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ntelligent systems adopt soft-computing techniques (encompassing neural networks,
fuzzy logic, genetic algorithms, and expert systems) to solve complex problems by
mimicking human reasoning. On the other hand, conventional algorithmic ap-
proaches are extremely powerful and efficient in tackling applications for which a
procedural solution can be easily defined. By themselves, each of these techniques
may be the optimal solution for a subproblem, but not efficient enough to solve the
problem as a whole. Composite systems, consisting of conventional and
soft-computing components in cooperation, are now more than a promise to face
complex application needs. In this article we present recent advances in the design of

composite systems, with specific reference to embedded and measurement applica-
tions.

-Complex Applications Need Complex Solutions

al‘he design of embedded systems usually requires a preliminary specification phase
ihvolving identification and definition of a number of different aspects, such as:
~ » The identification of the relevant application variables

characterize the process insofar as possible)

» The selection of the most appropriate sensors
» The definition of the correct output signals (e
.form the user) .

(such knowledge must

-g-, to control the system or in-

orel Corporgion
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» The characterization of the actuators and definition of
the output signal interfaces .

» The definition of the input-output relationship

A formal specification is by now widely recognized as a
support for a preliminary validation phase (allowing, among
other things, the checking of the initial specifications for com-
pleteness, congruence, etc.) as well as a starting point for the
subsequent design steps. In particular, design will focus on
the identification of an abstract architecture realizing the in-
put-output relations. Available system-level approaches
adopt “conventional” abstract architectures; the subsequent
design flow usually involves a hardware-software partition-
ing phase prior to the synthesis phase.

Soft-computing techniques [1], [2] have been developed to
deal with problems whose solutions cannot be efficiently real-
ized with classic techniques. In fact, researchers observed that
even if the formalization of a problem’s solution is difficult,
humans are usually able to quickly identify an acceptable so-
lution. This task can be obtained by somehow comparing,
through similarity and generalization, the given problem with
personal experience. These nontraditional approaches encom-
pass neural networks, fuzzy logic, genetic algorithms, and ex-
pert systems. Their flexibility and expressiveness are
acquiring an increasing relevance with a primary impact in
the instrumentation-and-measurement community. The liter-
ature provides several application solutions, with a particular
emphasis on industrial control, signal and image processing,
sensor fusion, system diagnosis, and high-level processing.

Even if soft-computing techniques are extremely accurate
in solving specific tasks, in general, they are not a panacea to
fulfill all requirements of complex industrial applications
(e.g., real-time requirements, computational complexity,
hardware resources, and throughput). Soft-computing para-
digms may hence become too complex and inaccurate in cap-
turing the behavior of complex systems. Besides, they could
introduce further difficulties in defining a suitable procedure
to tailor them to the envisioned application.

The use of modularity in a top-down system design allows
for partitioning the whole application into smaller and, possi-
bly less-complex, subproblems. Such problems, in general, in-
teract and may be intended as atomic units that can be tackled
separately. The possibility of reusing existing processing
modules reduces the complexity and the time necessary to
provide an overall design solution for the application; here
personal experience is a fundamental requirement.

The concept of using modularity to tackle complex systems
was recently introduced in the soft-computing literature. How-
ever, its use was basically conceived to deal with very specific
cases. When the global behavior of a system cannot be described
satisfactorily by a unique soft-computing model, several models
may be needed, each acting locally to solve an application
subtask. Hierarchical paradigms are thus envisioned either to se-
lect the most suitable model or to merge the different models that
are each valid in a working point. It is worth noting that this ap-
proach is not sufficient, in general, to partition a complex appli-
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cation into smaller interacting parts, all of which can be de-
scribed by means of soft-computing paradigms.

Composite Systems: An Integrated
Comprehensive Approach

In many cases, the application can be split so that some parts
of the solution can be found quite easily by using traditional
data processing, while other parts can be treated more effec-
tively by considering soft-computing methods.

An improved solution can then be achieved through coop-
eration of traditional conventional and soft-computing meth-
ods. Integration of these technologies into a composite system
allows for exploiting the best and most effective characteris-
tics of each of them.

