the
optimization phase, the cumulative value of can be
derived as reported in Appendix.

turns out to be a nonlinear function of the number of RVs
and of number of dimensions the data space has and a linear

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 169

function of (37). From all the previous
considerations, (24) becomes

(25)

Substituting (25) for (20) and expressing as a fraction of
can be estimated as

(26)

which gives an upper bound for . As expected, does not
depend on the size of the boxes.

When a tighter bound is required for , (23) can be modified
to take into account the contributions of the other RVs, obtaining

(27)

In this case, an iterative procedure to determine must be
adopted. First, is initialized with the value of com-
puted in (23). This value is then iteratively increased or de-
creased until becomes close enough to . This pro-
cedure converges in a few iterations. Alternatively, when and

are expressed as a fraction of and , respectively, (27) is
simplified as

(28)

from which can be directly computed.

V. EXPERIMENTAL EVALUATION

We have used EVQ extensively to reduce the cardinality of
3-D data sets acquired by 3-D scanners, eliminating the noise
on them. Some results on our own models and on models taken
from the web are reported here.

A. Reconstruction Error Measure

If the surface could be measured accurately, a natural error
measurement would have been the difference between true sur-
face height and reconstructed surface height (cf. [19]). However,
this measurement is not available in our case and two alterna-
tive indicators must be used. Although the Hausdorff distance
and the cross distance between different clouds of points have
been proposed [18], [19], there is not complete agreement on

these measurements, especially when the points are affected by
noise, which biases these measurements.

Therefore, in (1), which is a typical error measure-
ment used in VQ—and used implicitly by some simplification
techniques based on clustering [6], [22]—was adopted here. The
rationale according to which (1) can be assumed to be as a good
indicator of surface-reconstruction error is discussed later.

The correct position of an RV, , is on the object’s surface

(29)

However, only noisy surface samples are available. The
relationship between their true position and their measured one
can be broken down as

(30)
where is the projection of normal to . Notice that
the first term contains a surface-measurement error, while the
second term is due to a displacement of on the manifold and
in this respect does not contain any error in surface measure-
ment.

Because we have dense distributions for both and , the
manifold can be approximated locally with a plane. In this case,
(30) can be rewritten with an equal sign because is
perpendicular to . If we call the plane tangential
to in the th RV, the error measurement (1) can be split into

(31)
where the sum is limited only to those ’s which lie in the
neighborhood of , i.e., those for which is the winner:

. The terms lie on
.
If we hypothesize that error measurement is additive,

Gaussian and has zero mean (which is very often the case), the
following observations can be made. The first term in (31) is
minimized when ’s coincident to (locally), i.e., when it is
the plane that best fits in the least squares sense the . This
term constraints onto and, therefore, onto . The second
term increases with the density of and their distance from

: It guides the distribution of the RVs, placing more RVs
where more data have been sampled. Therefore, (1) evaluates
both the surface-reconstruction error and the quality of the
distribution of the RVs.

We explicitly note that the error function (1) could be modi-
fied by weighting the different data points, or even their coordi-
nates, differently, whenever a priori local information on mea-
surement error is available.

B. Results

This method has been applied extensively to data sets ac-
quired through 3-D scanners. A typical data ensemble sampled
on a face is reported in Fig. 1(a)–(c), where a total of
100 000 3-D points have been sampled over the face of the
doll reported in Fig. 1(d). In Fig. 2(b), the 3-D mesh obtained

170 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH THE DIFFERENT ALGORITHMS ARE REPORTED FOR FOUR DIFFERENT MODELS. THE FIGURES ARE REPORTED AS MEAN

(STANDARD DEVIATION) VALUE AVERAGED OVER 40 TRIALS. FOR EVQ THE VALUE OF t IS ALSO REPORTED. THIS IS THE NUMBER OF ITERATIONS NEEDED

TO MATCH THE RECONSTRUCTION ERROR ACHIEVED BY NG AFTER T = 5N ITERATIONS IS REPORTED AS NUMBER OF ITERATIONS. THE PERCENTAGE

WITH RESPECT TO T IS INDICATED IN PARENTHESES

by interpolating all the points sampled emphasizes the need
for filtering. Moreover, the huge number of triangles obtained
(200 000) calls for data reduction Fig. 2(a). The method pre-
sented here is successful in accomplishing both tasks, as can be
seen in Fig. 2(c)–(d), where only 2000 points (4000 triangles)
are used to represent the same face.

