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Abstract—A procedure for the real-time construction of three-
dimensional (3-D) multiscale meshes from not evenly sampled 3-D
points is described and discussed in this paper. The process is based
on the connectionist model named hierarchical radial basis func-
tions network (HRBF), which has been proved effective in the re-
construction of smooth surfaces from sparse noisy data points. The
network goal is to achieve a uniform reconstruction error, equal to
measurement error, by stacking noncomplete grids of Gaussians at
decreasing scales. It is shown here how the HRBF properties can
be used to develop a configuration algorithm, which produces a
continuous surface in real time. In addition, the model is extended
to automatically convert the continuous surface into a 3-D mesh
according to an adequate error measure.

Index Terms—Adaptive meshing, cloud of points, multiscale
surface, noise filtering, real-time meshing, three-dimensional (3-D)
scanner.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D) scanning of real objects
is becoming a common technique to obtain 3-D models.

The procedure is composed of two-steps: 1) measuring a set of
(not evenly sampled) data points on the object’s surface (cloud
of points, cf. Fig. 1) and 2) generating a 3-D colored mesh,
which is the de-facto standard in 3-D visualization. Although
sampling can be indeed fast, the generation of a 3-D mesh
requires a considerable amount of time as the processing chain
usually requires combining a set of partial 3-D scans (each taken
with a different location and attitude of the sensors) to produce
a complex 3-D model. This is achieved by looping through
three steps: view planning, scans alignment (registration), and
surface reconstruction through merging [1]. Each partial scan
can be constituted of several hundreds of thousands of data
points and represents a portion of the scanned object. To
acquire the entire object human intervention is required to
plan additional scans, which would add to the model missing
details or the object’s portions not acquired in the previous
scans. As a consequence of this evaluation planning procedure,
the acquisition of a single model can take a very long time.
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Fig. 1. Doll face in panel (a) has been scanned through the Autoscan digitizer
[7], obtaining a data set of 16 851 range data points reported in panel (b).

The process can be speeded up, if a visual feedback is made
available in real time. In this case, subsequent scans can be effi-
ciently planned within a short time. A solution in this direction
has been recently proposed by [2], where a simplified rendering
of the surface was introduced to evaluate image quality. In this
technique, called splatting, an oriented planar circular shape is
rendered around each sampled point to convey an idea of the
surface geometry.

The approach presented here is aimed at obtaining in real-time
multiscale meshes of high quality. It is based on the hierarchical
radial basis function networks model (HRBF) [3], [4]), where
a linear combination of Gaussian units is adopted to represent
the surface. The HRBF model was derived in the connectionist
domain, where the problem of fitting a mesh to range data is
studied into the broad domain of multivariate approximation [5].
The main characteristic of the model is the ability to reconstruct
a 3-D surface with no iteration on the data, therefore allowing
fast computation of the configuration parameters. The closest
approach to HRBF is based on stacking grids of B-splines
[6]. In the HRBF configuration algorithm, the parameters are
computed through algebraic operations carried out locally on
the data: the computation of each HRBF’s parameter requires
considering only a subset of the data. To add finer details of
the surface, which are often circumscribed in a few regions, a
multiscale adaptive scheme has been developed. This schema
automatically identifies these regions and inserts clusters of
Gaussians at smaller scales there. This local nature of the
computation can be exploited to obtain a real-time procedure
for network configuration. Besides this, it is also shown how
the differential properties of the Gaussian units allow defining
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a particular error measure, which can be used to guide the
adaptive resampling of the continuous HRBF surface to obtain
the 3-D mesh.

The paper is organized as follows. The HRBF model is briefly
summarized in Section II. In Section III, the procedure to obtain
real-time surface computation is described, and in Section IV,
it is shown how to sample the surface to obtain a 3-D mesh.
Results are reported in Section V and a few concluding remarks
in Section VI.

II. HRBF MODEL

Let us suppose that the measured points can be expressed
as a two-dimensional (2-D) data set, that is, as a height field

. In this
case, the surface will assume the explicit analytical shape

. The output of the HRBF network is obtained by adding
the output of a stack of hierarchical layers , at decreasing
scales, as follows:

(1)

where determines the scale of the th layer, with
. When the Gaussian is

taken as basis function, the output of each layer can be written
as

(2)

where is the number of Gaussian units of the th layer. The
are equally spaced on a 2-D grid, which covers the input

domain of the range data, that is, the ’s are positioned in
the grid crossings. The side of the grid is a function of the scale
of that layer: the smaller the scale, the shorter is the side length,
the denser are the Gaussians, and the finer are the details that
can be reconstructed.

