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Abstract: This study addresses the prescriptive limitations of traditional Data Envelopment Analysis (DEA) by proposing a 
novel hybrid framework, the Hybrid DEA-Stacking-Bayesian Model, to enhance supply chain optimization. An input-oriented 
DEA model under Variable Returns to Scale (VRS) is employed to minimize inputs while maintaining output levels. The 
efficiency scores obtained from the DEA model serve as outputs for machine learning models trained to predict the efficiency 
of decision-making units based on their input-output profiles. The hybrid approach integrates DEA with Stacking algorithms and 
incorporates Bayesian optimization for hyperparameter tuning. Results demonstrate that Bayesian optimization significantly 
enhances performance across all meta-learners, with XGBoost achieving the highest accuracy, improvement in R², and yielding 
the lowest error metrics. Comparative analyses highlight XGBoost as the best-performing model, followed by kNN, RF, and 
DT, confirming the effectiveness of the proposed framework. The integration of DEA and Stacking improves supplier selection 
by evaluating efficiency and enhancing prediction accuracy through model combination. This work provides a robust decision-
support tool for supply chain management, laying the groundwork for future research on supplier selection. 
Keywords: Data Envelopment Analysis, Supplier Selection, Bayesian Optimization, Stacking Meta Learner

1. INTRODUCTION 

Supply Chain Management (SCM) is both an art and science 
aimed at optimizing procurement, production, and distribution 
to enhance efficiency, reduce costs, and improve customer 
satisfaction. In the evolving landscape, businesses face 
challenges from shifting market demands and sustainability 
requirements. Traditional optimization methods have 
limitations in addressing the complex, stochastic nature of 
supply chain operations, highlighting the need for innovative 
approaches. The critical role that Supplier Selection (SS) plays 
in effective Logistics and Supply Chain Management (LSCM) 
has attracted a lot of attention. It  is a critical process in 
logistics and supply chain management. It entails locating, 
assessing, and selecting vendors that can offer the products or 
services required to satisfy an organization's needs. The goal 
is to find suppliers that offer the best combination of quality, 
cost, reliability, and service. A non-parametric technique for 
assessing effectiveness, Data Envelopment Analysis (DEA), 
has emerged as a crucial instrument for SCM decision-making, 
especially when it comes to finding sustainable suppliers. 
(Vörösmarty & Dobos, 2020). 

A review of the existing literature highlights various methods 
used for supplier assessment and selection, each offering 
distinct advantages. However, integrating and extending these 
approaches to meet specific goals is crucial. By presenting a 
novel hybrid model for supply chain optimization and 
addressing the prescriptive limits of traditional DEA, this 
paper makes a substantial contribution. The proposed model 
combines DEA with Stacking algorithms and incorporates 
Bayesian optimization for hyperparameter tuning, focusing on 
enhancing both accuracy and efficiency. This framework 
provides a more comprehensive solution than traditional 

methods, addressing critical challenges in supply chain 
management and offering valuable insights for improving 
operational performance. 

This research offers several key contributions to the literature: 
1- Introduces an input-oriented VRS DEA model aimed at 
reducing input usage while keeping output levels constant. 2- 
Combines DEA with Stacking algorithms to enhance 
prediction accuracy. 3- Implements Bayesian optimization for 
hyperparameter tuning to boost model performance. 4- 
Evaluates the impact of Bayesian optimization on 
hyperparameter tuning outcomes. 5- Compares the 
performance of four Stacking models. 6- Demonstrates the 
effectiveness of the hybrid DEA-Stacking-Bayesian approach 
for supply chain optimization. 7- Provides a decision-support 
framework to help optimize resource allocation and improve 
supply chain operations. 

This paper is laid out as follows: A summary of literature is 
given in Section 2, the methodology is described in Section 3. 
The results of the implementation are presented in Section 4. 
Section 5 wraps up the conclusion and future directions. 