Besides this qualitative evaluation of the reconstruction, a
quantitative assessment has been carried out with the classical
indexes used in soft VQ techniques: the reconstruction error,

as defined in (1) and the number of “dead units,” .
A dead unit is an RV that, at the end of the optimization phase, is
not the one nearest to any data point (it never wins) [31]. An RV
becomes a dead unit when, during the optimization phase, 1) it
becomes trapped between two or more data points, or 2) when
its initial position is so distant from that of the data points that it
is never significantly attracted to them. Dead units clearly pro-
duce a suboptimal solution, and, especially in the second case,
they produce degeneration in mesh quality. For a safe recon-
struction, dead units have to be checked and discarded. Further-
more, they waste computational resources. In order to compare
the effectiveness and the efficiency of EVQ with respect to the
standard NG, each of the two algorithms has been challenged
with a 40-run session, each run made up of iter-
ation steps and characterized by a different initialization of the
RVs’ position, with a different presentation order of the data
points during the optimization.

The value of averaged over the 40 runs for the doll
face is plotted in Fig. 6(a) as a function of the number of iter-
ations for NG and EVQ. It is apparent that EVQ enables much
faster convergence since the same value of is already
obtained after % iterations, saving 93.48%
of the iterations. Moreover, guiding the initial distribution of the
RVs with HB, the dead units disappear. Overall, EVQ reduces
computational time for the doll face data set from the 1516 s,
measured on a Pentium IV, 2.0 GHz, with 1 GB of main memory,

required by NG to compute the 500 000 optimization
steps, to 109 s required by EVQ to obtain even better accuracy
(of 1.12 mm versus 1.57 mm and zero dead units
versus 4.15 on the average). Of the 109 s total processing time,
30 s are used for accurate initialization, (see Section IV). If we
accept the same value of of NG, the optimization pro-
cedure can be stopped after only 5.1 s. Therefore, EVQ allows
a great increase in speed and/or accuracy. Moreover, compu-
tational time does not depend on compression rate, i.e., on the
number of RVs.

Similar results have been consistently obtained with data
made available by other groups, such as those from the Stanford
Computer Graphics Laboratory repository, Stanford University,
Stanford, CA [40]. In particular, the for one scan
of the models: bunny (file bun000.ply), dragon (dragonStan-
dRight 0.ply), and happy Buddha (happyStandRight 0.ply)
is reported in Fig. 6(b)–(d). As can be seen, EVQ yields
similar speed increases: Overall, the obtained after

iterations with NG is already obtained after
6% 13% iterations with EVQ. The average

number of dead units which ranges from 0.225 to 14.9 with
NG, almost disappears (0 0.25) with EVQ (cf. Table I).

Saving in computational time increases with the data size car-
dinality, as it could be expected. Results on the complete dragon
model (dragon vrip.ply), made up of 437 645 data points, are
reported in detail in Fig. 7. NG required more than 9 h of com-
putations to process such model, while EVQ completed the task
in 80 s. As expected, the detail increases with the number of
RVs (with different compression rates); however, visual quality
is already close to the original at a compression rate of 10%.
Computational time does not depend on the number of RVs (on
the compression rate).

The free parameters of the algorithm are (17a), which de-
termines the length of each box, and (19), which determines
the number of RVs whose position is significantly updated by

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 171

Fig. 7. (a) Original dragon data set [40], made up of 437 645 points. (b)–(f) Closeup of the mesh constructed after processing the original data with EVQ. (b)
Reconstruction with 21 882 RVs (5%), computing time 80.2 s, number of voxels 23� 16� 10, and voxel side 10.8 mm. (c) Reconstruction with 35 812 RVs (8%),
computing time 79.7 s, number of voxels 28� 20� 13, and voxel side 8.6 mm. (d) Reconstruction with 44 202 RVs (10%), computing time 80.3 s, number of
voxels 32� 23� 15, and voxel side 7.8 mm. (e) Reconstruction with 87 529 RVs (20%), computing time 80.4 s, number of voxels 44� 31� 20, and voxel side
5.7 mm. (f) Reconstruction with 218 823 RVs (50%), computing time 80.1 s, number of voxels 69� 49� 31, and voxel side 3.4 mm.

each data point. The value of these parameters was set experi-
mentally: 12 and 0.05 have proven adequate for a
large variety of data sets and compression rates. As can be seen
in Fig. 8, where is plotted as a function of these pa-
rameters for the models plotted, it exhibits a parabolic shape,
which is consistent among the models. In a few cases, a lower

can be obtained by tuning the parameters to that par-
ticular data set. However, the minimal advantage in is
not justified by the time required for the tuning.

