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Multiscale Models for Data Processing: An
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Abstract—Hierarchical radial basis functions (HRBFs) net-
works have been recently introduced as a tool for adaptive
multiscale image reconstruction from range data. These are
based on local operation on the data and are able to give a sparse
approximation. In this paper, HRBFs are reframed for the regular
sampling case, and they are compared with wavelet decompo-
sition. Results show that HRBFs, thanks to their constructive
approach to approximation, are much more tolerant on errors in
the parameters when errors occur in the configuration phase.

Index Terms—Basis functions, function spaces, iterative decom-
position, multiresolution analysis, multiscale signal decomposition,
quantization error, RBF networks, robustness, sensitivity, signal
processing, wavelets.

I. INTRODUCTION

M ULTIRESOLUTION techniques are widely used in
signal processing, as they are able to analyze the signal

properties and produce a local description both in the temporal
and frequency domains. This feature is of fundamental impor-
tance when a continuous measurement field has to be recovered
from spot measurements.

Wavelet decomposition [1], [2], based on multiresolution
analysis (MRA) theory, is the most-used tool for multiscale
signal processing thanks to the fast machinery adopted to
compute its coefficients. An interesting alternative is offered by
multiscale approximation through Gaussian bases. In [3], [4],
hierarchical radial basis functions (HRBFs) neural networks
have been introduced, and it is shown that, although they do
not perform a wavelet decomposition, they do enjoy the same
asymptotic approximation properties. Moreover, HRBFs are
able to better achieve a given approximation error. This is
useful when measurement noise characterization is available.

Real-time requirements, which an embedded system com-
monly has to cope with, often need hardware implementation
of the algorithms [5]. Embedded systems have to satisfy
also other requirements, such as robustness, compactness,
power consumption, and economical cost. The notation and
precision used to represent the numerical quantities affect the
characteristics of a computing system in different ways. Hence,
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Fig. 1. Functional schemes for analysis and synthesis with MRA and HRBF.
(a) MRA determination of the coefficients; (b) MRA Reconstruction; (c) HRBF
determination of the coefficients; (d) HRBF Reconstruction.

in embedded systems design, the choice of the computational
framework and its representation are a part of the compromise
between complexity, speed, and precision that the designer has
to meet [6], [7]. A detailed understanding of how representation
and precision affect the quality of the solution is therefore
fundamental for an effective and efficient design.

The aim of this work is to reframe the HRBF configuration
procedure for regular sampled data and to compare the accu-
racy in the reconstruction of a given signal through HRBF and
wavelet decomposition when error, due to numerical representa-
tion of their parameters, is introduced. In the following section,
MRA and HRBFs are introduced with special attention to digital
implementation aspects. In Section III, a comparison between
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Fig. 2. Implementation schemes for analysis and synthesis with MRA. (a) MRA determination of the coefficients; (b) MRA reconstruction.

the theoretical and experimental properties of the two frame-
works is carried out.

II. M ETHODOLOGICAL BACKGROUND

A. Multiresolution Analysis

An MRA is a sequence of function spaces where
each space completely includes the previous ones .
These spaces are completely characterized by ascaling function

, as, for each, the set of functions where
constitutes a basis for . That is,

each space is spanned by a set of suitably scaled, dilated, and
translated copies of . Thanks to the scaling factor , the
scale of doubles every layer. Approximations at the-th
scale are obtained as a linear combination of and are con-
tained in the corresponding . As the union of is dense in

—the space of the square integrable functions—every signal
belonging from this functional space (which contains all

the common functions) can be reconstructed with an arbitrary
accuracy. Therefore, it is possible to define a set of spaces
such that they complement in .
The are the function spaces that contain the details: the
portion of which is contained in but not in . The
spaces are characterized by a single function called
a wavelet. Analogously to the approximation spaces, each
space is spanned by the base , where

. The details are therefore repre-
sented as a linear combination of (equally spaced) translated
copies of , whose scale also doubles every layer. The coef-
ficients can be obtained by projecting the measured signal onto
the wavelets and the scaling functions. Hence, a given function

can be represented as the sum of an approximation

and a detail at the scale . Applying an iterative de-
composition process times the function can be repre-
sented as the sum of an approximation anddetails at a de-
creasing scale [Fig. 1(a)–(b)].