2. LITERATURE REVIEW 

2.3 Integrated contributions in Supplier Selection 

DEA and ML integration in SCM provides a comprehensive 
solution, where DEA's efficiency analysis informs the strategic 
decision-making process, identifying areas for improvement 
and benchmarking. Concurrently, ML algorithms use this 
efficiency data, along with historical trends and patterns, to 
predict future supply chain behaviors, demand fluctuations, 
and potential inefficiencies (Ni et al., 2020). In study by Islam 
et al., (2024), the demands are using Deep Learning (DL), 
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generated suppliers’ weights using hybrid Principal 
Component Analysis (PCA), and compared various 
forecasting models for allocating orders. Khan et al., (2024) 
have studied the contributions of many elements to economic 
resilience and created an output-oriented DEA model. The K-
Means technique is then used for clustering and analysis. After 
that, clustering and analysis are done using the K-Means 
algorithm. A study by Boubaker et al., (2023), introduces a 
two-stage DEA model in conjunction with support vector 
regression (SVM), neural network regression, random forest 
regression (RFR), and gene expression programming (GEP). 
In order to enable ranking comparisons of Micro, Small, and 
Medium-Sized Enterprises (MSMEs), the work developed a 
technique to derive a common set of weights (CSW) through 
regression analysis for DEA evaluations. In a study by Abdulla 
et al., (2023), they proposed an integrated approach that uses 
machine learning models like Decision Tree (DT) and Random 
Forest (RF) in conjunction with the MARCOS (Measurement 
of Alternatives and Ranking according to Compromise 
Solution) method for evaluation purposes. 

Moslemi et al., (2022) study took into account the 
pharmaceutical supply chain's entire structure and suggested a 
BSC-based structure as a network architecture to establish 
performance benchmarks for the chain as a whole. They 
proposed the Anderson-Peterson Neuro-DEA model to rank 
the most efficient units and assess the supply chain network's 
efficacy. To evaluate and choose the best service, Abdulla et 
al., (2019), combined AHP and decision trees. Specifically, the 
decision tree classifier was employed in this study to identify 
the most crucial criteria. Principal component analysis was 
taken into consideration in (Davoudabadi et al., 2020), in order 
to minimize dimensions, and a model based on DEA-Entropy 
was integrated to evaluate the weights assigned to every 
criterion.  For the purpose of selecting and classifying 
suppliers with respect to sustainability and resilience,  
Tavassoli & Ghandehari, (2023) proposed a fuzzy super 
efficiency-DEA and fuzzy-MIP model. 

3. METHODOLOGY 

3.1 Data Envelopment Analysis 
DEA is a method that uses linear programming techniques to 
evaluate the effectiveness of Decision Making Units (DMUs).  

3.1.1 Categories of Data Envelopment Analysis 

Based on their orientation and returns to scale, DEA models 
can be roughly divided into two types: The goal of input-
oriented DEA is to reduce inputs while keeping outputs 
constant. It assesses how much input quantity may be 
decreased proportionately without affecting output levels. The 
goal of output-oriented DEA is to maximize outputs while 
maintaining constant inputs.  

The Constant Returns to Scale (CRS) hypothesis states that an 
increase in inputs will cause outputs to rise proportionately. 
When every DMU is functioning at its ideal scale, this model 
can be used. The concept of variable returns to scale, or VRS, 
acknowledges that there may be fluctuations in the 
proportionality between inputs and outputs. When DMUs 
function at several scales, this model is helpful because it 

permits rising, falling, or constant returns to scale (Pradhan & 
Kamble, 2015). 

3.1.2 Input-oriented Constant Returns to Scale 

By comparing the inputs that decision-making units (DMUs) 
use to generate specific outputs, the Input-oriented Constant 
Returns to Scale (CRS) model assesses the relative efficiency 
of DMUs. The CRS assumption, which is appropriate for 
evaluating entities functioning at their optimal size, suggests 
that raising inputs by a specific percentage would raise outputs 
by the same percentage. Mathematically we have:  

Given n DMUs, where every 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 generates s outputs 
𝑌𝑌𝑟𝑟𝑟𝑟using m inputs 𝑋𝑋𝑖𝑖𝑖𝑖. The input and output matrices are 
denoted by X and Y, respectively, with dimensions m × n for 
X and s × n for Y. Objective: Minimize the efficiency score θ 
of a test 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜 subject to the following constraints. The 
following is a formalization of the CRS-DEA model: 

      min θ (1) 

subject to:  

∑ 𝜆𝜆𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1 ≤ 𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖,        ∀𝑖𝑖 = 1, … ,𝑚𝑚 (2) 