To test the adequacy of the most critical parameters
and , which are automatically determined inside the algorithm,

and were computed when EVQ was run using ran-
domly generated parameters in the range of 0.1 10 times the de-
fault values. Fig. 9 and Table I show that the error obtained with
automatically determined parameters is equal to or smaller than
that obtained with a random setting. Similar results were also ob-
tained for a wide spectrum of compression rates and models.

VI. DISCUSSION

The approach presented here can be regarded as a hybrid
batch/online approach. Initialization is actually carried out on
the whole data set which is a characteristic of batch procedures.
The learning stage, instead, is carried out considering one data
point at a time as in online algorithms. This approach opens new
possibilities for all those domains where the prior probability of
data points is available.

Pure batch approaches, like batch self-organizing maps
(SOMs), require several iterations on the whole data sets to
collect reliable statistics [13], while less than two iterations are
usually sufficient to EVQ to achieve good results. This suggests
not to consider batch approaches for reducing dense data sets in
low-dimensionality spaces, like the data sets considered here.
Moreover, batch approaches are very sensitive to initialization
(they usually tend to cluster the RVs in the central region) [13].

172 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

Fig. 8. Determining the parameters empirically. The reconstruction error is plotted as a function of �M and � for four different models: (a) doll face, (b) bunny,
(c) dragon, and (d) happy Buddha.

A. Comparison With Other Approaches

Local computation was the key to cutting down computa-
tional time. This has been achieved through HBs, which par-
tition the data space into disjointed macrovoxels and is the core
of EVQ. This mechanism is more powerful than that proposed
in [31] where, for each data point, a fixed number RVs is dis-
placed. Indeed, in [31], sorting all the RVs, which is the most
computationally demanding operation, was still required at each
iteration step.

A technique similar to HB partitioning is adopted by volu-
metric approaches, pioneered by [41], and further refined in [6],
[18], [23], [28], [29], and [42]. However, the purpose of the par-
tition is profoundly different in the technique presented here. In
volumetric approaches, microvoxels are used: each voxel con-
tains few data points, which are collapsed into a single repre-
sentative point. As a result voxels are very small; for instance, in
[6], a voxel size equal to the spacing in range images (0.5 mm) is
suggested and, in [23], a voxel size of 0.35 mm was used with a
partitioning into 712 501 332 voxels. This choice often pro-
duces surface thickening [6], [23] and spurious discontinuities,

which are due to assigning two nearby points each to a different
(adjacent) voxel [22]. This may easily produce spurious peaks
and gradients in the reconstructed mesh. This problem is similar
to that encountered when hard clustering is adopted [30]. More-
over, due to the regular voxel structure, a regular spacing of the
points is obtained, which does not reflect the local differential
properties of the manifold.

Rather, in the approach presented here, macrovoxels are used:
Each voxel contains a certain amount of data points and pro-
duces more than one RV. These are positioned so as to rep-
resent the data locally, inside their influence region
in Section III-A). Because adjacent influence regions partially
overlap, thickening and surface discontinuities do not occur.
This is well represented by the absence of dead units at the end
of the optimization phase. Moreover, as stated previously, the
error cost function (1) forces more RVs into those regions where
the surface is more variable, producing a denser set of RVs in
these regions [cf. Fig. 1(d)].