Some typical examples can be found in multisensor archi-
tectures. Sensor fusion is required either because of the ex-
treme heterogeneity of sensors or because of the complexity of
the data-collection phase, possibly in a noise-affected environ-
ment. Moreover, the problem of sensor aging and drift, hardly
tackled in most conventional solutions, cannot be neglected
and needs adaptive management of the sensor system.

. Design of Composite Systems:

From Specification to Implementation
At present, system-level design techniques developed for tele-
communication and DSP environments do not appear capable
of coping satisfactorily with the kind of problems outlined
above—those that quite often require adoption of both con-
ventional and non-algorithmic (e.g., neural, fuzzy, genetic, ex-
pert-system) solutions within a single composite system.

The crucial step in developing composite systems and, in
particular, composite embedded systems, is to integrate cur-
rent system-level design solutions with innovative techniques
oriented to take into account the problems mentioned previ-
ously. These systems will be of great interest in a number of
applications related to industry and daily life; in many cases,
such applications will encompass problems typical of the in-
strumentation and measurement areas. The focus is, in fact, on
applications requiring adaptive sensor data management (by
soft-computing approaches) simultaneously with standard
data processing supported by a microprocessor system run-
ning a real-time kernel.

Even if it is reasonably easy, although not trivial, to intu-
itively characterize what the expected solution for a given
problem will be, a formal specification of the requirements of
the solution and the partitioning between conventional and
soft-computing solutions is anything but obvious. Do we need
a robust solution, or is accuracy the hot point? Are our data af-
fected by noise with unknown features, or is the available in-
formation noise-free? Is real-time computation a problem?
The set of requirements drives designer toward the most ap-
propriate partitioning of the problem’s solution—into tradi-
tional and soft-computing parts.

For high-level composite system design, a number of
methodological problems must be solved, leading to the defi-
nition of the innovative design approach shown in Fig. 1:
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Fig. 1. A comprehensive design methodology for composite systems.
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» Analysis and selection of the specification language re-
lated to an abstract reference problem. This allows the
system to be designed as a collection of modular com-
ponents (objects), independent of their implementation
(as conventional algorithms or as soft-computing com-
putational paradigms), or if they are mapped into soft-
ware or hardware

» Partitioning of system activities among traditional and
soft-computing activities

» Hardware/software partitioning for the application

» Definition of the most suitable soft-computing para-
digms, taking into account sensitivity and discretization
issues
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» Design and development of a framework that allows the
system to be tested, and its performance to be evaluated,
in an emulation environment on a host system

In summary, we need to specify the system, synthesize the
data-processing methods, and synthesize the hardware /soft-
ware architecture for data processing.

The above is an extension of present co-design techniques
[3], including two orthogonal perspectives: the hard-
ware/software partitioning aspect (where several research
groups are currently focusing their attention), and the tradi-
tional/soft-computing partitioning problem, (still addressed
by a few researchers, e.g., at Politecnico di Milano). To afford
all points, a comprehensive design methodology is required
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fficient simulation environments for complex

applications on low-cost computing systems
are mandatory for limiting costs and allowing
competitiveness in several industrial areas related
to system and plant automation. These include the
implementation of advanced control systems,
training of the personnel working in complex
plants, providing real-time decision support, and
creating computer-based intelligent automatic
systems. As a result, the quality of industrial plants
and products, as well as the performance of
operators can improve.

As a relevant example we consider a
thermoelectric plant for power generation (Fig. 2).
A complete and accurate model can be obtained
by relying on the physical description of the
system (i.e., by writing the set of mathematical
equations that describe all the physical
phenomena.) The resulting equations are complex,
nonlinear, and (generally) differential; the
complexity of the description itself may become
impractical for small- and medium-sized
computers and, as a consequence, may require
powerful computing systems to deal with real-time
application constraints. In addition, not all
variables in the mathematical description can be
easily measured with standard sensors and
instruments, due to either their characteristics or

