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Abstract

The method presented here is aimed to a direct fast setting of the parameters of a RBF
network for function approximation. It is based on a hierarchical gridding of the input space;
additional layers of Gaussians at lower scales are added where the residual error is higher. The
number of the Gaussians of each layer and their variance are computed from considerations
grounded in the linear filtering theory. The weight of each Gaussian is estimated through
a maximum a posteriori estimate carried out locally on a sub-set of the data points. The method
shows a high accuracy in the reconstruction, it can deal with non-evenly spaced data points and
can be fully parallelizable. Results on the reconstruction of both synthetic and real data are
presented and discussed. ( 1998 Elsevier Science B.V. All rights reserved.

Keywords: Hierarchical structure; Gridding; Maximum a-posteriori estimate; Linear filtering
theory

1. Introduction

The reliable reconstruction of a continuous function from a set of sampled points is
one of the key problems in the domain of neural networks to which RBF networks
[4,18,27,31] offer an appealing solution. Thanks to their locality, they are less affected
by collinearity of the error with respect to the hidden units activity and may converge
faster to the optimum solution [4]. From the theoretical point of view, given a suffi-
cient number of hidden units, they have been shown to be able to reconstruct
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Fig. 1. A RBF Network is constituted of an input layer and two processing layers (a). The first processing
layer, the hidden layer, is where the Gaussians are placed and it constitutes the skeleton of the network. The
second processing layer, the output layer, contains the “synaptic” weights. In the hybrid learning schemas,
adequate learning algorithms are adopted for each of these two layers (b). For the first layer, the variance of
the Gaussians is estimated starting from the input data set, the sampling rate, and eventually the bandwidth
of the function to be reconstructed. In the second layer, only the weights have to be set, and they can be
computed through a linear estimate.

a continuous function at any degree of approximation [23], provided that their
parameters are appropriately set. Whenever Gaussian functions are adopted a RBF
network can be expressed by the following form:

z"s(x)"
M
+
k/1

w
k
g(x; c

k
; R

k
), (1)

where the following parameters are considered: the number M and the position Mc
k
N of

the Gaussians, their covariance MR
k
N and the coefficients Mw

k
N (cf. Fig. 1). Thanks to

the structure of Eq. (1), which is a linear combination of non-linear quasi-local
functions, the computation of RBF network parameters is suitable to different
approaches.

Poggio and Girosi reframed the learning problem in the regularisation domain:
given a set of data points and a “smoothness” constraint, a cost function to be
minimised can be constructed [10,27] (cf. also [36]). To this clean formulation, which
describes, in fact, an optimal control problem, it does not correspond a computability
algorithmic solution (cf. [3,19,33]). The use of stochastic gradient [10] suffers from
local minima which may prevent to achieve an even acceptable solution, and complex
specialised algorithms should be used to get to the global minimum (cf. [1,6,12]).
Alternatively, the solution can be searched by a global optimisation with respect to all
the parameters using for example genetic algorithms [2], learning automata [20] or
simulated annealing [14] which, although theoretically capable to achieve the optimal
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solution, are based an exhaustive search in the solution space and require extensive
computation.

A different strategy stems from the observation that Eq. (1) represents essentially
a perceptron with non-linear input units of the Gaussian type. Accordingly, the
parameters can be subdivided into two sets: the parameters which affect the Gaussian
units which will be termed structural parameters: (M, Mc

k
N and MR

k
N) and the para-

meters “above” the Gaussians, which will be termed “synaptic weights:” Mw
k
N (cf.

Fig. 1a). This suggests to use different algorithms for each of the two sets of para-
meters originating what are called hybrid learning schemata [4,18]. In these ap-
proaches, the number of the Gaussian units, M, is usually given a priori and their
position, Mc

k
N, is determined through algorithms for optimal clustering [15,17]. The

parameters MR
k
N are critical as they determine the behaviour of the function in

between the samples; and they can be set according to some heuristical considerations
[18,21,25,32]. Once the structural parameters have been set, Eq. (1) describes a linear
system where the only unknowns are the weights, Mw

k
N. Although these could be

computed by directly solving the system, this solution can cause both numerical and
memory allocation problems for very large networks, and a local schema for the
computation of the weights may be preferred. An improvement in the hybrid learning
schemata is represented by growing structures [8,9,25], where the number of the
Gaussians (and, in general, of the units) in the network is not given a priori, but one
Gaussian is inserted after the other until a certain criterion has been met. All these
solutions are iterative and require an extensive learning to set the parameters to
a reasonable value.

An alternative approach, which has its roots in computer vision and optimal
control, relies on gridding the input space through a set of equally spaced Gaussians
[24,31]. The drawback of this approach lies in the rigidity of the adopted structure
which provides a single variance for all the units: the result may be overfitting s(x) in
some regions while in others some of the finest details can be lost. Moreover, in the
regions where overfitting occurs, there will be an excess of hidden units with a waste of
resources.

We present here a method, called hierarchical radial basis functions (HRBF), which
combines growing structures and linear filtering theory to achieve a stable very fast
determination of both the structural parameters and the network weights. First,
a simple criterion to set the value of MR

k
N is derived; the procedure to determine the

weights value directly from a sub-set of the data points is then outlined along with the
procedure to allocate incrementally the number of Gaussian units. The methodology
is illustrated by simulations and by the reconstruction of an acoustic signal.