The shape of the surface in (2) depends on a set of parameters:
the structural parameters, which are the number ,
the scale ensemble , the position , and the weights as-
sociated to each Gaussian . Each grid realizes a low-pass
filter, which is able to interpolate and reconstruct the surface up
to a certain scale, determined by . Considerations, grounded
on the signal processing theory, allow, given a certain scale ,
to set the grid side and, consequently, and the [8].
In this schema, the weights represent the surface height
measured in the grid crossings . As measured
points are usually not equally spaced, is not available
and should be estimated. To that purpose, a weighted average of
the measured points , where the weight decreases with the
distance of from , can be adopted. The estimate can be
carried out locally in space, by using only those points lying in
an appropriate neighborhood of . This neighborhood, called
receptive field , can be chosen as a circular region cen-

Fig. 2. Surfaces of the doll face in Fig. 1 obtained by multilayer HRBF
reconstruction. The surfaces in (a)–(d) are obtained from the fast HRBF
algorithm by using one to four layers; the ones in (e)–(h) are obtained from
the fast meshing algorithm by restricting the meshing on the centers of,
respectively, the first up to the fourth layer; the surfaces in (i)–(n) are generated
by the fast meshing algorithm, with different threshold � (0.5, 0.1, 0.05, 0.01,
respectively). The surfaces in (a)–(d) are obtained by densely resampling the
HRBF surface (61161 triangles). The meshes in (e)–(h) are composed by 1276,
4321, 12578, and 28 296 triangles, respectively. The surfaces in (i)–(n) are
composed by 8094, 28296, 39797, and 63 172 triangles, respectively.

tered in , which have the radius proportional to the grid side
. A possible weighting function is

(3)

Although a single layer with Gaussians of very small scale
can reconstruct the finest details, this would produce an unnec-
essary dense packing of units in all those regions that ure a low
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Fig. 3. Four hierarchical grids used to support the Gaussian reconstruction of a face. Circles represent the presence of a Gaussian unit in a crossing. Notice that
the first grid is complete, while the grids associated to smaller scales are more dense but sparse.

scale. Moreover, there might even be not enough points inside
to get a reliable estimate of in (3). A better so-

lution is to adaptively allocate the Gaussian units, with an ad-
equate scale in the different regions of the range data domain.
This can be achieved as explained in the following.

The first grid outputs a rough estimate of the surface
at a large scale as

(4)

For each sampled point, a residual is computed as the difference
between the measured value of the surface height and the recon-
structed one, as follows:

(5)

Details at scales higher than will not be visible [cf.
Fig. 2(a)–(d)]. A second grid, featuring a smaller scale
than the first one, is created. Somehow arbitrarily we choose

, as usually chosen in wavelet decomposition.
The Gaussians are inserted only where a poor approximation

is obtained. This is evaluated, for each Gaussian , through
an integral measure of the residuals inside the receptive field
of that Gaussian . This measure, which represents the
local residual error is computed as the norm of the
local residuals as

(6)

When is over threshold (larger than the measure-
ment noise), the Gaussian is inserted in the corresponding grid
crossing of the second layer. Grids are created one after the other
until the residual error goes under threshold, usually defined
as standard deviation of the measurement error over the entire
input domain. As a result, Gaussians at a smaller scale are in-
serted only in those regions where there are still some missing
details, forming a sparse approximation (Fig. 3). Moreover, the
number of layers is not given a priori, but it is the result of the
configuration procedure: the introduction of a new layer stops
when the residual error is under threshold over the entire do-
main (uniform approximation).
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III. FAST CONFIGURATION OF HRBF SURFACES

For each layer , the complexity of the configuration algo-
rithm is , where is the number of the Gaussians of
the network, and is the data set cardinality. This figure re-
sults by observing that the computation of both the residuals and
the coefficients requires evaluating the distance
between each measured point and the position of each
Gaussian ((3) and (6)). The need to compute the distance
between all data points and all Gaussian centers is required by
1) the nonzero response of the Gaussian in the whole domain

(infinite support) and 2) the extraction of the points that lie
inside the receptive field.

To reduce the configuration time, several observations can be
made. As Gaussian decreases rapidly toward zero, in practical
applications, its influence is considered only inside a suitable
neighborhood of the Gaussian center, which will be termed
influence region. In the following, will be taken as radius of

, where is times the value of the value of
the Gaussian in its center.