∑ 𝜆𝜆𝑗𝑗𝑌𝑌𝑟𝑟𝑟𝑟𝑛𝑛
𝑗𝑗=1 ≤ 𝑌𝑌𝑟𝑟𝑟𝑟,        ∀𝑟𝑟 = 1, … , 𝑠𝑠 (3) 

𝜆𝜆𝑗𝑗 ≥ 0,     ∀𝑗𝑗 = 1, … ,𝑛𝑛 (4) 

where the model aims to reduce the efficiency score of the 
DMU under evaluation, denoted by θ. 𝜆𝜆𝑗𝑗 are the weights 
assigned to each 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 in constructing the virtual DMU that 
serves as the reference point or “composite” DMU. 𝑋𝑋𝑖𝑖𝑖𝑖 and 
𝑌𝑌𝑟𝑟𝑟𝑟are the inputs and outputs, respectively, of the 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜 under 
evaluation. 𝑋𝑋𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑟𝑟𝑟𝑟 are the inputs and outputs, respectively, 
of the 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 in the dataset. 

The equations (1) and (2) define a virtual DMU as a linear 
combination of the available DMUs. The efficiency of 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜 
is then evaluated challenging this virtual DMU to achieve the 
same output using less input resources. The efficiency score θ, 
which indicates the percentage that inputs may be decreased 
while maintaining the same output level as 𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜 is 
minimized by the objective function in this formulation. 

The set of constraints (2) ensures that the weighted aggregate 
of inputs (using weights 𝜆𝜆𝑗𝑗) for all DMUs are not more than 
the scaled down inputs of the DMU being evaluated. The 
constraint (3) ensure that the virtual DMU constructed from 
the weighted aggregation of all DMUs can produce at least as 
much output as the DMU under evaluation. The objective is to 
minimize the efficiency score θ of the target DMU by finding 
a set of 𝜆𝜆𝑗𝑗 weights that allow the target DMU’s weighted sum 
of inputs to be as small as possible relative to its outputs, while 
ensuring that the constructed virtual DMU remains within the 
production-possibility set determined by all DMUs.  

3.1.3 Input-oriented Variable Returns to Scale  

The basic DEA model is extended by the input-oriented 
variable returns to scale (VRS) DEA model, which does not 
make the assumption that the scale of operations is fixed. 



Unlike the CRS model which assumes that inputs and outputs 
change proportionally, the VRS model allows for non-
proportional scaling, accommodating entities that might have 
increasing or decreasing returns to scale. The VRS model 
differs from the CRS model in that it incorporates an additional 
restriction to account for Variable Returns to Scale. It is 
possible to formulate the VRS DEA model for either input or 
output orientation. For illustration, we'll look at an input-
oriented VRS model here.  

The input-oriented VRS DEA model's mathematical 
formulation is identical to that of the CRS DEA model, (1)–
(4), with the following extra restriction: 

∑ 𝜆𝜆𝑗𝑗𝑛𝑛
𝑗𝑗=1 = 1 (5) 

where (5) is introduced to model Variable Returns to Scale, 
distinguishing it from the CRS model. The constraint (5) 
imposes the VRS condition by allowing for non-proportional 
increases or decreases in the scale of operations. The non-
negativity constraints (4) require that the weights assigned to 
each DMU be non-negative. In the VRS DEA model, 
efficiency scores will still range between 0 and 1 for an input-
oriented model. A score of 1 indicates that the DMU is 
operating efficiently relative to others in the dataset, 
considering variable returns to scale. The VRS model is 
particularly useful when analyzing DMUs of different sizes or 
when the assumption of proportional scaling CRS is not 
suitable. It allows for more nuanced analysis and can indicate 
whether DMUs would benefit from scaling up or down their 
operations. 

3.2 Stacking Meta Learner 

Stacking is a versatile ensemble method, where a secondary 
model, often referred to as the meta-learner, is trained to 
integrate the predictions from differen base models, called 
first-level learners. In this approach, the first-level learners are 
trained on the original dataset, producing outputs that serve as 
features for the meta-learner. Meanwhile, the original labels 
are retained as the target values for the new dataset used to 
train the meta-learner (Zhou, 2012). Stacking in classification 
is a hierarchical ensemble learning method comprising two 
levels of modeling: base learners and a meta-learner. Consider 
a training dataset 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁  where 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 indicates 
the i-th feature vector with d features, and 𝑦𝑦𝑖𝑖 is the 
corresponding target label. In the first level, M base learners 
𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑀𝑀 are trained on D to minimize their respective loss 
functions 𝐿𝐿𝑚𝑚. Mathematically, each base learner is optimized 
as (6). 