2. RBF networks as a Gaussian filter: setting a proper value for r

When the Gaussians are placed at the crossings of a regular grid, the observation
that Eq. (1) is linear in the weights Mw

k
N suggests to analyse the RBF network as an

analogical low-pass (Gaussian) filter. For the sake of simplicity, the analysis will be
carried out in the one-dimensional space (P"D"1). Moreover, the Gaussians are
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1We explicitly observe that a normalised version is here adopted (Eq. (4)) to obtain DG(l; r)D"1 at least
for the DC component (l"0). This normalised version has unitary norm

1

JprP
`=

~=

e
x2

p2
dx"1.

supposed to have the same value of r; in this case, Eq. (1) is simplified as

s(x)"
N
+
k/1

w
k
g(x; c

k
; r)"

N
+
k/1

w
k

e~((x~ck)2)@p2

Jpr
. (2)

The results are general and can be extended to multi-dimensional spaces by observing
that multi-dimensional Gaussians are obtained factorising 1-D Gaussians. The analy-
sis carried out here gives indications on how to set the value for r and the reader not
interested can skip this section and take as granted Eqs. (25) and (26).

2.1. The Gaussian filter

An analogical linear filter can reconstruct a continuous function from a set of
equally spaced samples. A convenient representation of this kind of filter is through
the Fourier transform which describes the filter as a superposition of sinusoids of
different frequencies and phases. Each sinusoid is weighted with a coefficient which
represents its amplitude and the ensemble of these coefficients constitute the spectrum
amplitude of the filter. For the ideal low-pass filter (bold line in Fig. 2a) all the
coefficients are equal to 1 for the frequencies contained inside the spectrum of s(x)
(Pass Band), and 0 elsewhere (Stop Band). Unfortunately, such a filter is not physically
realisable and some approximation has to be accepted: the two Bands are defined
through two thresholds: the Pass Band is defined as the interval in which the
frequency content amplitude of the filter F(l) is bounded between [d

1
, 1]

d
1
4DF(l)D41, 04l4l

#65v0&&
(3a)

and the Stop Band as the interval in which it is bounded between [0, d
2
]

04DF(l)D4d
2
, l

.!9
4l(#R. (3b)

A third Band (Transition Band), for which the frequencies are progressively at-
tenuated, is also defined (cf. Fig. 2a). We apply these considerations to the Gaussian
filter

g(x; r)"
1

Jpr
e~x2@p2 (4)

which assumes in the frequency domain the following form1

G(l; r)"F(g(x; r))"e~p
2p2l2, (5)

NEUCOM 674 BRR SAVITHA CHANAKSHI

262 N.A. Borghese, S. Ferrari / Neurocomputing 19 (1998) 259–283



Fig. 2. The spectrum amplitude of the Gaussian is reported in dashed line along with the conditions on the
cut-off and maximum allowed frequencies in three different conditions: continuous case (a) l

#65v0&&
'l

M
;

discrete sampling with an infinite number of data points (b) l
#65v0&&

'l
M

and l
.!9

(l
4
!l

M
; discrete

sampling with a finite number of data points in a compact set (c) l
#65v0&&

'l
M

and l
.!9

(l
4
/2. The vertical

lines denote the limits of the three Bands in which the frequency axis is subdivided (cf. Section 2.1). d
1

and
d
2
are the tolerance levels used to determine the Bands. The spectrum amplitude of the ideal Low Pass filter

is reported in bold line in (a).

where F( . ) indicates the Fourier transform. The monotonicity of G(l; r) allows to
relate the values of l

#65v0&&
and l

.!9
to r as

e~p
2p2l2#65v0&&"d

1
e~p

2p2l2.!9"d
2

N G
l
#65v0&&

"

J!ln d
1

pr
,

l
.!9

"

J!ln d
2

pr
.

(6)

2.2. Continuous case

We will first apply the above concepts to the analysis of a continuous form of RBF
Gaussian network (cf. [21]). When the distance between two consecutive points
becomes vanishingly small ((c

k`1
!c

k
)P0), Eq. (2) becomes

s(x)"P
R

w(c)g((x!c); r) dc (7)
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2¸
1

is the Lebesgue vectorial space; when f(P)3¸
1
(¹), it follows that it can be integrated in absolute

value: :
T
D f(p)D dP(#R.

3This statement can be quite general and it applies to all the functions which belong to ¸
1
(R); among

these are some of the functions generally proposed as bases for RBF Networks [3] which monotonically
decrease to 0 when xPR (e.g. /( . )"e@x~c@/p, /( . )"sin2(x!c)/(x!c)2). It should be remarked with
[24] that the convolution does not give a finite result and the Fourier transform is not defined for other
basis functions common in connectionist literature like polynomials, logistic functions or multiquadric
which do not belong to ¸

1
(R).

which suggests the following statement:

Statement 1. ¸et w(x), s(x) and g(x; r)3¸
1
(R),2 then the formulation in Eq. (7) (continu-

ous RBF Network), is equivalent to the convolution of the function w(x) with the
Gaussian function (x; r). ¹hat is3

s(x)"P
R

w(c)g((x!c); r) dc"w(x)*g(x; r). (8)

For the convolution theorem, the following relationship holds:

F(s(x))"F(w(x))F(g(x; r))NS(m)"¼(m)G(m; r), (9)

where S(m), ¼(m) and G(l; r) are the Fourier transforms, respectively, of s(x), w(x) and
g(x; r). Substituting s(x) to w(x) in Eq. (8), we get

sJ (x)"P
R

s(c)g((x!c); r) dc"s(x)*g(x; r) (10)

and, in the frequency domain,

SI (l)"S(l)G(l; r). (11)

Eq. (10) has the same structure of Eq. (8) and it is a convenient representation of s(x)
because the value of the weights in a certain point is equal to the value of the function
itself in the same point, and it has not to be computed or learned. We will here
examine how to choose r in order to get sJ (x) close enough to s(x).

By examining Eq. (3a), we notice that the width of the Pass Band of the Gaussian is
regulated by l

#65v0&&
. Therefore, it should hold

l
#65v0&&

'l
M

, (12)

where l
M

is the maximum frequency constituting s(x).