We explicitly note that the use of parallelepiped HBs intro-
duces an approximation into the computation of a data point’s
influence region, which is in fact a hypersphere. However this

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 173

Fig. 9. Evaluation of the parameters set according to the procedure described in Section IV for the dragon data set. (a) Reconstruction error E(V;W) and (b)
number of dead units N are plotted as a dashed line with triangles for the parameters " and � , set according to Section IV. Different values of " and � ,
chosen randomly, between 0.1�10 times the value automatically set, produce a different curve for E(V;W) and N . The ensemble of the curves obtained lies
inside the dark shaded area. It is evident that setting the parameters automatically provides a good value for these parameters. Dashed lines with triangles in panels
(a) and (b) are the same as in Fig. 5(a) and (b).

would not allow an efficient partitioning schema. Parallelepiped
boxes can be accepted when using macrovoxels, since many
RVs lie inside each influence region: Only those close to are
meaningfully displaced, while those that lie close to the border
of are usually far from and receive a low ranking
and almost no updating through (5) (cf. also [22]). The approxi-
mation of the sphere with a parallelepiped can be questioned in

those approaches based on microvoxels and it may be one of the
main sources of thickening, spurious peaks, and surface gradi-
ents generated by these approaches. In any case, the approxima-
tion of a sphere with a cubic box can be accepted only for spaces
of low dimensionality. Indeed, the probability of an RV inside

being farther from the center of the box than is an RV
outside is rather low in space that has low dimension-

174 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

alities. However, it increases exponentially as the number of the
dimensions grows.

A potential risk of EVQ, shared by all the procedures based
on volumetric techniques, is clustering points that are geometri-
cally close but topologically distant, for instance points that lie
on the two slopes of the same valley. In this case, spurious RVs
would be positioned half-way between the two slopes. However,
as 3-D digitizers usually produce very dense data sets, RVs that
lie on the opposite slopes with respect to a data point will be
ranked low in (6) and receive negligible updating in (5), while
they will be attracted to data points on the same valley. This is
particularly evident in analyzing the lips region in Figs. 1 and 2.
No range data have been acquired in the mouth region for this
model but only on the surrounding lips (Fig. 1). The RVs (Fig. 2)
follow this topology and they distribute only along the lips; no
RV is attracted into the empty space of the mouth. Moreover, the
HB structure contrasts RVs traveling to distant boxes. In this re-
spect, the approach presented here lowers the risk. Moreover,
it should be remarked that clustering points that are topolog-
ically distant but geometrically close might not be a problem
when rendering objects far from the observer (low resolution,
low visual angle models); in such cases, overall appearance is
perceptually more important than topology [12].

B. Computational Time

The cost of NG is . This can be broken down
into the cost of each iteration, dominated by sorting the RVs,
which is , and the number of optimization steps,
which increases linearly with the number of points sampled
[34]. Experimental values of can be considered more
than adequate with EVQ (cf. Fig. 6). HB processing allows re-
ducing the cost of each iteration to , a fixed quan-
tity, independent of the total number of RVs. Therefore, when
a different compression rate is used, the computational time
per iteration does not change: As the number of RVs increases
(larger values of), decreases and the number of boxes in-
creases (and vice versa for smaller values of) such as to keep

constant (Section IV-A).
A speed increase of almost two orders of magnitude with re-

spect to standard NG has been consistently obtained in exper-
iments on data sets of different size. Moreover, EVQ already
presents a computational advantage already in the initialization
phase. As is made clear in Fig. 4, the RVs can already be used
in building a reliable 3-D mesh after few iteration steps. A fur-
ther saving in computational time can be gained by fully paral-
lelizing the algorithm. Simultaneously updating the position of
those RVs whose influence regions do not overlap can reduce
computational time down to sublinear in , opening the door
to real-time implementation.

In EVQ implementation in standard sequential machines, the
computational time is about 2.5 times that of volumetric tech-
niques based on hard clustering [22] (which reduces to less than
2 times when initialization is not required). This overhead can
be accepted when considering the superior quality of the data
obtained.