𝑓𝑓𝑚𝑚 = argmin𝑓𝑓∈𝐹𝐹𝑚𝑚𝐿𝐿𝑚𝑚�𝑦𝑦, 𝑓𝑓(𝑥𝑥)� for 𝑚𝑚 ∈ {1, 2, … ,𝑀𝑀}         (6) 

After training, the base learners generate predictions that form 
an output matrix P. Each row of P contains the predictions of 
all M base learners for a single instance, such that P is 
structured as (7): 

𝑃𝑃 = �
𝑓𝑓1(𝑥𝑥1) ⋯ 𝑓𝑓𝑀𝑀(𝑥𝑥1)
⋮ ⋱ ⋮

𝑓𝑓1(𝑥𝑥𝑁𝑁) ⋯ 𝑓𝑓𝑀𝑀(𝑥𝑥𝑁𝑁)
�                                                (7) 

In the second level, a new dataset 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = {(𝑃𝑃𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁  is 
constructed, where (8) represents the predictions of the base 
learners for the i-th instance, and 𝑦𝑦𝑖𝑖 remains the original label. 
This new dataset is used to train the meta-learner g(⋅), which 
learns to combine the outputs of the base learners. 

 𝑃𝑃𝑖𝑖 = [𝑓𝑓1(𝑥𝑥𝑖𝑖),𝑓𝑓2(𝑥𝑥𝑖𝑖), …𝑓𝑓𝑀𝑀(𝑥𝑥𝑖𝑖) ]𝑇𝑇                                           (8) 

The meta-learner is trained to minimize a loss function 𝐿𝐿𝑔𝑔′ 
formulated as (9). 

𝑔𝑔 = argmin𝑔𝑔∈𝐺𝐺𝐿𝐿𝑔𝑔(𝑦𝑦,𝑔𝑔(𝑃𝑃))                                                  (9) 

The meta-learner effectively assigns weights or establishes 
relationships among the base learners' predictions to improve 
overall accuracy. 

3.2.1 K-Nearest Neighbors 

The foundation of the k-nearest neighbor (kNN) technique is 
the idea that objects in the input space with similar properties 
would yield results that are similar. In contrast to conventional 
learning techniques, it merely keeps the dataset in its original 
form without implementing a systematic training procedure. 
kNN finds the dataset's k most similar points while evaluating 
a new data point. The test point is allocated by the algorithm 
to the class that is most prevalent among these neighbors for 
categorization. In regression, the average of their values is 
determined and used as the expected result. 
The output for the test instance is determined by aggregating 
the target score of the k-nearest neighbors. Typically, the 
prediction is the average of these values, and alternatively, in 
weighted kNN, closer neighbors are given higher importance, 
using weights inversely proportional to their distances: 
𝑦𝑦� = ∑ 𝑤𝑤𝑖𝑖.𝑦𝑦𝑖𝑖𝑖𝑖∈𝑁𝑁

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈𝑁𝑁
 ,    where  𝑤𝑤𝑖𝑖 = 1

𝑑𝑑(𝑥𝑥,𝑥𝑥𝑖𝑖)
 . 

3.2.2 Extreme Gradient Boosting 

A gradient boosting framework for decision tree construction 
with excellent scalability is called Extreme Gradient Boosting 
(XGB). XGB iteratively creates an additive model of the target 
function by minimizing the loss function 𝐿𝐿𝑥𝑥𝑥𝑥𝑥𝑥 = 
∑ 𝐿𝐿�𝑦𝑦𝑖𝑖 ,𝐹𝐹(𝑥𝑥𝑖𝑖)� +  ∑  𝛺𝛺(ℎ𝑚𝑚)𝑀𝑀

𝑚𝑚=1
𝑛𝑛
𝑖𝑖=1 , just like gradient boosting 

does. To control tree complexity, XGB uses a modified version 
of the loss function, Ω(h) = γT +12 λ‖W‖2 , and only uses 
decision trees as its base classifier.  