2.3. Discrete case

When the distance between two Gaussians is finite, one more condition has to be
introduced to assure that the reconstructed function is sufficiently close to sJ (x). Let us
hypothesise that the function s(x) has been sampled into a set of data points, equally
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spaced by Dx
P
: S"Ms

k
"s(x

k
, y

k
) D k3ZN, coincident with the position of the Gaussian

centres. Under this condition, Eq. (2) becomes

s(x)"
`=
+

k/~=

w
k
g(x; x

k
; r)"

1

Jpr

`=
+

k/~=

w
k
e~(x~xk)2@p2. (13)

As in the continuous case, Eq. (13) suggests the following statement:

Statement 2. ¸et S"Ms
1
"s(x

1
, y

1
), s

2
"s(x

2
, y

2
), s

3
"s(x

3
, y

3
),2,s

k
"s(x

k
, y

k
)N be

a set of points equally spaced on R(x
k`1

!x
k
"*x

P
∀k) and Mg(x; x

k
; r)N be a set of

normalised Gaussian functions centred in the points Mx
k
N; the RBF network, Eq. (13), is

equivalent to the convolution of the series of the weights, Mw
k
N, with the Gaussian kernel

g(x; x
k
; r)..

Eq. (13) can be transformed in the frequency domain by the convolution theorem,
to obtain

F(s(x))"F(Mw
k
N)F(g(x; r)) N S(l)"¼x (l)G(l; r), (14)

where ¼x (l) is the Fourier transform of the weights series Mw
k
N. By substituting in

Eq. (13) the product of the data points Ms
k
N by the sampling interval Dx

P
, to the

weights Mw
k
N, we obtain

sJ (x)"
`=
+

k/~=

s
k
g((x; x

k
; r)*x

1
"

*x
1

Jpr

`=
+

k/~=

s
k
e~(x~xk)2@p2 (15)

and in the frequency domain

SI (l)"Sx (l)G(l; r)*x
1

(16)

which is similar in the formulation to Eq. (11). Sx (l) is the Fourier transform of the
series of the data points Ms

k
N and it is a periodical function of period l

S
"1/*x

P
(cf.

Fig. 2b) and *x
P

is a normalisation factor required to recover the true amplitude of
s(x) [22]. As in the continuous case, l

#65v0&&
'l

M
, is required to make sJ (x) close to s(x)

but it is not sufficient. In fact, to avoid the introduction of spurious high-frequency
components in sJ (x), the spectrum of the Gaussian should not overlap with the replicas
of the spectrum of s(x) [22]. This is not possible as the support of G(l; r) is unbounded;
but with the approximation in Eq. (3b), the following relationship can be derived (cf.
Fig. 2b)

l
.!9

(l
S
!l

M
(17)

A subtle phenomenon, which further constraints l
.!9

, occurs when the data points
do not constitute a series but are in finite number, N, equally spaced in a compact
set [x

1
, x

N
]: MSN"Ms

1
"s(x

1
, y

1
), s

2
"s(x

2
, y

2
), s

3
"s(x

3
, y

3
),2,s

N
"s(x

N
, y

N
)N,

x
k
!x

k~1
"*x

1
, k"2,2,N. In this case, Eq. (16) will be discrete

SI (l
k
)"SK (l

k
)GK (l

k
; r), (18)
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4Only the fist lobe is considered as the amplitude of the other lobes at l"l
S
/2 are of the order of 10~9

for the second lobe and smaller for the other more distant lobes.

where SK (l
k
) is discrete with its samples equally spaced by *l

sk
"l

s
/N (cf. Fig. 2c) and

periodical of period l
S
. We explicitly remark here that although G(l; r) is a continuous

function, the Fourier transform of the reconstructed function, SI (l
k
), is a sequence of

samples equally spaced in frequency by Dl
sk
. The frequencies, lN , which are in between

two frequency samples (l
k
(lN(l

k`1
) of G(l; r), are lost. This is equivalent to use

a discrete version of the spectrum of the Gaussian, GK (l
k
; r), where l

k
are the same

frequencies constituting SK (l
k
). GK (l

k
; r) will therefore be discrete and it can be obtained

as the Fourier transform of a sampled version of the original Gaussian function on
a compact support. It will be itself periodical of period l

S
. This introduces a further

constraint over l
.!9

(cf. Fig. 2c)

l
.!9

(

l
S
2
, (19)

which is more stringent than Eq. (17) and will be used in the following.
From Eq. (18), the discrete sequence of the reconstructed samples of s(x) can be

obtained as:

sJ (x
j
)"

N
+
k/1

s
k
g((x!x

k
); r) *x

1
"

*x
1

Jpr

N
+
k/1

s
k
e~(x~xk)2@p2, (20)

which can be extended on a continuous support using

sJ (x)"
N
+
k/1

s
k
g((x!x

k
); r) *x

1
"

*x
1

Jpr

N
+
k/1

s
k
e~(x~xk)2@p2, (21)

obtaining a continuous reconstruction of s(x).

2.4. Setting of r and remarks

We now summarise the conditions over r. As m
.!9

and m
#65v0&&

are both function of r,
it is convenient to express m

.!9
as a function of m

#65v0&&
and vice versa (cf. Eq. (6))

e~p
2p2l2#65v0&&"d

1
,

e~p
2p2l2.!9"d

2
/2.