When the signal is digitized, MRA theory allows one to de-
sign a fast algorithm for wavelet decomposition, thecascade
algorithm, which decomposes the signal by convolving it with
two (suitable) mirror quadrature finite impulse response (FIR)
filters [8]. To obtain the multiresolution description, the convo-
lution is iterated on the coefficients, which are obtained at each
pass of the convolution.

More formally,1 given a sequence obtained by regularly
sampling the signal , the approximation coefficients of the
first layer are obtained as , and the detail co-
efficients as , where and are respectively
the lowpass and the highpass decomposition FIR filters (called
dual filters) corresponding to the considered MRA. is
a sub-sampling operator: it discards one of every two samples.
The procedure is iterated in the higher layers using the coeffi-
cients computed in the previous layer: and

. After iterations, the signal is represented
by the following collection of coefficients .
Given and , the approximation at the next higher resolu-
tion level can be computed as ,
where and are the lowpass and highpass reconstruction FIR
filters (also calledprimal filters). is a super-sampling op-
erator, which inserts zeros in between the coefficients. The fil-
ters and are related by orthogonality or biorthogonality con-
dition to and . The decomposition and reconstruction pro-
cedure through the cascade algorithm are schematized, respec-
tively, in Figs. 2(a)–(b).

1In order to simplify the notation, vectors will be typed in bold italics, with
function and scalar in plain italics.
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(a) (b)

Fig. 3. Implementation schemes for analysis and synthesis with HRBF. (a) HRBF determination of the coefficients; (b) HRBF Reconstruction.

Analytically, the original signal can be represented as

(1)

where is the approximation at the-th level of resolu-
tion . Similarly, the details functions

are a linear combination of the wavelet functions:

. Substituting the previous expressions in (1), the
result is

(2)

B. Hierarchical Radial Basis Functions

In their original formulation [3], [4], HRBF networks have
been designed for range data (sparse data); their configuration
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(a)

(b)

Fig. 4. Visual representation of the quantization error in (a) fixed and (b)
floating point notation. The points of the straight line are represented with the
five precision levels used in our experiments.

algorithm is reframed here to the regular sampling case. An
HRBF network is composed of a hierarchical set of sub-net-
works calledlayers. The -th layer is composed of reg-
ularly spaced Gaussian units, with the same variance, and its
output is constituted of a linear combination of these

(3)

where is the input space dimension.
The ensemble of the Gaussian units of each layer,, can there-

fore be seen as a function basis which spans the input space at
the scale . The first layer, , features the largest scale and
it captures only the average behavior of the measurement field.
The higher layers feature smaller scales and are devoted to re-
constructing the details. To the scope, a residual function is com-
puted at the output of each layer, as the difference between the
signal and the sum of the output of the firstlayers

(4)

The configuration procedure is depicted in Fig. 1(c).
When is sampled with sampling step , (3) can also be

regarded as a low-pass Gaussian filter. Under this perspective, it
is possible to determine a relationship between the scaleand
the spacing between the units by giving a maximum atten-
uation in the passband and a maximum amplitude in the stop-
band [9]. Moreover, linear filtering theory can be used to design
a noniterative configuration algorithm. The simplest choice is
to substitute the residual , sampled in the points
times , to the coefficients in (2). This is a poor choice
when samples are affected by noise. Exploiting the correlation
between neighbor data, a better result can be obtained.