Modeling a Thermoelectric Power Plant for Monitoring and Control

Fig. 2. The simplified scheme of a thermoelectric plant for power
generation; high-pressure turbine TAP, low-pressure turbine TBP, alternator
ALT, condenser COND, circulation pump PUMP, furnace FUR, boiler EVAP,
high-pressure superheater SHAT, low-pressure superheater SHBT, recycling
superheater RH, and economizer ECO.

their location in the system, so that measurement
may become expensive or even impossible for the
envisioned application. Many state variables in the
system equations are intrinsically unmeasurable
since they do not correspond to measurable,
discrete physical quantities, and must be deduced
from physical quantities through suitable
equations. Finally, the physical phenomena
underlying the system behavior may not be known
completely and accurately, as generally happens
when there are strong uncertainties and
nonlinearities.

for composite systems by extending and expanding solutions
and standards already proposed in the literature.

The research focuses on various aspects of the comprehen-
sive design methodology. The first objective consists of analy-
sis and possible extension of design methodologies to support
an object-oriented description of embedded systems, includ-
ing both functional specifications and nonfunctional con-
straints (e.g., accuracy, timing, power, and scalability), in a
way suited to represent both traditional tasks and
soft-computing paradigms within a homogeneous develop-
ment framework.

To specify the desired system behavior, functional charac-
teristics must first be defined. In static systems, the expected
output must be given for each input. In digital implementa-
tions, this characterizes the combinatorial function solving the
application. In dynamic systems, each pair of inputs and sys-
tem states must be related to the outputs and following states.
Digital realization is derived from the state diagram charac-
terizing the finite state machine. Formal specifications of these
kinds of systems are now typically performed by using se-
quencing graphs [4]. Industrial plants and processes are typi-

June 1999

cal analog systems, having the input-output relationships de-
scribed by differential equations, typically continuous-valued
and possibly involving partial derivatives.

Crisp values, possibly with a given uncertainty, are tradi-
tionally used to represent and process data. Fuzzy values can
be viewed as a generalization of the crisp ones when the envi-
sioned characteristic is not represented by one crisp value, but
by a deterministic collection of them. Fuzzy systems are de-
scribed by fuzzy rules, i.e., by means of an algorithmic—even
if nontraditional—description of operations to be applied to
generate the desired outputs. Expert systems apply rules to
the operands to explore the space of possible solutions, look-
ing for an acceptable one. When the behavior cannot be for-
mally defined by one of the previous relationships” mapping
inputs and states onto outputs and next states, description by
examples can be considered. Neural networks are defined by
the training set. In static networks, the desired behavior is
specified by the input-output pairs or by the input set for the
supervised or unsupervised networks. In dynamic networks,
the state of the system is captured by the ordered sequences of
input-output pairs.
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The large composite system was, therefore,
partitioned into smaller subsystems with clear and
specific interactions among them. Partitioning was
obtained by analyzing the power plant operation
and the main exchanges between modules.
Conventional equation-based or innovative
soft-computing models were adopted to describe
the component behavior via a black-box approach,
and integrated in the simulation environment to
better exploit the unique characteristics of
conventional and soft-computing techniques.
Neural modeling was shown to be particularly
effective in compacting the model description for
the furnace, the superheater, and the turbine inlet.
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Fig. 3. The superheater: validation of the smoke temperature.
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Fig. 4. The turbine inlet: validation performance in the highly perturbed
case.

For the other components, we considered more
traditional black-box approaches such as ARMAX
(for simplicity) or physical models (for accuracy).
Accuracy achieved with neural modeling is
comparable or even better than that of the
traditional model for the fume temperatures of the
high-pressure superheater SHAT and the turbine
inlet pressure, respectively (Figs. 3 and 4). The
computational complexity of the entire software
simulator containing composite models was
dramatically reduced to about one order of
magnitude so that effective and realistic
simulations were performed on PCs based on a
Pentium 166 MHz instead of requiring a $30,000
workstation.