(22)

d
2

has been divided by a factor of two because when l
.!9

"l
S
/2, GI (l

k
; r) receives an

equal contribution from the main lobe and from the closest replica (cf. Fig. 2c): it
results GI (l

k
; r)(d

2
at least when the first replica of GI (l

k
; r) is considered.4 In the

following, we set d
1
"(J2/2) which is a common choice in Digital filtering theory and

corresponds to a maximum attenuation in the Pass Band of 3 dB [11], and, somehow
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arbitrary, but in a very conservative way, d
2
"0.01. From Eq. (22), the following

relationships between l
.!9

and r and between l
#65v0&&

and l
.!9

are derived:

l
.!9

"

0.7327

p
, (23a)

l
#65v0&&

"0.2558l
.!9

. (23b)

Taking into account Eq. (23b), Eqs. (12) and (19) can be expressed as a single
inequality on l

#65v0&&

l
M
(l

#65~0&&
(0.2558l

S
/2 (24)

or, equivalently, on l
.!9

l
M

0.2558
(l

.!9
(l

S
/2 (25)

from which the following inequality on r is obtained:

r
.*/

"

1.465

l
S

"1.465*x4r4
0.1874

l
M

"r
M!9

. (26)

As it will be clear from the simulations, the larger is r, the smoother will be the
reconstruction and the more the noise cleaned. On the other side, the smaller is r, the
more the reconstruction will be close to the finest details of s(x).

From Eq. (24) it follows that, given a certain sampling frequency, l
S
, the maximum

frequency content of s(x), lN
M
, should be

lN
M
"0.1279l

S
. (27)

Eq. (27) can be seen under another perspective: given the maximum frequency, lN
M
, of

the function s(x) to be reconstructed, the minimum allowed sampling frequency, l
s
, is

computed as

l
S
"2

lN
M

0.2558
+7.8lN

M
. (28)

This has a very important meaning: it states that the function s(x) should be oversam-
pled at least by a factor 3.9 with respect to the Shannon theorem.

3. Simulations with N5M

Let us apply the considerations on the choice of r to the function a(x) reported in
Fig. 3a. This has been obtained as a linear combination of nine equally spaced
Gaussians with parameters: Mc

k
N"M0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9N; Mp

k
N"M0.03,

0.05, 0.1, 0.1, 0.085, 0.1, 0.08, 0.05, 0.03N and Mw
k
N"M10, 10, 60, !70, !85, 140,

!80, !10, 10N. A learning set has been formed sampling a(x) into N"2048 equally
spaced data points (*x

1
" 1

2048
, l

S
"2048 Hz). The maximum frequency content of
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b
Fig. 3. The reconstruction of a synthetic function through a RBF network. The original function is
reported in (a). Different reconstructions featuring different values of l

#65v0&&
are reported in (b). The effect of

aliasing on the reconstruction is magnified in the box where the high frequency oscillations introduced by
using Gaussians with l

#65v0&&
"600 Hz can be appreciated. The same functions are reported in (d—e) for b(x),

obtained adding uniform random noise of $5 to a(x). The two reconstructions obtained with l
#65v0&&

"20
and 262 Hz are magnified in the box of (e); the cleaning up of the noise obtained by using a small l

#65v0&&
is

evident. The frequency contents of a(x) and b(x) are plotted in (c), the spectrum of b(x) contains frequencies
upto l

S
/2 and its energy content is 87% larger than a(x).

Table 1
Mean-square error in the reconstruction of the function a(x) of Fig. 3a using M"2048 Gaussians and
N"2048 data points, equally spaced

mse mse mse
r m

#65v0&&
No noise Noise $2.5 Noise $5

0.0375 5 32.77 33.07 33.39
9.37]10~2 20 0.163 0.223 0.346
1.874]10~3 100 0.266]10~3 0.194 0.774
0.937]10~3 200 1.661]10~5 0.401 1.604
0.715]10~3 262 5.66]210~6 0.529 2.116
0.468]10~3 400 5.063]10~5 0.818 3.273
0.313]10~3 600 1.199 2.439 6.161

a(x) has been computed as the frequency for which the energy drops under 0.001%
and it is equal to 20 Hz. From Eq. (24), the cut-off frequency should be inside

20 Hz4l
#65v0&&

4262 Hz. (29)

The function a(x) is reconstructed through a RBF network constituted of M"2048
Gaussian units each centred in one data point. As suggested by Eq. (21), the weights
Mw

k
N are set at the value assumed by the function a(x) in the points Mx

k
N

aJ (x)"
*x

1
Jpr

M
+
k/1

a(x
k
)g((x!x

k
); r). (30)

The quality of the reconstruction will be quantitatively assessed by the mean square
reconstruction error (mse) computed over a test set M¹N of ¹"16 384 points taken
equally spaced by *x

5
" 1

16 384
. As can be seen in Fig. 3b, the reconstructions obtained

with l
#65v0&&

"20 Hz and l
#65v0&&

"262 Hz cannot be distinguished one from the other
and from the true profile. For l

#65v0&&
(l

M
, aJ (x) is not able to closely replicate the peaks

and the valleys of a(x) (dashed line in Fig. 3b, where l
#65v0&&

"5 Hz) and for
l
#65v0&&

'l
S
/2, aJ (x) will be affected by aliasing which introduces high-frequency oscilla-

tions (cf. continuous line in the box, where the reconstruction with l
#65v0&&

"600 Hz is
reported). The quantitative analysis of the error measured on the test set (Table 1),
shows that the larger is the value of l

#65v0&&
, the smaller is the error, down to 262 Hz

above which the error starts to increase again. Therefore, in the noise free situation,
the best choice would be to choose l

#65v0&&
equal to 0.1279*l

S
"262 Hz.
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Table 2
Mean-square error in the reconstruction of the function a(x) of Fig. 3a using M"204 Gaussians and
N"2048 data points, equally spaced

Direct computation of the weights Weighted average of
neighbour points

mse mse mse
r m

#65v0&&
No noise Noise $5 Noise $5

0.0375 5 32.77 32.14 34.06
1.874]10~2 10 2.461 2.739 2.971
0.937]10~2 20 0.163 1.151 0.418
0.715]10~2 26.2 0.056 1.544 0.293
0.313]10~2 60 1.233 5.763 1.519

When the data points Ma
k
N cannot be measured with absolute accuracy, different

considerations apply. Let us add uniform random noise Mn
k
N to the points Ma

k
N; the

sequence Mb
k
N is obtained

Mb
k
N"Ma

k
N#Mn

k
N. (31)

This presents high-frequency oscillations, as can be seen in Fig. 3d. If aJ (x) were
reconstructed using the maximum allowed cut-off frequency, (l

#65v0&&
"262 Hz), there

would have been very little filtering of the noise (Fig. 3e, continuous line). Under the
connectionist perspective, this can be considered an overfitted version of a(x). A much
better result can be obtained if l

#65v0&&
is reduced to l

M
(l

#65v0&&
"20 Hz); most of the

noise has been cleaned up as it is evident in the zoom box of Fig. 3e. Similarly to the
no noise case, some of the finest details of a(x) are lost in the reconstruction, when
l
#65v0&&

(l
M

(dashed line in Fig. 3e).