The drawback of HB processing, and the other voxel-based
volumetric techniques, is additional memory occupancy. This
has been acknowledged as a major problem for those approaches

based on microvoxels [6], [22], [23]. As a matter of fact, effi-
cient space partitioning requires a table, which allows imme-
diate access to the data (17) at the price of one pointer per box.
Its memory occupancy increases linearly with the number of
boxes per dimension and exponentially with the space dimen-
sion . For example, a total of 1440 boxes were used for the
data in Fig. 1, with memory occupancy of 5760 B and 102 kB
for the data in Fig. 7(f) (at a compression rate of 50%), with
memory occupancy of 420 kB. A tradeoff between memory oc-
cupancy and algorithm speed was recently proposed by [22],
[24], and [42]. In their approach, to avoid allocating memory to
boxes that do not contain sampled points, a list has been sub-
stituted for the table: Only 202/1440 boxes would have been
allocated for the data in Fig. 1. However, determining which
box is associated with a given sampled point means searching
a hash table, generating a computational cost that increases lin-
early with the number of boxes. This is not justified when the
overhead for the HB pointers is much smaller than the size of
the data as in our case; for instance, for dragon data, against 420
kB for the HB structure, more than 5 MB are required for the
data (at 12 B per point). Therefore, the simpler table structure,
which requires only one operation to search the data, whatever
the number of boxes, has been adopted here.

C. Setting Parameters

The parameters are set automatically by analyzing data-point
distribution. This procedure is quite time-consuming requiring
about 1/5 of the total computational time (cf. Section V-B). Its
cost can be reduced when only a rough initialization is accepted
[no iterations are required to refine the estimate of and
through (18) and (23) or (24)], or a good value for the parameters
is known in advance.

The voxel size is automatically adapted to the distribution of
data points and to the compression rate (Section IV); for in-
stance, for the dragon data in Fig. 7, the side of the voxel varies
from 10.8 mm for a compression rate of 5% to 3.6 mm for a
compression rate of 50%. Moreover, in EVQ, the number of
RVs is not the same for all the boxes but is based on the local
data-point density (15). This feature is particularly useful when
used in conjunction with adaptive 3-D digitizers (like applied
research’s hand-held scanner) that allow the laser beam to be
directed manually. In this case, longer scanning time is spent
in those artifact areas where spatial details are concentrated,
collecting more points inside such regions. A similar increase
in data-point density is obtained by acquiring additional partial
scans of artifacts’s more detailed regions.

The parameters , and are derived from theoretical con-
siderations (cf. Section IV). They are not claimed to be optimal,
but they do guarantee a good solution in a reasonable time under
a wide variety of compression rates and sampled point distribu-
tions (cf. Fig. 8 and Table I). is the result of a tradeoff. A
small value of does not allow a reliable estimate of the local
density of the data points and the RVs (12); on the other hand,
too large a value of does not allow a meaningful reduction
in computational time. An attempt to find the optimal (so
that the optimization time is minimized) was recently proposed
[43]. However, this approach does not yield an analytical solu-
tion, as proposed here. regulates the amount of “soft-max”

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 175

adaptation, or the amplitude of a data point’s influence region,
through the parameter (18), which was determined experimen-
tally for all models along with . The larger is, the greater
the number of RVs meaningfully updated through (5). This de-
creases exponentially (7), as it does in most soft-clustering al-
gorithms [30]. Although different decay functions may be em-
ployed [44], we chose the standard solution, which guarantees
good results in this domain and allows a thorough comparison
with other methods in the same class.

EVQ solves the problem of dead units through careful ini-
tial distribution of the RVs. This obviates the need for ad hoc
techniques to avoid dead units, based on computing an adequate
value of for each RV at each iteration step [31]. It is based
on forcing all RVs to move during the optimization phase. The
overall extent of the adaptation, , is weighted for each RV
using a measure of the displacement accumulated in the pre-
ceding optimization steps. Because EVQ solves the problem of
dead units, no ad hoc techniques are required.

VII. CONCLUSION

EVQ is presented here as a natural tool for reducing and fil-
tering very large data sets (see also [45]). It can be used in all
applications whose data space has low dimensionality and large
cardinality, which benefit from the large speed increase offered
by EVQ; in particular, results have shown that EVQ is partic-
ularly suitable for reducing and filtering the huge data sets ob-
tained by 3-D scanners. The only parameter that has to be set by
the user is the compression rate, which makes EVQ a friendly
procedure for untrained users.

APPENDIX

The procedure to compute the mean distance, [see (22)
in Section IV-C] between a sampled point and the nearest RV,
given a certain mean number of RVs per box, is outlined here.
The formulation leads to nonintegrable equations for dimen-
sions greater than two , while for smaller dimensions
an analytical solution is offered.