We propose here a schema that takes full advantage of the
regular spacing of the data points. We start observing that each

is proportional to the projection of the residual onto
the base function

(5)

This is equivalent to the convolution of the residual with a
Gaussian filter, evaluated in the position occupied by the
center of the Gaussian basis. Hence, an FFT can be used in the
coefficients computation, followed by a proper down-sampling
to single out the values corresponding to the Gaussian centers.
The can therefore be computed as

(6)

where is the maximum number of layers.
The function samples are considered as residuals for the

first layer . The whole set of sampled data points is con-
sidered in computing the weights . We explicitly notice that
(6) is equivalent to the analysis through filtering in the MRA.

In a similar way, the output of the-th HRBF layer can be
computed by up-sampling the coefficients vectorand con-
volving the resulting vector with a Gaussian filter

(7)

Then, the residual can be computed as

(8)

This schema is based on projecting the sampled data on the same
Gaussian basisand then down-sampling the result.

The filter is obtained from by contracting it by
a factor of two, similarly to the MRA scaling function

(9)

Down-sampling (6) and contraction of the Gaussian basis (9) by
a factor of two is not mandatory in the HRBF as it was in the
MRA framework. An arbitrary integer value can be adopted and
even a different value for each of the layers.

The configuration procedure is iterated until a stop criterion
is met, e.g., the predetermined number of levels is reached or
until a uniform error over the entire input domain is achieved.
At the end, the original signal is represented by the collection
of HRBF approximation coefficients [Fig. 3(a)]
as

(10)

Once the network has been configured, it offers in a fast way a
multiscale approximation of the signal [Fig. 3(b)].

III. COMPARISON

A. Theoretical Comparison

Although HRBF and MRA both offer a multiresolution
approximation, they work in a different way. MRA decom-
poses the signal, decreasing the level of detail layer by layer
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Fig. 5. Schematic representation of the procedure followed to compare the reconstruction accuracy in MRA and HRBF.

Fig. 6. The two functions used in the experiments are shown in panels (a)
and (d). The same data are shown when represented with fixed (b) and (e) and
floating point (c) and (f) quantization.

[Fig. 1(a)], where the first layer is constituted by measured
samples of the signal. HRBF, instead, works the other way
around, i.e., the least detailed approximation is obtained first
(Gaussian basis with large variance) and details are progres-
sively added as the number of layers increases and the variance
decreases [Fig. 1(c)].

MRA filters are generally shorter than a digital FIR imple-
mentation of the Gaussian filter, which, due to its large transition
band, spans at least eight samples [4]. Moreover, the number
of coefficients in a MRA is equal to the number of data points

, while in HRBF the number is equal to . However,
in practical applications, after zeroing the smallest coefficients,

the number of coefficients left is usually the same. HRBF, on
the contrary, is much simpler as it needs only one filter while
MRA requires two pairs , one for analysis and one
for synthesis.

While in MRA, the reconstruction at the smallest scale, deter-
mined by the sampling step, always has to be computed (MRA
decomposition starts from the finest approximation), in HRBF,
the smallest scale can be determined at run-time, stopping the
analysis process at an adequate scale by examining the residuals.
The only information required by HRBF, in this computation
schema, is the maximum number of layers required by (6) and
(7). As shown by the experimental results, the configuration al-
gorithm is also more error tolerant as it is based on the residual,
which can easily incorporate errors in the previous computa-
tions, in contrast with MRA, which works on approximations.
Moreover, many iterative decomposition used in MRA do not
have an analytical expression and are able to give the measure-
ment field values only in the sampled points. The reconstruc-
tion in between two samples has to be interpolated, while with
HRBF, a continuous measurement field is directly output. More-
over, MRA is cast for a digital implementation, while HRBFs
are suitable for both a digital and a hybrid implementation where
the coefficients are stored digitally and the Gaussian filters can
be either digitalized as a FIR filter or computed analogically.

B. Experimental Comparison

The approximation quality achieved by MRA and HRBF
can be appreciated by comparing quantitatively the original
and the reconstructed signals. The quality of the approximation
depends, among other factors, on the numerical accuracy in the
representation of the parameters.