To avoid the need of computing, for each unit (the distance
from all the measured points), the key idea is to arrange the data
in a data structure that allows fast retrieval of those points, which
belong to the neighborhood of a unit. Easy partitioning cannot
be obtained with the circular regions implicitly considered in
the definition of and ; some approximations must be
introduced, in particular, the following.

1) The receptive field of the Gaussians is approximated by
the bounding square. From now on, we simply refer to
these squared boxes as the receptive field.

2) The length of the side of the receptive field is an even
multiple of the grid spacing . More formally, the re-
ceptive field side is equal to , where .

3) The Gaussian width (and, hence, the grid side ) is
halved at every layer, as follows: .

The influence region will also be represented as a squared region
of side multiple of the Gaussian spacing.

To take full advantage of locality, a quad-tree-like data
storage mechanism, which organizes the data points using a
recursive splitting of the input domain along both the axes and
allows a fast retrieval of closed points, has been introduced
[9]. Let us suppose that measured data points are stored into
an array: they will be arranged such that their position in the
array will reflect their position in 3-D space. In particular,
points that lie inside the same influence region will be stored in
close positions of the data array. To the scope, we introduce the
concept of a cell, called , as the squared region on the support
plane , whose vertexes are four adjacent Gaussian centers
(cf. Fig. 3). Since it assumes the value of the grid side , the
size of the side of a cell changes from layer to layer. To each

, a data structure is associated, which contains the number of
data points projecting over , , and the position in the array
where the first point lying inside is stored . All the points,
which lie inside a cell , can be retrieved easily from and

. This arrangement of the data guarantees the following:

• receptive field and influence region direct mapping (the
indexes of the cells associated to each Gaussian, can be
directly computed from the Gaussian position index);

Fig. 4. Implementation of the partitioning schema into cells.

• quad-tree data partitioning (the cell of a higher layer
can be generated by efficiently partitioning the corre-
sponding cells of the lower layer: the union of four cells
of the higher layer produces a single cell of the imme-
diate lower layer).

The rearrangement of the points is obtained by an in-place par-
tial sorting algorithm, a variant of Quicksort, in which the pivot
value is the mean position of the data inside the vector segment
associated to the each cell [10]. The partitioning schema is il-
lustrated in Fig. 4, and it can be efficiently used to compute the
parameters in (3) and (6).

This processing greatly improves the configuration procedure
performances, as each point is now involved in the computa-
tion of no more than Gaussians for each layer. Hence,
the computational time linearly scales with the cardinality of
the data set . For example, the reconstruction of the surface
reported in Fig. 2(a)–(d) required a processing time of 1.78 s
(with a standard deviation of 0.118 s) averaged over 20 trials,
on a Pentium III 1-GHz machine with 256 MB of memory. The
HRBF data are reported in Table II. The amount of overhead
added by data structuring was negligible, being of one order of
magnitude smaller than network configuration time.

IV. FROM HRBF SURFACES TO HRBF MESHES

The output of the HRBF network is a multiscale continuous
surface. To be visualized by graphical hardware, this surface has
to be digitized, that is converted into a multiscale mesh. This is a
piecewise planar approximation of the surface. One possibility
is to densely sample the surface and tessellate it. However, this
would produce an unnecessary dense mesh.

A better solution can be obtained by exploiting the differential
properties of the HRBF surface, to produce a mesh such that the
vertices are denser in those regions containing the finest details.
The rationale is to start with a low-density mesh and to make
it denser around the points , in which the deviation from
linearity is greater than a given threshold . Let us call Err
this deviation and define it as

Err polyg (7)

If the evaluation of Err were carried out by computing
as in (1), there would be no advantage in later discarding

the point from the mesh (at least in terms of meshing accuracy,
computational time, and memory allocation). However, the dif-
ferential properties of the HRBF model grant us a cheap esti-
mate of the surface height: as shown in the Appendix , since the
derivatives of each Gaussian can be computed mostly reusing
some of the intermediate results of the network configuration
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Fig. 5. HRBF fast meshing schema. In panel (a), the base points are shown.
In panel (b), the set of probing points P is shlown in light gray. The value in
P is estimated starting from the HRBF value computed in U . In panel (c), an
example of residual evaluation computed for each P is shown. The points with
the dark outer circle are over threshold and lead to the addition of new vertexes
as shown in panel (d).

procedure, the computation of the derivatives of the HRBF sur-
face is very efficient. This fact can be fully exploited when using
a second-order approximation of the HRBF surface in (7)
instead of the HRBF value , given by (1).