From the high-level point of view, we can, for example,
adopt the ordered sequences of input-output pairs as a good
general system description, independent of the computing
paradigm that will be used to realize each component. Specifi-
cation of a complex system comprises interconnected groups
of ordered sequences. Incomplete specification occurs when-
ever some of the sequences of input-output pairs are unavail-
able. We can easily see that all of the above cases can be
derived from this general description by forcing one of the
characteristics. For example, the combinatorial functions are
obtained by assuming that each sequence contains only one
input-output pair of digital data.

The second objective of the comprehensive design meth-
odology is the development of techniques supporting parti-
tioning between traditional and soft-computing components
by also taking into account the nonfunctional constraints. Tra-
ditional and soft-computing models can be functionally
equivalent, even if their expressiveness, completeness, con-
ciseness, and nonfunctional specifications (e.g., accuracy) may
differ. The adoption of one of these models depends on the
balanced (not necessarily optimum) satisfaction of all the ap-
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plication requirements. For example, if a linear model de-
scribes the system with sufficient accuracy with respect to the
envisioned application, there is no need to look for a more ef-
fective, but more complex, neural model. The choice of the
model to be used for a component may have great impact on
the subsequent implementation phase since it may induce,
among others, different computational complexity, perfor-
mance, and power consumption.

Partitioning of the system specifications must, therefore,
identify boundaries among components and the related inter-
faces so that each of these components can be efficiently and
effectively implemented. Partitioning looks first to natural
and evident boundaries defined in the specifications by the
designer. Then, it needs to be guided through splitting the
components into simple subsystems that can be tackled by
one modeling technique directly with good results. Measure-
ment of the expected complexity (e.g., the number of in-
put-output pairs in the specifications), as well as of the quality
of the result must be introduced as indices of the partitioning
quality. Aggregation and separation techniques should be
taken into account to group homogeneous components.
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e are experiencing an increasing interest in
Wproblems related to the environment, with a
particular focus on pollutants generated by
vehicles in industrialized countries. These strong
constraints pushed research toward the
development of suitable electronics, embedded
systems, and mechanical and chemical devices to
reduce noxious emissions. Unleaded fuel, catalytic
converters, and fine control of the variables
involved in the fuel-combustion process are
relevant ingredients in reaching such a goal. Fig. 5
shows an example of a fuel-injection system
comprising a spark-ignition engine with a catalytic
converter and a linear oxygen sensor on the
exhaust manifold to measure the air-to-fuel ratio
(AF) after the combustion process. The electronic
control moduie (ECM) must also perform, in

Throttle l l
Catalytic

Fuel Converter
Injector

Intake Manifold

[ . N —

(WA xhaust
Temperature § /' Manifold
Sensor i
(I
Pressure | | Oxygen
Sensor ¥ ¥ Sensor
e ECM

Engine Speed Pick-Up

Fig. 5. The fuel-injection engine and the control system.

Electronic Control for Automotive Applications

addition to various service tasks, the real-time
control of the electronic injection to guarantee the
stoichiometric value of the AF ratio for optimal
catalysis of pollutants.

Often, classical control systems in automotive
applications are not able to deal completely and
acburately with strong nonlinearities, noisy data,
and sensor aging, as well as adaptation to the
installed catalytic system. We developed and
successfully tested a composite solution based on
neural technologies for the injection controller.
The operations performed in the ECM were
partitioned via conventional and soft-computing
techniques according to their known abilities in
dealing with nonlinearity and noise. Among the
conventional ones are monitoring and control of
fluid levels, braking, lighting, and indicators.
Whenever necessary, data acquisition and
sampling are performed by using conventional
A/D converters, while signal generation is
accomplished through D/A converters. The digital
ECM can then be redesigned by incorporating the
FPGA-based implementation of the neural
computation into the microprocessor-based
structure for the other operations.