4. Simulations with M< N

In the previous case, the density of Gaussians is higher than necessary. In fact, for
Eq. (28) the sampling frequency, lN

S
, can be reduced to

lN
S
"

l
M

0.1279
"

20

0.1279
"156.4 (32)

and the number of Gaussians can therefore be reduced from M"2048 to M"156
which is a clear advantage in terms of resources allocated. Let us see what happens
when M"204 Gaussians, one out of every ten data points, are used. From Eq. (24),
m
#65v0&&

is reduced into the small interval [20, 26.2] Hz. The same data and test
sets used in Section 3 are used here and the quantitative results are reported in
Table 2.

A degradation is evident in the accuracy of the reconstruction when noise is present
with an increase in the mse of one order of magnitude. The direct substitution of s

k
to
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w
k
is not a good solution in this case. On the other side, only those 204 data points

which are coincident with the Gaussians centres have been used, while all others
(N"2048!204"1844) have been discarded. A more efficient schema for the
computation of the weights has therefore been devised.

5. Local estimation of the weights

Let s
k
"s(x

k
) be the value of the function s(x) in the point x

k
. A first observation is

that if s(x) is a continuous smooth function, the value of s(x) in the neighbourhood, S
k
,

of x
k

should be close to s
k
. On the limit

lim
x?xk

s(x)"s
k
. (33)

Taking this into account, it is natural to estimate s
k
as the average, sN

k
, of all the data

points belonging to S
k
weighted by a quantity which is proportional to their distance

from x
k

sN"
+R

r/1
s
r
w(Dx

r
!x

k
D)

+R
r/1

w(Dx
r
!x

k
D)

, (34)

where R is the number of data points in S
k
. Among the possible choices of weighting

functions, w( . ), the Gaussian allows to obtain the maximum a posteriori estimate
[10,32] of s(x

k
), from the subset S

k
. Eq. (34) therefore becomes

sN
k
"

+R
r/1

s
r
e((xr~xk)2)@p2

w

+R
r/1

e((xr~xk)2)@p2
w
, (35)

where r
w

is a scale parameter, set to r
w
"r

#65v0&&
/2 to avoid any additional filtering on

the function s(x).
The neighbourhood region, S

k
, has been defined here as the interval centred in x

k
of

amplitude $*x
G
, where *x

G
is the distance between two consecutive Gaussians.

This has the rationale that a Gaussian is heavily responsible for the region around its
centre (this implicitly defines a receptive field for the Gaussian). Therefore, for each
g( . ) in Eq. (30), the neighbourhood data set, S

k
, is defined as

S
k
"Mx

m
N:Dx

m
!x

k
D(*x

G
N. (36)

As can be seen from the third column of Table 2, with this approach, the recon-
struction error, obtained with M"204 Gaussians, when the estimate of the MsN

k
N

through Eq. (35) is substituted to the Mw
k
N, has been reduced to the level obtained by

using 2048 Gaussian units and close to the levels with no noise.
The power of this schema for the computation of the weights lies in the fact that it

can be applied also when the data points are not equally spaced, obtaining the same
accuracy. This can be appreciated from Table 3 where the mse is reported for the
reconstruction of a(x) carried out with M"204 Gaussians, starting from a set of
N"2048 data points randomly sampled from b(x).
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Table 3
Mean-square error in the reconstruction of the function a(x) of Fig. 3a using M"204 Gaussians and
N"2048 data points randomly sampled. Uniform random noise of $5 has been added to their
coordinates

m
#65v0&&

5 10 20 26.2 60
mse 33.94 2.886 0.430 0.332 1.632

6. Hierarchical approximation

In real applications the frequency content of s(x) can be different throughout the
input space and the use of a single scale, r, for all the Gaussians can be severely
questioned. In fact, to guarantee the reconstruction of the finest details of s(x),
r should be chosen according to the highest-frequency content of s(x), over all the
input space, also when this is concentrated in a narrow region. This would cause
a waste of resources in those regions of space where the scale of s(x) is larger and fewer
Gaussians, featuring larger scales, could be used. The solution proposed here to save
units is to add to a basic network which contains a Gaussian grid with a large scale,
grids of equally spaced Gaussians featuring smaller scales.

The process of creation of such a network is made clear in Fig. 4a. A first
approximation of s(x), a

1
(x), is obtained using a layer of Gaussians with a very large

scale. If information on the local bandwidth of the function s(x) were available, this
scale would correspond to the smaller local bandwidth over all the input space. Once
the scale of this first layer has been set, the number and the spacing between the units
can be computed from Eq. (26). This layer will be able to reconstruct only the low
frequency components giving a coarse reconstruction of s(x); and the finest details
present in those regions where the highest-frequency components are contained, will
be lost. As a result, the residual, r

1
(x)"s(x)!a

1
(x), will be higher in these regions. To

be able to improve the reproduction of these details, a second grid of Gaussians,
featuring a smaller scale, is added to the network. This layer will not be complete as
the Gaussian units will be inserted only in those regions where r

1
(x) is higher than

a predefined threshold, e. This second layer will produce a second residual, r
2
(x). If this

residual were still too large in some regions of the input domain, a third grid of
Gaussians featuring an even smaller scale is created. The procedure is iterated until
the residual is smaller than e over the input space (uniform convergence).