3.2.3 Random Forest 

An ensemble learning technique called Random Forest 
Regression (RFR) builds several decision trees using arbitrary 
selections of the data and attributes. The average of all the 
trees' predictions is the final prediction for regression 
problems. Given a dataset 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , T bootstrap 
samples 𝐷𝐷𝑡𝑡are drawn with replacement. Each tree t is trained 
on 𝐷𝐷𝑡𝑡using a random subset of features at each split. The 
prediction from tree t is: 𝑦𝑦�(𝑡𝑡) = 1

|𝐿𝐿𝑡𝑡|
∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝐿𝐿𝑡𝑡 , where 𝐿𝐿𝑡𝑡  

represents the data points in the leaf node of tree t. The final 
prediction for a test point x is the average of all tree predictions 
as 𝑦𝑦� = 1

𝑇𝑇
∑ 𝑦𝑦�(𝑡𝑡)𝑇𝑇
𝑡𝑡=1 . This averaging reduces variance and 

overfitting, providing a more stable and accurate regression 
model.  



3.2.4 Decision Tree 

A Decision Tree (DT), which is used to make decisions or 
predictions, looks like a flowchart. It consists of nodes that 
symbolize choices or attribute tests, branches that display the 
outcomes of these choices, and leaf nodes that show forecasts 
or final results. Every internal node denotes an attribute test, 
every branch displays the test's outcome, and every leaf node 
represents a continuous value or a class label. 
A DT splits the data recursively to minimize the variance in 
each partition. Given a dataset D, the algorithm selects splits 
based on minimizing the variance within the resulting subsets. 
The variance at a node is: 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷) = 1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1 , where 

𝑦𝑦� is the mean target value in the dataset. For each split, the goal 
is to minimize the weighted sum of variances in the left and 
right subsets as 𝑉𝑉𝑉𝑉𝑉𝑉split(𝐷𝐷) = |𝐷𝐷𝐿𝐿|

|𝐷𝐷|
 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝐿𝐿) + |𝐷𝐷𝑅𝑅|

|𝐷𝐷|
 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑅𝑅), 

where 𝐷𝐷𝐿𝐿 and 𝐷𝐷𝑅𝑅  are the left and right subsets. Prediction for 
a test point is the mean target value in the leaf node: 
𝑦𝑦�(𝑥𝑥test) = 1

�𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . 

3.3 Bayesian Hyperparameter Tuning 

Bayesian optimization is a powerful approach for tackling 
problems where determining the extrema of a function is 
computationally intensive. It is particularly useful for 
optimizing functions that lack a closed-form representation, 
are costly to compute, have derivatives that are challenging to 
evaluate, or are non-convex in nature. In contrast to grid or 
random search, which aimlessly search the parameter space, 
Bayesian optimization takes into account past data and 
iteratively chooses hyperparameter combinations that are most 
likely to enhance the objective function (J. Wu et al., 2019). 
The process of Bayesian hyperparameter tuning involve three 
main steps as following. 

3.3.1 Surrogate Model 

A surrogate model is used in Bayesian optimization to 
approximate the objective function f(x), which assesses a 
model's performance given a collection of hyperparameters x. 
By serving as a stand-in for the real objective function and 
being computationally efficient, this surrogate model allows 
for fewer costly evaluations. A Tree-structured Parzen 
Estimator (TPE) is used as the surrogate model in the 
optimization process. The relationship between the objective 
function f(x) and hyperparameters x is roughly represented by 
the TPE. The core idea behind TPE is to estimate two separate 
probability distributions: 
𝑝𝑝( 𝑥𝑥 ∣∣ y ≤ 𝑦𝑦∗ ): The hyperparameter distribution, where the 
objective function value y is less than or equal to a threshold 
value 𝑦𝑦∗. 
𝑝𝑝( 𝑥𝑥 ∣∣ y > 𝑦𝑦∗ ): The hyperparameter distribution where the 
objective function value y exceeds the threshold 𝑦𝑦∗. 
Here, x indicates the hyperparameter vector, and y is the 
objective function value associated with a given set of 
hyperparameters. 