The controller was developed by adopting the
classic indirect control configuration (Fig. 6). The
block | identifying the behavior of the process P is
used to configure the controller C so as to act as the
reference R. From an accurate analysis of the
physical model of the combustion engine, some
uncertainties are evident, namely the quantity of

Strict relationships and dependencies between the compo-
nent model and the system partition make the definition of
partitioning and the choice of the model for each component
inseparable. Even if abstract specification is independent from
the implementation methodology, the evaluation of the ex-
pected characteristics at a high abstract level relies on the pro-
spective realization technologies envisioned as possible
alternatives to producing the component. Partitioning can be
performed by grouping small homogeneous components and
by splitting large system specification blocks. Then, some ex-
ploratory models for each component are created and tested
with respect to the relevant figures of merit for the applica-
tion. For traditional components, the procedure describing the
desired computation is given. For soft-computing compo-
nents, the suitable corresponding synthesis is performed. For
example, in neural models, the learning procedure is applied
to configuring the network, resulting in an algorithmic de-

scription of the network operation. For statistical models, the
parameters are identified on the available data by using the
traditional statistics. The various exploratory models are eval-
uated and compared with respect to the suitable figures of
merit. The best modeling result is adopted as a reference in the
possible subsequent exploration of the solution space.

At the end of this modeling and partitioning phase, we obtain
the set of traditional and soft-computing components constitut-
ing the system as well as the interfaces. It is worth noting that, at
this point, the synthesis of the data-processing method has been
perfected and all components are described algorithmically. In
conventional methodologies concerning only traditional compo-
nents, the synthesis of the processing method is implicit and co-
incides with the algorithms defined in the specifications.

The third objective of the integrated design methodology is
the extension of design methodologies capable of hard-
ware/software partitioning to include the implementation of
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Fig. 6. The indirect control configuration.

fuel that condenses on the manifold walls and the
fuel-evaporation time constant. For each of these
quantities, the identified neural model consists of a
feedforward neural network of the regression type,
namely, a three-layered neural network (with 13 and
10 hidden neurons in the optimal structure). This is
a clear example of integration in which information
coming from soft-computing analysis is then used
by more traditional ones (the AF controller) to
improve the description of the process.

The neural identifier for the AF ratio was then
created by using a recurrent single-layered
neural network with 15 hidden units and a single
linear output. The suitably delayed output, as

Fig. 7. The neural and the TFC control performance.

well as external inputs and their delayed values,
was presented to the network inputs. The
controller of the AF ratio was finally derived by
configuring this last neural paradigm; for the
controller, only 10 hidden neurons were
necessary. The achieved accuracy is shown in
Fig. 7, where, as mentioned, the ultimate goal is
to keep the AF ratio at its stoichiometric value of
14.67. The accuracy is compared to that of the
transient fuel film compensation (TFC) control,
which is the most frequently used traditional
technique. The improvement is about 30% on
the average, while the computational complexity
is about the same. .

soft-computing subsystems. In the literature, hardware/soft-
ware co-design techniques are available and widely used to
realize dedicated digital systems from algorithmic specifica-
tions. Because we’ve reduced any modeling method to the al-
gorithmic description of the operations computing the model
itself—via model parameter configuration on the envisioned
application—the co-design techniques can be directly applied
to composite systems.

Various architectural solutions are taken into account, en-
compassing hardware, software, and mixed parts. These
range from the fully programmable, general-purpose struc-
tures based on microprocessors to the computing-intensive
solutions containing DSP processors; from the co-processor-
based structures to the special-purpose processors; and from
the configurable-computing architectures based on field-
programmable gate arrays (FPGAs) to the fully dedicated, ap-
plication-specific integrated circuits (ASICs). Similar counter-
parts are considered for analog modules.

Partitioning between hardware and software is guided by
suitable figures of merit concerning the nonfunctional specifi-
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cations (e.g., performance, real-time operation, throughput,
operation complexity, circuit complexity, and power con-
sumption). Also, in this case, the partitioning is based on the
evaluation of exploratory implementations of the processing
architecture. Hardware/software partitioning is independent
of the traditional/soft-computing partitioning. An algorithm
can be implemented in hardware or translated in software
running on a microprocessor or DSP processor. Similarly, for
example, a neural network (once configured) can be realized
with a dedicated neural ASIC, an FPGA, a programmable
neurocomputer, a DSP processor, or a microprocessor.