At this point a criterion to analyse the residual is required. The maximum error
(¸

=
norm) is not a wise choice as it allows the reproduction of both the noise and the

outliers and an integral criterion is preferable. In the following the ¸
1

norm of the
residual measured on the points contained in the receptive field of each Gaussian
(defined by Eq. (36)), has been adopted. For the 1-D case, a Gaussian is inserted in the
position k of the grid if

+R
r/1

Dr
k
D

R
'e. (37)
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Fig. 4. The hierarchical structure of a RBF network. In the learning stage (a), more layers of Gaussians are
added one after the other to approximate the residual of the previous layer. The layers are added until the
residual decreases below a certain threshold. In the reconstruction phase (b), the different layers work in
parallel on the same input data.

We remark that with this hierarchical structure, a uniform ¸
1

approximation is
achieved, provided that a sufficient number of data points has been sampled.

7. Summary of the learning procedure

For the first layer:

1. A complete grid of Gaussians is created, each featuring the same r (r
1
) which is

chosen to allow the reconstruction of at least the grossest details of s(x).
2. The spacing between two Gaussians, *x

G
, is computed according to Eq. (26).

Given the value of *x
G

and the extension of the input space, the number, M
1
, and

the position of the Gaussians are determined.
3. The weights, Mw

1k
N, of this first layer are computed through Eq. (35).

4. The output of this first layer, a
1
(x) is computed and the residual reconstruction

error is determined of all the points Mx
k
N belonging to the input data set as

Mr
1
(x

k
)N"Ms(x

k
)!a

1
(x

k
)N.
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c
Fig. 5. Reconstruction of the phonetic sequence /tiltrù/ through a HRBF network of five layers. The
original sequence is reported in (a) and it is constituted of N"26 000 equally spaced data points
(l

4
"32 kHz). The output of each layer is reported in (b) (d) (f ) (h) ( j) and the residual at each layer in (c) (e)

(g) (i) (k). In (l) the distribution of the Gaussians in each layer is plotted.

For the higher layers:

5. At each iteration, l, a new grid of Gaussians is inserted. The scale associated to the
lth layer, r

-
, can be computed as r

-
"r

l~1
/2.

6. The spacing between two Gaussians, *x
Gl

, is computed according to Eq. (26), i.e.
it is halved; the number, M

l
, and the position of the Gaussians of this layer are

determined as in (2).
7. Among the M

l
Gaussians, only those which are placed in a region (Eq. (36))

where the residual error is above e (Eq. (37)), are preserved; the others are
discarded. A reduced set of M@

l
4M

l
Gaussians is therefore obtained for these

layers.
8. The weights, Mw

lk
N of the lth layer are computed through Eq. (35).

9. The output of the lth layer, a
l
(x), is computed and the residual reconstruction

error is determined as Mr
l
(x

k
)N"Mr

l~1
(x

k
)!a

l
(x

k
)N.

10. The learning procedure stops when the ¸
1

norm of the residual r
l
(x

k
) is smaller

than e over all the input domain (uniform approximation).

The construction of the network proceeds along with the estimation of the weights,
sequentially through the different layers in the learning process. In fact, the residual of
the previous layer is required for the construction of the intermediate layers (cf.
Fig. 4a). In the reconstruction process, instead, the different layers operate in parallel
(cf. Fig. 4b). In fact, each layer receives the same input, namely, the position of
a sample in the input space, xN , and outputs a value which is an approximation of the
function at the largest scale (first layer), and an approximation of the residual
(intermediate layers). The actual approximation of s(x) in the point, xN , sJ ,(xN ), is obtained
by adding up the contributions of all the layers.

8. Reconstruction of a phonetic sequence

This model has been tested on the reconstruction of the acoustic sequence CtiltrùC.
Acoustic sequences are interesting as their frequency content is highly time varying.
Moreover, they usually present spurious spikes which, from the learning point of view,
can be viewed as outliers in the input data set. Finally, the acoustic sequence can also
be played back to hear the reconstruction allo wing an effective qualitative evaluation
of the result, besides the quantitative one.

The sequence has been sampled at 32 kHz collecting a data set, D, of N"26 000
samples in a time interval of 0.8125 s (Fig. 5a) and it has been reconstructed continu-
ously by polynomial interpolation. The learning set, S, is constituted of P"26 000
input data points randomly extracted and, therefore, in general, not equally spaced.
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Table 4
Reconstruction of the sequence CtiltrùC using the hierarchical approach for the Gaussians allocation. The
input data points have been obtained by randomly sampling the continuos acoustic trace

No. of layer mse on the residual Global mse No. of Gaussians m
#65v0&&

(Hz)

1 9185 9362 1588/1588 250
2 1016 1067 1059/3176 500
3 415.1 475.4 1012/6352 1000
4 264.8 316.1 634/12704 2000
5 185.7 225.9 694/25408 4000

Five layers have been used with cut-off frequencies, respectively: l
#65v0&&

"[250, 500,
1000, 2000, 4000] Hz. The lowest cut-off frequency (250 Hz) guarantees that the
lowest-frequency components of the human speech can be reconstructed; and the
higher cut-off frequency (4000 Hz) satisfies the constraint imposed by Eq. (24).