3.3.2 Acquisition Function 

Which combination of hyperparameters should be examined 
next is decided by the acquisition function. It seeks to strike a 
balance between exploitation and discovery. The Upper 

Confidence Bound (UCB) or Expected Improvement (EI) is a 
popular acquisition function, defined as (10): 

𝛼𝛼(𝑥𝑥) =
𝑝𝑝( 𝑥𝑥 ∣∣ y ≤ 𝑦𝑦∗ )
𝑝𝑝( 𝑥𝑥 ∣∣ y > 𝑦𝑦∗ )                                                            (10) 

This function will prefer areas of the hyperparameter space 
where the model predicts lower objective values (better 
performance) while exploring regions with high uncertainty. 

3.3.3 Irritation and Optimization 

In this step, the objective function is evaluated for a given 
hyperparameter set 𝑥𝑥next, and the results are used to update the 
surrogate model. The goal is to minimize the objective 
function y(x) as 𝑦𝑦next = 𝑓𝑓(𝑥𝑥next). Iteratively, the process is 
carried out until convergence or the maximum amount of trials 
is reached after the surrogate model is modified to incorporate 
the new information based on the evaluation. 

4. IMPLEMENTATION AND RESULTS 

This approach aims to increase the accuracy and stability of 
prediction models for efficiency assessment while creating a 
reliable and consistent process for choosing suppliers. A 
central aspect of this method is the integration of the VRS 
DEA model with four base learners (KNN, Bagging, SVM, 
GB), four stacking meta-learners (RF, XGB, KNN, and DT) 
and the application of Bayesian hyperparameter tuning. By 
employing these techniques, the method seeks to significantly 
enhance model accuracy, optimize predictive performance, 
and ensure consistent and reliable efficiency evaluations. 

 
Figure 1. Workflow of methodology 

 

 

We begin by preprocessing the data before building the 
models. Next, we develop a VRS DEA model to evaluate 
efficiency. Following this, each meta-learner algorithm is 
applied using default settings, without hyperparameter tuning, 
to establish baseline performance. To achieve better results, 
we optimize the parameters using Bayesian hyperparameter 
optimization, which effectively enhances model accuracy and 
stability. The models are then rebuilt with these optimized 
settings for final evaluation. Finally, the outputs from the base 
estimators are used as inputs for the stacking models, which 
further enhance overall prediction accuracy. The results 
demonstrate that hyperparameter tuning, coupled with 
Bayesian optimization, significantly improves the robustness 
and performance of the proposed methodology, as shown in 
the workflow in Figure 1. 

4.1 Dataset 

We implemented the model on a dataset of evaluated suppliers, 
containing 35 suppliers and 12 attributes, is curated to evaluate 



and select suppliers based on criteria essential for maintaining 
high supply chain standards. Feature selection is key in DEA 
as it directly influences the efficiency scores of DMUs. 
Choosing appropriate inputs and outputs ensures meaningful 
comparisons and reliable results, depending on the analysis 
focus, such as cost-efficiency, resilience, or environmental 
effects. Metrics are normalized (0-10) for accurate 
comparison. Based on feature correlations, company priorities, 
and expert input, the selected DEA features include three 
inputs (employees, price, delivery time) and four outputs 
(quality, serviceability, reputation, flexibility). 80% of the data 
was used for training, and the remaining 20% was set aside for 
validation. 
4.2 Evaluation Metrics 

Evaluating machine learning (ML) models involves 
quantitatively measuring their performance using specific 
criteria and mathematical formulations. These criteria are 
essential for understanding how well a model predicts or 
categorizes data. The average prediction errors for regression 
models are frequently measured using Mean Absolute Error 
(MAE), Mean Squared Error (MSE), and Root Mean Squared 
Error (RMSE). MAE provides the average absolute difference 
between observed actual results and predictions of the model, 
calculated as: MAE = 1

𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1 . 

MSE quantifies the average of the squares of the errors, or the 
average squared difference between the estimated values and 
the actual value, calculated as: MSE = 1

𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 . 

RMSE is a common used metric to assess the accuracy of a 

predictive model, calculated as: RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  . 

The coefficient of determination, or R-squared (R²), is the ratio 
of the dependent variable's variance that can be predicted from 
the independent variables, calculated as: 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

𝑛𝑛
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In the metrics mentioned above, n represents the number of 
observations, 𝑦𝑦𝑖𝑖 represents the actual value for the 𝑖𝑖 -th 
observation, 𝑦𝑦�𝑖𝑖 represents the predicted value for the 𝑖𝑖 -th 
observation, and 𝑦𝑦�  represents the observed data mean. 