At the end of the hardware/software partitioning, we ob-
tain the overall architecture of the processing system as well as
the detailed structure to be used for each component. Synthesis
of the processing architecture can thus be performed by using
traditional techniques, namely, programming for software
components and digital/analog synthesis for hardware parts.

To increase the efficiency of the integrated synthesis meth-
ods as well as the resulting quality, component libraries can be
introduced, possibly for specialized classes of applications.
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On-Line Profile Reconstruction

eal-time profile analysis and reconstruction is
Ran important problem in many industrial
applications, encompassing, for example,
product-quality monitoring and assessment in
steel and mechanical industries, object recognition
in automated machinery, wear monitoring and
diagnosis in production plants and railways, and
quality analysis and control in the automotive
production processes.

Tactile techniques were traditionally adopted,
but they have great limitations due to wear,
especially in the case of moving objects. Laser and
X-ray imaging are now attracting great interest
due to the non-intrusive and non-contact nature of
profile acquisition allowed by these approaches.
Figs. 8 and 9 present the system setup and the
image captured by the charge-coupled device
(CCD) on structural steel, respectively. Whenever
the frequency of image acquisition is high, suitable
real-time processing architectures must be
envisioned.

When the amount of data acquired from
sensors (i.e., the images) becomes too large,
storage may be difficult or even impossible. In

Laser Beam

ser
Optics
R §

Fig. 8. The detection system.

addition, in several practical applications, only a
few parameters per image may be relevant, so
storage of entire images for subsequent analysis is
not of interest. On-line image processing and
high-performance architectures are, therefore,
mandatory to deal with these cases. Accuracy is a
key factor in industrial applications, and it is
relevant to guarantee the quality of the production
process; the design of the measurement systems

Fig. 9. ACCD image and the profile reconstruction.

must include such requirements in the
specifications so as to drive the subsequent design
steps and to certify final quality. Adapting to
aging, wear, noise, reflections, and environmental
variations is very useful in incorporating these
characteristics into the system model, even if they
may not be completely known in advance.

In many applications (e.g., the ones mentioned
above for analysis of quality and wear of structural
steel) the position of the profile in the image is
usually known in advance, even if to a large
approximation, since the relative position of the
steel and the cameras is approximately given. In
this case, some simplifications in the image
analysis for profile identification can be
introduced. Specifying this additional information
is of great help in the system design as it allows
for taking advantage of better a priori knowledge,
reducing the computational complexity and
enhancing accuracy.

By adopting a composite system, we can
consider a conventional pattern-matching filter to
identify the area of interest containing the profile,
while a neural network may perform the fine
profile reconstruction at subpixel accuracy.

The final synthesis of the system prototype
leads to the creation of a distributed architecture
comprising one low-cost, DSP processor per
image acquisition channel and one central,
PC-based processing system. Each DSP processor
runs the algorithmic pre-filtering and the neural
profile reconstruction, while the central system
performs profile comparison and storage. System
implementation is, therefore, obtained in software
on standard, general-purpose and DSP processing
components. For higher throughput, ASICs or
FPGAs on dedicated boards could be considered.
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This allows for storing results of previous experiences in a
shared database for future reuse, by mitigating the top-down
design approach with intelligent consideration of bottom-up is-
sues. In addition, as in any good engineering design methodol-
ogy, feedback loops can be introduced along the design path to
modify the adopted choices whenever appropriate to enhance
the overall quality of the final comprehensive solution.

Future Research and Development

The definition of an integrated design methodology for com-
posite systems and the related CAD environment is a chal-
lenging research area for the near future. Diversity and
specialization within a coordinated, homogeneous, interact-
ing framework are, in fact, key factors for optimum solutions
of many application problems.

Benefits are expected in the optimization of many systems,
including embedded ones, which are increasingly surround-
ing our daily life even if we are not fully aware of them. Many
of these systems are either directly or indirectly related to
measurement issues, especially when accurate control and
monitoring are concerned.

The main final goals of this applied research are system op-
timization with regard to both performance and features, and
design automation to reduce the time to market. However, we
are only at the beginning of these promising activities. Much
effort will be required in the near future to make this integra-
tion real and easily accessible to engineers.
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