The reconstruction operated by the first layer, a
1
(x), is reported in Fig. 5b: only the

bulk of the time course of s(x) has been reconstructed and important contributions are
lacking as can be seen from the residual, r

1
(x) (Fig. 5c). The next intermediate layers

are aimed to reconstruct these contributions. In these layers, the Gaussians are
inserted only when the residual is over threshold (cf. Section 6) and they are distrib-
uted where the phonetic production is concentrated (Fig. 5l) for a total of M"4987
Gaussians. The output of the intermediate layers is reported in Fig. 5d, f, h, j; the
residual in Fig. 5e, g, i, k and the reconstruction error in Table 4. The final reconstruc-
tion, obtained adding up the contributions of the five layers, is reported in Fig. 6a
along with the residual computed over the input data set, D (Fig. 6b). The hearing of
the residual reveals that it contains only acoustic noise while the sequence /tiltrù/
reconstructed through HRBF is not distinguishable from the original one: in the
reconstruction noise has therefore been cleaned. Another property of the HRBF
reconstruction is the filtering of the spurious spikes as can be seen in Fig. 6b. This is
achieved both by the filtering property of the MAP estimation of the weights and on
the ¸

1
criterion used for the insertion of new units.

The value of e is here set automatically by analysing the noise amplitude: under the
hypothesis that noise is constant throughout the input sequence, it can be estimated
where there is no phonetic production, for example, in the first 100 ms. Three times the
standard deviation of the data in this interval is taken as the value for e; and it is
reported as horizontal lines in Fig. 6b and 6d.

These results suggest that HRBF networks can be seen also as a multiresolution
representation of the data: the more layers are considered, the more the finest details
will be reproduced. Such a representation is extremely useful when s(x) has to be
manipulated, transmitted or output with different degree of detail.

As a benchmark, this reconstruction has been compared with that obtained with
a complete RBF network constituted of 26 000 equally spaced Gaussian units each
centred in one data point (*x

G
"3.125]10~5, l

#65v0&&
"4 kHz). The data points in

this case are not randomly sampled but they constitute the original data set D. The
weights assume the value of the sequence in the Gaussian centres (cf. Eq. (21)). The
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Fig. 6. Benchmark of the reconstruction of the phonetic sequence /tiltrù/. In (a), the reconstruction has
been carried out through the HRBF, and in (c), it has been carried out using a complete network of equally
spaced Gaussians. The residual of the two reconstructions are reported, respectively, in (b) and (d); the
horizontal line represents the residual error e defined by Eq. (37).

obtained reconstruction is plotted in Fig. 6c along with its residual (Fig. 6d): it is
evident that the quantity of noise cleaned up by HRBF network is much higher than
by a full network. From the point of view of the allocated resources, it is clear that the
Gaussian units inserted where there is no speech at all or where the sound is at lower
frequency like in the oscillations associated to /u% / and /l/, constitute a waste of
resources. In the HRBF network, most of the units are allocated where the phonetic
production is concentrated allowing to save 21 013 units. Moreover, with the HRBF
network, it has been possible to reconstruct the phonetic sequence also if the acoustic
samples were not equally spaced.

9. Discussion

The approach presented here belongs to the two-steps methods in which the
computation of the RBF network parameters is decomposed into two steps (cf. Eq. (1)
and Fig. 1). First, the structural parameters of the network, namely, the number of the
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Gaussians, their variance and the position of their centres, are determined. In a second
step, only the value of the weights is estimated.

9.1. Structural parameters

9.1.1. Gaussians positioning
The methods adopted to compute the Gaussians position in a RBF network can be

grouped into two large families: data driven and error driven. In the data-driven
methods [4,18] a predefined number of Gaussians is distributed in the input space
according to the local density of the data points, operating a vector quantization of
the input space. The underlying assumption is that more points are sampled in the
regions where the function is more difficult to be reconstructed, because it is more
rapidly varying or, equivalently, its bandwidth is larger; which is not always the case.
To decouple the dependence of the density of the Gaussians from the density of the
input data, methods which are error driven have been proposed [5,7,8,25,31]. These
are essentially incremental and insert one Gaussian after the other following criteria
based on the residual reconstruction error. Here the number of the Gaussian units
does not need to be fixed a priori but it is the result of the learning process.
Nevertheless, they are iterative and require extensive learning to set the parameters to
a reasonable value. Moreover, they may easily not give an optimal solution as the
insertion of one Gaussian modifies the network structure only locally (e.g. three units
are modified in [8]).

A reduction in the computational demand is obtained covering the input space
with a regular grid of Gaussian units [4,31]. In this approach the location of the
hidden units is determined once the spacing between two adjacent units, *x, has been
fixed, the only care is to choose *x small enough to reconstruct the finest details of the
input function (cf. Eq. (27)). The strength of this approach is to suggest a tool to
directly set the value of the variance for the hidden units (cf. Sections 2 and 9.1.2), the
weakness is that more units than necessary will be allocated when the finest details are
concentrated only in few sub-regions of the input space, resulting in a waste of
resources. In this approach, the distribution of the Gaussians cannot be considered
either related to the input data (data driven) or to the reconstruction error (error
driven).

The HRBF approach takes advantage of the strength of the gridding approach and
avoids the waste of resources. The key operation is the transformation of the hidden
layer into a set of hierarchical layers, each with a characteristic scale; the largest scale
being attributed to the first layer and the smallest to the last one. The first layer
outputs a reconstruction of the function at a very coarse scale while the Gaussians in
the other layers are used to approximate the local residual error, constituted of the
details that the previous layers were not able to reconstruct. With this construction,
the gridding procedure has been transformed into an error-driven procedure: as can
be seen in Fig. 6b, the residual error obtained at the end of the learning will be under
a predefined threshold (uniform ¸

1
convergence). An approach similar to HRBF has

been proposed by Fritzke using Kohonen maps [9]. The main difference is that here it
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is not required that an entire row or column be inserted into the grid, but single
shorter segments are allowed on demand.