4.3 Results and Analysis 

In the context of the input oriented VRS model, a score of 1 
indicates that the supplier is on the frontier of the production 
potential set and is deemed fully efficient, meaning they are 
maximizing output from a given set of.  

 
Figure 2. VSR DEA efficiency scores of suppliers 

Table 1. Stacking Meta Learner Evaluation  
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KNN 0.76 0.010 0.10 0.10 0.91 0.004 0.06 0.05 

XGB 0.56 0.019 0.14 0.13 0.92 0.003 0.06 0.05 

RF 0.62 0.016 0.13 0.12 0.91 0.004 0.06 0.06 

DT 0.53 0.020 0.14 0.12 0.89 0.004 0.07 0.06 
 

Scores below 1 suggest inefficiency or lower efficiency, where 
the supplier could potentially increase output or reduce inputs 
without detriment to production levels. In the Figure 2, the 
efficiency scores of suppliers are demonstrated. The efficiency 
estimates obtained from the DEA model have been used as 
output dataset for the ML models which are then trained to 
predict the efficiency of the DMUs given their characteristics 
or input-output profiles. 
 

 
Figure 3. Improvements in metrics by Bayesian optimization 

 

According to Table 1, and the heatmap in Figure 3 (showing 
the improvement across models), the results indicate that 
Bayesian hyperparameter optimization substantially improves 
the performance of all meta-learners considered in this study. 
Improved R² and lower errors enhance the accuracy of 
efficiency predictions, leading to better supplier differentiation 
and more informed selection decisions. The optimization 
process led to improvements across all metrics, with XGB 
showing the most significant increase in performance. 
Specifically, XGB saw a notable improvement in R2, rising 
from 0.56 to 0.92, a 0.36 increase, demonstrating the greatest 
enhancement in model accuracy. Additionally, XGB achieved 
the best results in terms of R2 (0.92), MSE (0.003), RMSE 
(0.06), and MAE (0.05), highlighting its superior performance 
after Bayesian optimization. Following XGB, DT exhibited 
the second most significant improvement, with R2 increasing 
from 0.53 to 0.89, a 0.36 increase. Although its performance 
after tuning (R2=0.89) was slightly lower than the other meta-
learners, DT had a major boost in prediction accuracy. 

After DT, RF showed a 0.29 improvement in results. Both RF 
and kNN achieved an R2 of 0.91, indicating comparable 
performance in terms of explained variance. However, when 
comparing the models based on error metrics (MSE, RMSE 
and MAE), RF showed slightly higher values (MSE=0.004, 
RMSE = 0.07, MAE = 0.06) compared to kNN (MSE=0.004, 
RMSE = 0.06, MAE = 0.05). This suggests that kNN 
performed slightly better than RF in terms of prediction 
accuracy, despite both models exhibiting the same R2 value. 



Thus, kNN ranks as the second-best meta-learner in terms of 
overall performance and error metrics. XGBoost outperformed 
other models due to its robustness to noisy data, effective 
handling of outliers, built-in regularization, and scalability, 
making it less sensitive to human bias in data entry. 

5. CONCLUSION AND FUTURE STUDIES 
The study demonstrates the effectiveness of utilizing VRS 
DEA efficiency estimates as input for machine learning 
models to predict the efficiency of DMUs based on their 
characteristics. The integration of Bayesian hyperparameter 
optimization significantly enhanced the predictive 
performance of all meta-learners. The best-performing model 
in this study was XGB, which had the greatest improvement 
among them and continuously outperformed other models 
across all evaluation metrics. However, one of the key 
challenges encountered was dealing with noisy data, primarily 
caused by human bias in filling out information and providing 
data. These inconsistencies introduced variability that required 
careful preprocessing to maintain the reliability of the results.  

For future research exploration of multi-stage DEA models to 
capture the interdependence of processes and provide a more 
detailed efficiency assessment is recommend. Integrating 
feature selection algorithms into the framework could enhance 
model interpretability and reduce computational complexity 
by identifying the most influential variables. Comparing the 
hybrid DEA-Stacking-Bayesian model to alternative decision-
making methods would also be valuable to highlight its 
advantages and limitations in various scenarios. 