To assess their impact, we simulated the effect of quan-
tization in the representation of the parameters in a fixed
and floating point representation for both MRA and HRBF
algorithms. Fixed-point notation is extensively used in a hard-
ware implementation since it allows circuitry simplification.
The use of this notation involves—given the fixed number
of bits available—a compromise between the range of the
possible numbers and the resolution (i.e., the gap between two
consecutive possible numbers). To simulate the fixed-point
implementation, the parameter values are constrained to assume
the closest of a finite number of (equally spaced) values. Re-
construction accuracy is evaluated here for quantization steps
of , and of the maximum
absolute value of the parameters [cf. Fig. 4(a)].
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Generalization error for the functions in Figs. 6(a)–(c). Error on: input data (a), filter coefficients (b), and approximation coefficients(c) with fixed point
quantization. The same figures with floating point representation are reported in panels (d), (e), and (f).

Floating point notation allows one to represent the data up to a
given relative accuracy. In the floating-point representation, the
parameters are rounded according to the given number of bits
allocated for the mantissa and the exponent. In our simulation,
we pose a limit only on the number of bits used to represent
the mantissa. This is equivalent to assigning a relative precision
of the actual parameters (truncation). We used from two to six
decimal digits to represent the mantissa [cf. Fig. 4(b)].

Each experimental session is characterized by the type of the
quantization error (floating or fixed point) and by the param-
eter sets affected; the latter can be either the input dataor
the filters coefficients, for HRBF and for MRA,
or the basis functions coefficients, for HRBF and

for MRA. In each session, HRBF and MRA
receive the input data and calculate the approximation coeffi-
cients (Fig. 5). Computation precision is considered infinite for
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Generalization error for function in Fig. 6(d)–(f). Error on: input data (a), filter coefficients (b), and approximation coefficients (c) with fixed point
quantization. The same figures with floating point representation are reported in panels (d), (e), and (f).

the scope of the experiment, i.e., only the effects of the limited
precision in the numerical representation of the entities are con-
sidered.

Error in the reconstruction is assessed through a data set
different from the data set used for the coefficient’s compu-
tation. The and data are obtained by regularly sampling
the functions reported in Fig. 6 in 1001 and 32 000 points,
respectively. Due to the high sampling density used to obtain

it, can be considered a reasonable approximation of.
Therefore, it can be used to measure the generalization error
of the two models. The results achieved are quite general and
have been obtained for many test functions. For sake of com-
parison, we reported here two functions with different ampli-
tude and shape.

In the six plots of Figs. 7 and 8, the quantitative results ob-
tained by representing the three sets of parameters in limited
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precision (fixed and floating point) are reported. The recon-
struction accuracy is measured as the standard deviation of the
(signed) difference between the original function and the syn-
thesized one. Biorthogonal wavelets 3.7, among the most com-
monly used, have been employed in the MRA experiments.

IV. RESULTS AND CONCLUSIONS

As Figs. 7 and 8 show, HRBF does not lose accuracy when
the representation precision is limited to the configuration pro-
cedure (error on the filter and the approximation coefficients).
This is due to two main reasons. First, MRA can lose biorthog-
onality of its basis functions. Second, the residual computed in
the HRBF configuration procedure for each layer [see (4)] in-
corporates any error introduced in the output of the previous
layer (e.g., errors in the filter coefficients, in the approximation
coefficients, or in the computation). This process allows error
compensation in the higher layers. The error introduced in the
last layer cannot be corrected, but, as the residual amplitude de-
creases with the number of layers, only a very small amplitude
in the last layer occurs, and its impact on the reconstruction is
greatly reduced. This is not the case in MRA, where the error
in the coefficients propagates through the cascade algorithm.
Overall, the results suggest that HRBF networks can be a much
more robust tool for hardware implemented multiresolution re-
construction of measurement fields.
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