9.1.2. Estimation of the value of r

Using equally spaced Gaussians, a single value of r is adopted for each layer.
Although small variations in its value do not change dramatically the mse ([16,32], cf.
Table 1), if r is set outside an adequate range, high distortions in the reconstructed
function do arise (cf. Fig. 3b, [22]): a too large value of r produces a low-pass filtered
reconstruction; on the other side, r cannot be decreased ad libitum as a too small
value will lead to a spiky reconstruction. This problem is known as the trade-off
between bias and variability in the statistics literature [28]. Sanner and Slotine [31]
have provided an analytical procedure to bound the residual error as a function of the
frequency content of s(x). This criterion has two drawbacks, it is very conservative and
it is based on the ¸

=
norm which does not allow the elimination of the outliers. We

have preferred here to adopt a constructive criterion: units at smaller scales are
inserted where the residual error is high until a uniform (¸

1
) convergence is achieved.

In this case, the choice of the value of r becomes less critical provided that it is large
enough. An empirical criterion to set the value of r (r"*x

G
) is given in the domain of

Parzen Window estimate [32,35]; it has been shown in Section 3 that this criterion
does not guarantee a smooth reconstruction and a more conservative value of
r"1.465*x

G
is suggested (Eq. (26)). The difference is significant in terms of amount

of overlap between two consecutive Gaussians which increases from 68.2% to 73.3%.

9.2. Weights computation

Once the number, the position and the variance of the Gaussians of one layer have
been determined, the structure of that layer has been completed and the “synaptic”
weights can be determined. Their optimal value can be computed solving the linear
system in Eq. (2) using, for example, the LMS algorithm [25,35] or techniques which
are numerically more stable like singular-value decomposition [29]. A better schema
which allows to eliminate the outliers has been recently proposed [30]. However,
these solutions are computationally demanding and may cause numerical and mem-
ory allocation problems for large networks. For these reasons a local computation
schema has been devised here. This is based on the observation that the computation
carried out in a RBF network constituted of equally spaced units with the same r is
mathematically equivalent to the convolution of the input data set with a Gaussian
kernel (cf. Statements 1 and 2). In this condition, the value of the weights can be
assumed equal to the value of the function in the centre of each Gaussian obtaining
a good reconstruction. A more reliable estimation of the weights can be achieved
through a maximum a posteriori estimate which considers all the data points inside
the receptive field of each Gaussian unit (Eq. (35), cf. [10]). This makes the overall
structure more powerful allowing to approximate a function also when the points are
not equally spaced as it happens in the most common neural network problems.
Moreover, this estimate, along with the ¸

1
criterion of insertion of the units, allows to

filter out the outliers as can be appreciated in the residual of Fig. 6b where most of the
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spikes have not been reproduced by the network. From the computational point of
view the learning procedure requires to carry out as many small estimate problems as
the number of the Gaussians. This scalability allows the implementation of the
algorithm on a parallel hardware whichever is the cardinality of the input data set.

9.3. General remarks

The Gaussian cannot be considered an optimal low-pass filter: as its Transition
Band is large (cf. Fig. 2a) a function has to be heavily oversampled (about 3.9 times,
Eq. (28)) to obtain a good reconstruction. This turns out to be an advantage for the
estimation of the weights as about fifteen data points will be used in the estimate (these
are the points which fall inside the receptive field of each Gaussian, cf. Eqs. (35) and
(36)). Although different functions have been proposed to interpolate in between the
grid crossings (e.g., splines, optimal analogical filters, to which the hierarchical
structure can be applied as well), the Gaussian functions are preferred for two main
reasons: they are claimed to constitute a processing module common in the human
nervous system [26] and they have a straightforward simple implementation in
parallel hardware [28] which makes them particularly attractive for real-time net-
work implementations.

RBF networks have been proposed also as the solution of a regularisation problem
[10,27]. In fact, the recovery of the function s(x) from a finite set of samples Ms(x

k
)N is

an ill-posed problem because the solution is not unique. Constraints on the differen-
tial characteristic of the function s( . ) are introduced which transform the problem
into a minimisation of a cost function constituted of two terms: the first term penalises
deviation from the input data and the second one from smoothness

sJ (x)"min
s(x)

H(s)"
N
+
k/1

(s(x
k
)!s

k
)2#jP

`=
+

m/0

c
m
D+ms( . )D2, (38)

where + is the Laplacian operator on s( . ). The actual shape of sJ (x) depends strongly
on the value of the Mc

m
N. In particular, when c

m
"r2m/(m!2m), the regulariser assumes

the following shape:

jP
`=
+

m/0

c
m
D+ ms( . )D2"jPS(l)*S*(l)ev2 dl (39)

and the solution has been shown to be a sum of Gaussians centred in Mx
k
N with

variance r2 [36]. From Eq. (39) it is evident that an increase of both k and r, reduces
the high-frequency components in sJ (x) increasing the low-pass filtering capability of
the network. It can therefore be questioned the utility of this additional parameter
k and smoothing here is left only to the Gaussian variance of the Gaussians. HRBF
networks can be also seen as a special case of the mixture of experts models [13] where
each hidden layer can be seen as a sub-network specialised in a certain frequency
range. The complex learning machinery of the mixture of experts is substituted by an
incremental construction of the layers.
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The reconstruction obtained with this approach has the great advantage to be very
fast and direct although it is not claimed to be optimal. Nevertheless, it may constitute
a very good starting point for iterative methods, like stochastic gradient [27], which
eventually converge to the optimal solution when starting from a point sufficiently
close to the true one [34].

10. Conclusions

The HRBF network presented here allows to obtain a fast and accurate reconstruc-
tion of any continuous function starting from not equally spaced data sets. The
incremental architecture allows to achieve a uniform approximation without wasting
resources. Provided that the function is heavily oversampled, a good estimate of the
weights can be achieved. The complexity of the learning algorithm does not increase
with the cardinality of the input data set: the algorithm can be fully parallelisable and
of possible implementation in real-time on a parallel machine.

Remark. The synthetic and real data used for this work are available through
anonymous ftp at carla.inb.mi.cnr.it/pub/hier—RBF/data.
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