ACKNOWLEDGMENT 
This work was supported in part by project SERICS 
(PE00000014) under the NRRP MUR program funded by the 
EU - NGEU. Views and opinions expressed are however those 
of the authors only and do not necessarily reflect those of the 
European Union or the Italian MUR. Neither the European 
Union nor the Italian MUR can be held responsible for them. 

REFERENCES 
Abdulla, A., Baryannis, G., & Badi, I. (2019). Weighting the 

Key Features Affecting Supplier Selection using 
Machine Learning Techniques. MATHEMATICS & 
COMPUTER SCIENCE. 
https://doi.org/10.20944/preprints201912.0154.v1 

Abdulla, A., Baryannis, G., & Badi, I. (2023). An integrated 
machine learning and MARCOS method for supplier 
evaluation and selection. Decision Analytics Journal, 9, 
100342. https://doi.org/10.1016/j.dajour.2023.100342 

Boubaker, S., Le, T. D. Q., Ngo, T., & Manita, R. (2023). 
Predicting the performance of MSMEs: A hybrid DEA-
machine learning approach. Annals of Operations 
Research. https://doi.org/10.1007/s10479-023-05230-8 

Davoudabadi, R., Mousavi, S. M., & Sharifi, E. (2020). An 
integrated weighting and ranking model based on 
entropy, DEA and PCA considering two aggregation 

approaches for resilient supplier selection problem. 
Journal of Computational Science, 40, 101074. 
https://doi.org/10.1016/j.jocs.2019.101074 

Fotova Čiković, K., Martinčević, I., & Lozić, J. (2022). 
Application of Data Envelopment Analysis (DEA) in the 
Selection of Sustainable Suppliers: A Review and 
Bibliometric Analysis. Sustainability, 14(11), 6672. 
https://doi.org/10.3390/su14116672 

Islam, S., Amin, S. H., & Wardley, L. J. (2024). A supplier 
selection & order allocation planning framework by 
integrating deep learning, principal component analysis, 
and optimization techniques. Expert Systems with 
Applications, 235, 121121. 
https://doi.org/10.1016/j.eswa.2023.121121 

Khan, W., Islam, Md. S., Ullah Ibne Hossain, N., & Fazio, S. 
(2024). Measuring economic resilience of manufacturing 
organization leveraging integrated data envelopment 
analysis (DEA)-machine learning approach. 
International Journal of Management Science and 
Engineering Management, 19(3), 228–238. 
https://doi.org/10.1080/17509653.2023.2267505 

Moslemi, S., Mirzazadeh, A., Weber, G.-W., & Sobhanallahi, 
M. A. (2022). Integration of neural network and AP-
NDEA model for performance evaluation of sustainable 
pharmaceutical supply chain. OPSEARCH, 59(3), 1116–
1157. https://doi.org/10.1007/s12597-021-00561-1 

Ni, D., Xiao, Z., & Lim, M. K. (2020). A systematic review of 
the research trends of machine learning in supply chain 
management. International Journal of Machine 
Learning and Cybernetics, 11(7), 1463–1482. 
https://doi.org/10.1007/s13042-019-01050-0 

Pradhan, A. K., & Kamble, A. A. (2015). Efficiency 
Measurement and Benchmarking: An Application of 
Data Envelopment Analysis to Select Multi Brand Retail 
Firms in India. Journal of Commerce and Management 
Thought, 6(2), 258. https://doi.org/10.5958/0976-
478X.2015.00016.6 

Tavassoli, M., & Ghandehari, M. (2023). Classification and 
forecasting of sustainable-resilience suppliers via 
developing a novel fuzzy MIP model and DEA in the 
presence of zero data. Operations Management 
Research. https://doi.org/10.1007/s12063-023-00401-z 

Vörösmarty, G., & Dobos, I. (2020). A literature review of 
sustainable supplier evaluation with Data Envelopment 
Analysis. Journal of Cleaner Production, 264, 121672. 
https://doi.org/10.1016/j.jclepro.2020.121672 

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., & Deng, 
S.-H. (2019). Hyperparameter Optimization for Machine 
Learning Models Based on Bayesian Optimization. 

Zhou, Z.-H. (2012). Ensemble Methods. Machine Learning. 

 