The meshing procedure starts by considering the crossings of
the first grid , which we call base points
[cf. Fig. 5(a)]. The HRBF surface is sampled in to obtain

, which constitutes a first ensemble of mesh vertexes.
Notice that the surface height in the base points is obtained as
sum of the outputs of all the layers (1) [e.g.,
Fig. 2(a)].

The adequacy of the resulting mesh is evaluated by analyzing
the approximation error between pairs of adjacent base points:
we will make the mesh denser (of vertices), where the approxi-
mation error is higher. To the scope, a probing set is chosen
as the set of the midpoints of the segments connecting two adja-
cent base points. It should be noted that is a subset of the
crossings of the second grid.

The height of the reconstructed surface in each probing point
, is estimated through the second-order Taylor expansion of

the HRBF , evaluated in the neighboring grid cross-
ings of , . In particular, is evaluated as
the average of the surface height estimated in the points which
belong to through , as follows:

(8)

Fig. 5(b) depicts these operations. The arrows depart from an
elements of and reach a probing point the neighborhood to
which they belong. For each probing point, the estimated height
is computed according to (8) and it is compared with the piece-
wise approximation in , , of-
fered by the mesh. The probing point is added to the mesh
only if, for a given threshold , the condition

(9)

holds. Hence, the difference is used to estimate
the distance between the HRBF surface and its polygonal ap-
proximation in the point . If this distance is higher of a given
threshold , the point is added to the base points set, and
its HRBF surface height is computed [Fig. 5(c) and (d)]. This
schema is iterated until a given criterion is met.

For example, the meshes in Fig. 2(e)–(h) and the meshes in
Fig. 2(i)–(n) are computed using this schema but different stop-
ping criteria. For the meshes of the first group, we restrict the

TABLE I
RECONSTRUCTION PERFORMANCE OF THE ORIGINAL HRBF

TABLE II
RECONSTRUCTION PERFORMANCE OF THE FAST HRBF

TABLE III
RECONSTRUCTION PERFORMANCE OF THE FAST MESHING

meshing on the center of the different layers [the first up to the
forth layer for the meshes in Fig. 2(e)–(h), respectively]. Hence,
the stopping criterion is the number of iterations of the meshing
procedure. Instead, the meshes in Fig. 2(i)–(n) have been con-
structed iterating the previously described procedure until the
surface results under threshold in all the probing points.

V. ACCURACY

To implement and use the HRBF processing, the underlying
theoretical foundations need to be relaxed by introducing suited
approximation addressing feasibility and performance issues.

In the processing chain previously described, approximations
are induced in both the residual computation and the resam-
pling stages. In the computation of the residual stage, approx-
imations are introduced by arbitrarily limiting the contribution
of a Gaussian inside a square region that surround the Gaussian
itself, while in the meshing stage the choice of an estimator
for predicting the surface height may result in a mesh of poor
quality.

In order to monitor the accuracy in the HRBF processing
chain, we compare the reconstruction obtained in each stage
with respect to the original data set. To evaluate accuracy we
adopt the root mean square error (RMSE) and the mean and
standard deviation of the absolute value of the reconstruction
error ( and ).

Tables I–III report the figures of merit for the reconstruction
obtained from the original HRBF algorithm (Gaussians with in-
finite support), the HRBF trained with the fast schema (Gaussian
with bounded support), and the fast meshing schema (predictor
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TABLE IV
ACCURACY PERFORMANCE COMPARISON

TABLE V
ACCURACY PERFORMANCE COMPARISON OF GENERATED MESHES

guided meshing with ). These figures of merit of the first
and the second reconstruction compare well with the measure-
ment error of the data (0.7 mm). In Table III, instead of reporting
the structural parameters of the HRBF network (which are the
same of the network in Table II), the number of vertices and tri-
angles of the resulting meshes are reported.

Table IV reports the accuracy figures of the fourth level of
the reconstruction algorithm (original and fast HRBF) com-
pared with the ones achieved by the fast meshing over several
values of the threshold . The generated surfaces are reported
in Fig. 2(i)–(n).