Let and be two points randomly sampled from the unitary
hypercube in . Let be the probability distribution
function of the distance between and

(32)

The distance can be seen as a random variable , and the
actual form of its probability depends on . Let us randomly
sample vectors in and compute
their distance from another point , randomly sampled. Sorting
the distances in ascending order yields the set of ordered dis-
tances . It holds that , where
is the distance between and if and only if there are exactly

points in closer to than . It can be demonstrated
that the probability distribution of is [16]

(33)

The mean value of can be calculated as

(34)

where is the probability density of

(35)

Since the analytical formulation of is not available for
, (33), given that , (34) can be calculated as

(36)

The value of we are interested in is where ,
which will be termed . is the value of
when only the winning RV is taken into account. can
be computed through (33) and integrated into (34) to obtain

through (36). This is the mean distance of the th
closest RV to a sampled point , where both the RV and the
points belong to a unitary cube. The mean distance, when the
cube side is is

(37)

ACKNOWLEDGMENT

The authors would like to thank the Computer Graphics
Laboratory, Stanford University, CA, for making the “dragon,”
“bunny,” and “happy Buddha” data sets available, and P. Grew
for reviewing the English of this paper.

REFERENCES

[1] M. Petrov, A. Talapov, T. Robertson, A. Lebedev, A. Zhilayaev, and L.
Polonskiy, “Optical 3D digitizers: Bringing life to the virtual world,”
IEEE Comput. Graph. Appl., vol. 18, no. 3, pp. 28–37, May/Jun. 1998.

[2] N. A. Borghese, G. Ferrigno, G. Baroni, S. Ferrari, R. Savare, and
A. Pedotti, “AUTOSCAN: A flexible and portable scanner of 3D sur-
faces,” IEEE Comput. Graph. Appl., vol. 18, no. 3, pp. 38–41, May/Jun.
1998.

[3] D. Foley, R. VanDam, P. Feiner, and P. Hughes, Computer Graphics
Principles and Practice. Reading, MA: Addison-Wesley, 1995.

[4] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” IEEE Trans.
Vis. Comput. Graph., vol. 5, no. 4, pp. 349–359, Oct./Dec. 1999.

[5] M. Levoy, S. Rusinkiewicz, M. Ginzton, J. Ginsberg, K. Pulli, D.
Koller, S. Anderson, J. Shade, B. Curless, L. Pereira, J. Davis, and D.
Fulk, “The digital Michelangelo project: 3D scanning of large statues,”
in Proc. Siggraph’99, 1999, pp. 121–132.

[6] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model
acquisition,” in Proc. Siggraph’02, 2002, pp. 438–446.

[7] H. Hoppe, “Surface reconstruction from unorganized points,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA,
Jun. 1994.

176 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1, JANUARY 2007

[8] R. Mencl and H. Müller, “Interpolation and approximation of surfaces
from three-dimensional scattered data points,” in Proc. EURO-
GRAPHICS’98, 1998, pp. 51–67.

[9] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust,” in Proc. 6th
ACM Symp. Solid Modeling Appl., 2001, pp. 249–260.

[10] J. Bahrak and A. Fisher, “Parameterization and reconstruction from
3D scattered points based on neural networks and PDE techniques,”
IEEE Trans. Vis. Comput. Graph., vol. 7, no. 1, pp. 1–16, Jan./Mar.
2001.

[11] A. Wilson and D. Manocha, “Simplifying complex environments using
incremental textured depth meshes,” in Proc. Siggraph’03, 2003, pp.
711–718.

[12] T. R. Jones, F. Durand, and M. Desbrun, “Non-iterative, feature-pre-
serving mesh smoothing,” in Proc. Siggraph’03, 2003, pp. 943–949.

[13] T. Kohonen, Self Organizing Maps. New York: Springer-Verlag,
1995.

[14] A. Baader and G. Hirzinger, “A self-organizing algorithm for multi-
sensory surface reconstruction,” in Proc. Int. Conf. Robot. Intell. Syst.
(IROS), Sep. 1994, pp. 87–92.

[15] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comp. Vision, vol. 1, no. 4, pp. 321–331, 1988.

[16] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle, “Piecewise smooth surface reconstruc-
tion,” in Proc. Siggraph’94, 1994, pp. 295–302.

