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Abstract Wavelets are a powerful tool for multi-resolution analysis as they combine spatial 
and frequency locality. In this paper an efficient procedure to compute the Wavelet 
coeff icients, called lifting schema, is illustrated. Results on face reconstruction operated at 
different resolution are reported and discussed. 
 
1 Introduction 
 
Wavelet theory provides a unifying framework for different techniques, developed 
independently. In particular it provides an efficient tool for a Multi-Resolution 
reconstruction of surfaces whose frequency content is non-stationary [1, 2]. The 
Wavelet Transform (WT) decomposes the surface onto a set of basis functions, called 
Wavelets, which are obtained from a single prototype, the mother Wavelet, through 
dilation, contraction and shift. This decomposition is achieved by projecting the 
surface onto the base set. An efficient implementation requires that the surface is 
projected iteratively on a base of decreasing scale. The analytical key operation is the 
internal product of the surface with the Wavelet base, which is theoretically extended 
over the entire R2 plane. To cope with real data, which have a finite support, some 
approximations have to be made: the contribution of a Wavelet basis is supposed to 
vanish over a certain distance from its centre, or windowing of the input surface is 
performed [3]. A simpler analytical solution has been recently proposed under the 
name of li fting schema [4]. It implements only local operations and implicitly 
performs Wavelet windowing. Results on the application of this schema to surface 
reconstruction are reported and discussed. 
 
2 The Multi-Resolution Analysis and the Wavelet Transform 
 
The Wavelet Transform is based on the Multi-Resolution Analysis (MRA). This is 
obtained projecting f(x) ∈ L2(R) over a suitable set of bases which form a Riesz base 
for L2(R). These projections give an approximation of f(x): Pj[f(x)], at a resolution j. 
The bases are obtained by scaling a given function, called Scaling Function, ϕ(x), 
such that each base is orthogonal to the previous one. The MRA produces a sequence 
of approximations of f(x) such that its limit coincides with f(x) itself: 
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If we move into the discrete (sampled functions and discrete resolutions), the concept 
of filter bank tree substitutes the concept of Multi-Resolution. In particular, i f we 
define:  

Rj = Pj[f(x)] – Pj-1[f(x)] (2)  

i t can be shown that it is possible to define a base, the Wavelet, such that projecting 
f(x) over this basis, Rj is obtained. If we call Qj[f(x)] this projection, the following 
relationship holds:  

Qj-1[f(x)] = Pj[f(x)] – Pj-1[f(x)] (3)  

From Eq. (2), it follows that the series of the Qj(.) gives the function itself:  
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and that f(x) can be approximated ad libitum, by a finite number of the Qj[f(x)]. The 
Wavelet Transform is defined as the set of the coefficients, {γj,k}, which produce 
Qj[f(x)]: 
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The bases ψj,k(.) are orthogonal and are constructed by dilation, from a single 
Wavelet function, called mother Wavelet. The set of the ψj,k(.) constitutes a Riesz 
base for L2(R). The lifting schema, reported in Section 4, gives a simple and local 
method to set the values of the {γj,k}. Similarly, the approximation at the resolution j, 
can be written as: 

( )[ ] ( )
�

=
kj

kjkjj xxfP
,

,, ϕλ  (6) 

It can be shown [5] that the coefficients {γj,k} and {λj,k} can be computed recursively 
from the set of coefficients at the higher resolution, j+1. This decomposition is 
exemplified in Fig. 1 and takes the name of pyramid algorithm or Mallat algorithm. 
 

 
Fig. 1. The decomposition of a function f(x): at each resolution or scale j, a pair of 
Approximation Pj(.) and Residual Qj(.) is obtained. Qj(.) can be obtained by projecting the 
function, f(x), over the Wavelet of scale j, ψj(.). P0[f(x)] is usually assumed equal to f(x). 
 
 
 



 

 
3 Computing the Wavelet Transform 
 
Haar is the simplest orthogonal Wavelet and it will  be used to exemplify the 
construction machinery. Haar Base is a piecewise constant function. If we consider a 
finite support of length 1, the basis- function, ψj,0(.), is 2

j/2 on as subinterval of length 
0.5 *  2-j and –2j/2 on the next subinterval. There are therefore 2j wavelets at level j. 
Its graphical representation is a square wave. The coefficients of the Haar Wavelet 
Transform are computed projecting the function f(x) on this square wave as:  �+∞
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The Scaling function, which has to be orthogonal to the Wavelet, is a box function 
which is constant and equal to 2j/2 in the interval of length 2-j, starting at t = k2-j. The 
coefficients of the scaling function at the resolution j, can be computed by projection 
as: �� =

=
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As can be seen, the Haar Scaling function, ϕj,k computes the local mean value of f(x) 
at the resolution j. This can be recast into a recursive schema where λj,k is computed 
as: 
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which is the mean value between two consecutive samples at the higher resolution. It 
is usually assumed, as for the other Scaling functions: ϕ0,k = f(xk). From the 
definition of Haar Wavelet, the following equation for the coefficients {γj,k} holds: 
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Eq. (8b) is used to compute the coefficients of the Haar Wavelet Transform. Given 
the coefficients {λj,k} and {γj,k}, the higher resolution coefficients {λj+1,k} can be 
recovered by: 
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The (8c) formalize the Inverse Wavelet Transform (IWT). The algorithm described 
above can be generalized to perform a general WT. Every wavelet can be 

characterized by a set of four finite fi lters, { h, g, h
~

, g~ } , which can be used to move 

between different resolutions. The general form of Eqs. (8a-c) is: �
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In the following, simple filters used for some of the most common Wavelets are 

reported [3]: Haar Wavelet: h = h
~

 = [1/2, 1/2], g = g~ = [1/2, -1/2]; Hat (linear) 