Table V reports the figures of merit achieved by the fast
meshing computed with respect to the approximation of the
original data given by the mesh obtained from the resampling
of the fast HRBF algorithm. Besides, it reports the number of
vertices and triangles of the generated meshes.

VI. DISCUSSION AND CONCLUSION

As shown in Tables I–III, the accuracy is not affected by the
approximation introduced by the implementation choices. Ex-
periments operated on several data sets confirm this conclusion.

In the computation of the residual stage (6), in order to save
computational time, we arbitrarily limit the contribution of a
Gaussian inside a square centered in the Gaussian center. This
choice is acceptable in spaces of low dimensionality as in our
case. When increases, the volume of a -dimensional sphere
becomes negligible with respect to the volume of its bounding

-dimensional cube, and the choice is not justified anymore.
Spherical neighborhood region computation requires additional
processing, which makes this approach less appealing. How-
ever, the accuracy of the reconstruction is not affected as the
contribution of a Gaussian is negligible outside its neighbor-
hood region. Moreover, it is worth noting that the approxima-
tion error of a layer can be recovered by the next layer, since
this is included in the residual [4], [11].

Another potential source of inaccuracies is the use of an es-
timator in (8) to decide if the mesh resampling should be more
dense. As vertices added to the mesh depend on the surface pre-
diction (8), inaccuracy of the prediction may result either in a
mesh unnecessarily dense or in a mesh poor of details.

As pointed out by the figures of merit reported in Table IV,
the use of the second-order Taylor expansion as surface pre-
dictor has proven to be effective. However, the comparison (9)
between the height of predicted surface and the height of the
polygonal approximation in itself may not be adequate in mea-
suring the difference of the visual appearance of the two sur-
faces. Fig. 2(i)–(n) illustrates this point, as they are generated
by using only the threshold as stopping criterion to drive the
meshing procedure. Comparing them with the surfaces reported
in Fig. 2(e)–(h), it is evident that they employ an unneccessarily
high number of triangles to reconstruct the surface, whether a
stopping criterion based on the number of vertices may balance
the opposite requirements of accuracy and lightness of the mesh.
For the task of measuring the difference in visual appearance, a
better figure of merit could be the distance between the polyg-
onal approximation and its projection onto the predicted surface.
However, this operation cannot be used in the present applica-
tion due to its high computational cost.

The relaxation of some theoretical aspects of the hierarchical
radial basis functions (HRBF) algorithm allows implementing
an efficient computation of the HRBF parameters, which
operate locally on the data and achieve real-time meshing on
sequential machines. Computing time overhead for the prepro-
cessing is negligible, being experimentally measured of one
order of magnitude smaller than configuration time.

Errors that might be introduced by the implementation
choices (e.g., the quantization error [11], the approximations
introduced in Section III) do not decrease the reconstruction
accuracy, because of the constructive nature of the configura-
tion algorithm. The figures of merit of the reconstruction error
for traditional and the fast configuration algorithms are in fact
almost identical, as shown in Tables I and II. A comparison
between the two reconstructed surfaces is shown in Fig. 6. It
can be noticed that in the region covered by the points, the
difference is almost negligible.

The fast meshing schema allows achieving real-time
meshing, at least for a preview of the reconstruction, which
allows real-time assessment of the quality of the obtained
model. As reported in Fig. 7, the error is distributed mainly in
the border region, while it is perceptually negligible in the inner
region. It should be noted that as most of the expansions are
computed along the axis, they do not require all the derivatives.
In other words, once the HRBF surface has been com-
puted, with little additional effort, the function , which
evaluates the surface height with respect to , is available. The
accuracy of the generated mesh allows correcting the scanning
setup and planning additional refinement scans immediately in
order to avoid artifacts or holes in the produced mesh.

Moreover, the accuracy achieved by the fast meshing schema
is adjustable by the threshold . The value can be regulated
on both the computational resources, which can be devoted to
the meshing procedure, and the capability of the visualization
device. Besides, the generated mesh can be a good starting point
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Fig. 6. Reconstruction error of the fast configuration schema.

Fig. 7. Reconstruction error of the fast meshing schema.

for mesh optimization procedures, since it can be enriched with
information on the differential properties of the surface. This
information may be obtained with a little additional effort by
the resampling procedure.

APPENDIX

The second-order Taylor’s expansion of a function
is

(10)

where and and are the components of along the
axes.

Reframing (1) as

(11)

the derivatives of the HRBF surface (1) can be computed as

(12)
where and , and

(13)

(14)

(15)

(16)
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