[17] T. Hastie and W. Stuetzle, “Principal curves,” J. Amer. Statist. Assoc.,
vol. 84, pp. 502–516, 1989.

[18] M. Pauly and M. Gross, “Spectral processing of point-sampled geom-
etry,” in Proc. Siggraph’01, 2001, pp. 211–219.

[19] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh
simplification algorithms,” Comput. Graph., vol. 22, no. 1, pp. 37–54,
1998.

[20] L. Ibaria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
Comput. Graph. Forum, vol. 22, no. 3, pp. 347–352, 2003.

[21] M. Isenburg and S. Gumhold, “Out-of-core compression for gigantic
polygon meshes,” in Proc. Siggraph’03, 2003, pp. 935–942.

[22] M. Pauly, H. M. Gross, and L. Kobblet, “Efficient simplification of
point-sampled surfaces,” in Proc. Vis., 2002, pp. 163–170.

[23] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. Siggraph’96, 1996, pp. 303–312.

[24] G. Roth and E. Wibowoo, “An efficient volumentric method for
building closed triangular meshes from 3D image and point data,” in
Proc. Graph. Interfaces, 1997, pp. 173–180.

[25] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3D surface reconstruction algorithm,” Comput. Graph., vol. 21, no. 4,
pp. 163–169, 1987.

[26] K. L. Low and T. S. Tan, “Model simplification using vertex clus-
tering,” in Proc. ACM Symp. Interactive 3D Graph., 1997, pp. 75–81.

[27] B. Fritzke, “Growing cell structures—A self-organizing network for
unsupervised and supervised learning,” Neural Netw., vol. 7, no. 9, pp.
1441–1460, 1994.

[28] D. Brodsky and B. Watson, “Model simplification through refinement,”
in Proc. Graph. Interface 2000, 2000, pp. 221–228.

[29] E. Shaffer and M. Garland, “Efficient adaptive simplification of mas-
sive meshes,” in Proc. Vis., 2001, pp. 127–134.

[30] A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms
for pattern recognition—Part I,” IEEE Trans. Syst., Man Cybern. B,
Cybern., vol. 29, no. 6, pp. 778–785, Dec. 1999.

[31] T. Hofman and J. M. Buhman, “Competitive learning algorithms for
robust vector quantization,” IEEE Trans. Signal Process., vol. 46, no.
6, pp. 1665–1675, Jun. 1998.

[32] R. Xu; and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[33] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA: Kluwer, 1995.

[34] T. M. Martinetz, G. Berkovich, and K. J. Schulten, “Neural-gas net-
work for vector quantization and its application to times-series predic-
tion,” IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 558–569, Jul. 1993.

[35] M. Milano, P. Koumoutsakos, and J. Schmidhuber, “Self-organizing
nets for optimization,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp.
758–765, May 2004.

[36] C. Darken and J. Moody, “Note on learning rate schedules for sto-
chastic optimization,” Adv. Neural Inform. Process. Syst., vol. 3, pp.
832–838, 1991.

[37] N. A. Borghese, M. Maggioni, and S. Ferrari, “Multi-scale approxi-
mation with hierarchical radial basis functions networks,” IEEE Trans.
Neural Netw., vol. 15, no. 1, pp. 178–188, Jan. 2004.

[38] S. Ferrari, I. Frosio, V. Piuri, and N. A. Borghese, “Automatic multi-
scale meshing through HRBF networks,” IEEE Trans. Instrum. Meas.,
vol. 54, no. 4, pp. 1463–1470, Aug. 2005.

[39] P. I. Zador, “Asymptotic quantization error of continuous signals and
the quantization dimension,” IEEE Trans. Inf. Theory, vol. IT-28, no.
2, pp. 139–149, Mar. 1982.

[40] Stanford Computer Graphics Lab., Stanford Univ., “The Stanford 3D
Scanning Repository” Stanford, CA [Online]. Available: http://www-
graphics.stanford.edu/data/3Dscanrep/

[41] C. I. Connolly, “Cumulative generation of octree models from range
data,” in Proc. Int. Conf. Robot., 1984, pp. 25–32.

[42] A. Djouadi and E. Bouktache, “A fast algorithm for the nearest-
neighbor classifier,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19,
no. 3, pp. 277–282, Mar. 1997.