Wavelet: h = [1/4 1/2 1/4], h
~

 = [-1/8, 1/4, 3/4, 1/4, -1/8], g = [-1/8, -1/4, 3/4, -1/4, -

1/8], g~ = [-1/4, 1/2, -1/4]; Cubic Wavelet: h = [-1/32 0 9/32 1/2 9/32 0 -1/32], h
~

 = 

[1/64 0 -1/8 1/4 23/32 1/4 -1/8 0 1/64], g = [1/64 0 -1/8 -1/4 23/32 -1/4 -1/8 0 1/64], 
g~  = [1/32 0 -9/32 1/2 -9/32 0 1/32]. 

 
4 The Lifting schema 
 
The l ifting schema, recently proposed by [4], is a very efficient way to compute the 
Wavelet Transform. We will  illustrate here how does it work when the Hat (linear) 
Wavelet is used. Let us start with a sampled function: {f(xk)}, k ∈ Z. Subsampling by 
a factor two we obtain the even and the odd sequence. These can be seen as the 
approximation of f(xk), the even samples, and the residual, r(xk), the odd samples. 
This schema produces a Lazy Wavelet where:  

λ−1,k = λ0,2k = f(x0,2k) (10a) 
are the coefficients of the Scaling functions ϕ−1,k(.), and: 

γ−1,k = λ0,2k+1 = f(x0,2k+1) (10b) 
are the coefficients of the Wavelet, ψ−1,k(.). A more efficient coding of f(xk) is 
achieved by considering that the correlation between neighbour samples is usually 
high, at least for smooth functions. The odd samples can therefore be computed as 
the deviation from the average of the value of pairs of neighbour even samples. The 
Wavelet coefficients are thus: 

γ1,k = λ0,2k+1 – 1/2(λ1,k + λ1, k+1) (11a) 
As these coefficients encode the deviation from linearity of the function f(xk), they 
will usually be small. A good reconstruction of f(xk) can be obtained even if the small 
coefficients are discarded. We can now improve the coding of the coefficients of the 
Scaling function, {λj,k}. In fact, if the given function samples are composed by 1’s 
interleaved with 0’s (i.e. {λ0,k} = [1 0 1 0 1 0 1 0 1 0 1 0 1]), the coding reported 
above wil l suffer from aliasing and poor approximation, as the approximation at the 
first level (j=1) will result in a sequence of 1’s. A better schema to compute the {λj,k} 
is the fol lowing: 

λj,k = λj+1,2k + 1/4(γj,k-1 + γj,k) (11b) 
which guarantees that the average of the λj,k is at the same at every level of resolution 
j. Eqs. (10) and (11) describe the lifting schema for the Hat Wavelet. This schema 
can be generalised to other WTs and it allows to cut the computational time to half 
with respect to the classical computation which performs a convolution. It does not 



 

require additional memory, as the calculation can be carried out in place. Moreover, 
the algorithm is well suited for SIMD parallelisation into SIMD machines. In 
l iterature, the WT was heavily linked to Fourier transform, and its use supposes 
regularly spaced samples. Since the lifting schema does not depend on frequency 
analysis, it allows to generalise the WT to deal directly with range data. 
 
5 Reconstruction of a human face 
 
The WT can be applied to MRA and reconstruction of 3D surfaces (z = f(P), with P∈ 
R2 and z ∈ R1). Provided that the sampled data are organised into a matrix, it could 
be shown that the WT can be realised transforming first al l the rows and, 
successively, al l the columns of the matrix, i .e. considering alternatively the rows 
and the columns as a battery of monodimensional function. This schema has been 
applied to the reconstruction of human faces at different resolutions. The results are 
obtained applying the Hat wavelet, but the results can be generalised easily to 
quadratic and cubic Bases. The face in Figure 2 has been reconstructed starting from 
12,641 data points sampled over the face using the Autoscan system [6]. A 
Hierarchical RBF network [7][8] has been used to resample the data points with a 
spacing of 1,5mm. The Hat Wavelet has been applied to this set of data.  
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6 Conclusion 
 



 

Wavelets perform a local analysis in the combined frequency/space domain. In this 
respect they are similar to the Short-Time-Fourier-Transform with the difference that 
WT uses a short window at high frequency and a large window at low frequency 
while the STFT uses a fixed window. It is similar also to other MRA schemas like 
HRBF with the difference that in HRBF the number of coefficients increases one 
level after the other while in the Wavelet transform the number of coefficients 
decreses. On the other side, the WT does not have the redundant representation in 
the frequency domain which the HRBF has. Wavelets are made even more powerful 
by the l ifting schema which gives to the MRA more freedom than the classical 
approach as different metrix can be used in computing the coefficients, windowing 
can be implemented locally, saving in computational time is achieved and only local 
operations are carried out. 
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