[43] J. Rossignac and P. Borrel, “Multi-resolution 3D approximation for
rendering complex scenes,” in Modelling in Computer Graphics, B.
Falcidieno and T. L. Kunii, Eds. New York: Springer-Verlag, 1993,
pp. 455–465.

[44] F. Mulier and V. Cherkassky, “Learning rate schedules for self-orga-
nizing maps,” in Proc. 12th IAPR Conf., 1994, vol. 2, pp. 224–228.

[45] G. Dong and M. Xie, “Color clustering and learning for image segmen-
tation based on neural networks,” IEEE Trans. Neural Netw., vol. 16,
no. 4, pp. 925–936, Jul. 2005.

Stefano Ferrari received the Ph.D. degree in com-
puter engineering from Politecnico di Milano, Mi-
lano, Italy, in 2001.

Since 2000, he has been an Assistant Professor at
the University of Milano, Crema (CR), Italy. His re-
search interests are in neural networks and soft-com-
puting paradigms and the application to the computer
graphics.

Giancarlo Ferrigno received the M.Sc. and Ph.D.
degrees in bioengineering from Politecnico di Mi-
lano, Milano, Italy, in 1983 and 1990, respectively.

Since 1990, he has been a Researcher, Associate
Professor and, since 2001, Full Professor of Bioengi-
neering at Politecnico di Milano. He is an author of
more than 60 full papers on international journals and
more than ten patents. After several academic posi-
tions, he is currently Head of the Doctoral School of
Politecnico di Milano, running 31 Ph.D. programs in
architecture, engineering, and industrial design. His

research interests range from information technology applied to rehabilitation
and to motor control to new technologies for in vitro cell cultures analysis.

Vincenzo Piuri (S’84–M’86–SM’96–F’01) received
the Ph.D. degree in computer engineering from Po-
litecnico di Milano, Milano, Italy, in 1989.

From 1992 to September 2000, he was an Asso-
ciate Professor in Operating Systems at Politecnico
di Milano. Since October 2000, he has been a Full
Professor in Computer Engineering at the University
of Milano, Milano, Italy. He was a Visiting Professor
at the University of Texas at Austin during the
summers from 1993 to 1999. His research interests
include distributed and parallel computing systems,

computer arithmetic, application-specific processing architectures, digital
signal processing architectures, fault tolerance, theory and industrial appli-
cations of neural networks, intelligent measurement systems, and biometrics.
Original results have been published in more than 200 papers in book chapters,
international journals, and proceedings of international conferences.

FERRARI et al.: REDUCING AND FILTERING POINT CLOUDS WITH EVQ 177

Dr. Piuri is a member of ACM, INNS, and AEI. He was an Associate Editor
of the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT and the
IEEE TRANSACTIONS ON NEURAL NETWORKS. He was a Vice President for Pub-
lications of the IEEE Instrumentation and Measurement Society, Vice President
for Members Activities of the IEEE Neural Networks Society, and Member of
the Administrative Committee both of the IEEE Instrumentation and Measure-
ment Society and the IEEE Computational Intelligence Society. He is the Pres-
ident of the IEEE Computational Intelligence Society (2006–2007). In 2002, he
received the IEEE Instrumentation and Measurement Society Technical Award
for his contributions to the advancement of computational intelligence theory
and practice in measurement systems and industrial applications.

N. Alberto Borghese (M’97) received the laurea in
electrical engineering with full marks and honors
from Politecnico of Milano, Milano, Italy, in
1984–1985.

Currently, he is an Associate Professor at the De-
partment of Computer Science of the University of
Milano, Milano, Italy, where he teaches the courses
of intelligent systems and robotics and digital anima-
tion, and is the Director of the Laboratory of Applied
Intelligent Systems. He was a Visiting Scholar at
Center for Neural Engineering of University of

Southern California, Los Angeles, in 1991, at the Department of Electrical
Engineering, California Institute of Technology (Caltech), Pasadena, in 1992,
and at the Department of Motion Capture, Electronic Arts, Vancouver, Canada,
in 2000. He coauthored more than 40 peer-reviewed journal papers and five
international patents. His research interests include quantitative human motion
analysis and modeling, learning from data, applications to vision graphics, and
medical imaging.

