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Abstract—The power produced by a solar panel depends
on several parameters. In order to optimize the production,
the ability to operate in the Maximum Power Point (MPP)
condition is requested. The ability to identify and reach the
MPP condition is therefore critical to an efficient conversion
of the photovoltaic energy. In this paper, several computational
intelligence paradigms are challenged in the task of identifying
the MPP power from the working condition directly measurable
from the solar panel, such as the voltage, V , the current, I , and
the temperature, T , of the panel.

I. INTRODUCTION

The renewable energy industry has developed significantly
in recent years. In this context, the solar energy is one of
the more accessible and cheaper energy resources. For this
reason, the industry working in this scenario has seen a rapid
expansion in the last ten years with the result that now the
electricity produced by this technology is shared with the grid.
Moreover, in more recent years, the problems associated with
the production of electricity are becoming more important. The
more rational use of energy resources, and also the production
from renewable sources, is the strategies currently adopted
worldwide in order to achieve both a reducing emissions of
pollutants and a lower environmental impact.

The interest in the production by means of photovoltaic
(PV) systems is reasonable in country, such as Italy or in
Mediterranean area, where sunny days are particularly frequent
and with high intensity. Further consideration that justify the
large use of this plants is that this system can be realized in
small size, can be easily connected to the national grid in order
to obtain a network of distributed generation (grid), or used for
combined high efficiency, local level of thermal and electrical
energy. While the short term forecast of the produced power is
useful in order to manage the different energy sources, for this
type of plant the ability to obtain accurate prediction [1][2] and
even to program the maintenance of the plant without the needs

of expensive equipment [3][4] is of paramount importance.
In this scenario the prediction of the Maximum Power Point

(MPP) is of particular importance. The MPP is the maximum
point of the Voltage-Power graph. The knowledge, or even bet-
ter, the ability to predict its value using indirect measurements
is of paramount importance. In this paper a methodology
for performing the MPP prediction from measures of some
features of the working conditions of a panel will be presented.
In particular, we will consider some features that are extremely
simple to acquire, and prediction will be realized with the soft-
computing techniques. In this contest, the considered variables
are: the voltage, the current and the temperature. It should
be emphasized that, unlike what has been shown in previous
papers, in the present work we propose to perform the MPP
prediction using only electrical quantities directly measurable
at the terminal of the panel or by a sensor installed in the
proximity of the panel itself. It will be demonstrated that
measurement much more complicated and expensive, such as
the measurement of the solar radiation, can be replaced by
information much more accessible [5].

In Section II, the models used for prediction will be intro-
duced. In Section III, the experiments run will be described
and the results obtained will be reported and discussed in
Section IV. The conclusion and directions for future works
will be reported in Section V.

II. THE PREDICTION MODELS

In order to be able to predict the MPP from the voltage-
current-temperature state, a mapping between the state space
and the MPP space have to be defined. In the present work,
several computational intelligence paradigms have been chal-
lenged in this task. Namely, the Fuzzy C-means clustering
(FCM) and the Radial Basis Functions network (RBF) [6] will
be used to this aim. For the sake of comparison, the k-Nearest



Neighbors (k-NN) predictor [7] will be used as baseline for
the performance of the predictors.

The use of computational intelligence paradigms has the
advantage that no model of the input-output mapping have
to be provided in advance, since these paradigms can learn
it directly from a finite set of input-output pairs (possibly
affected by error), called training set.

A. Fuzzy C-means Clustering

Clustering is an unsupervised process to partition a dataset
in order to minimize the dissimilarity inside the partitions
(clusters) subject to some constraints, such as a given number
of partitions. Depending on the application, a suitable similar-
ity measure can be devised. The clusters can be used to give
a compact description of the original dataset, by considering
the centroid of each clusters. This representation can be also
exploited to obtain an input-output relationship: the centroids
represent the input prototypes, which can be associated to the
average of the output values corresponding to the elements of
the cluster. This representation can then be used to compute
the output corresponding to an input point as in the k-NN
predictor.

Fuzzy clustering is a generalization of the clustering where
each input point can belong to more than one clusters, with
different degrees of membership. Among the fuzzy clustering
techniques, the Fuzzy C-means (FCM) [8][9] is one of the
most used. It is an iterative clustering algorithm in which
at every step each point is assigned to each cluster (i.e.,
associated to the corresponding centroid) with a membership
degree that is inversely proportional to the distance from the
cluster’s centroid. Then, the centroid positions are updated
as the average of the points belonging to the cluster; the
contribution of each point to the average is weighted with
its membership degree. The training can be stopped when
the position of the centroids does not changes or using other
criteria (e.g., the maximum number of iterations). At the end
of the training, the centroids can be used as for the traditional
clustering.

B. Radial Basis Functions Networks

Neural networks constitutes a variegated class of models
for classification and function approximation [10][11]. Among
these, the Radial Basis Function (RBF) networks are very
used, because of their simplicity and approximation power.
In fact, they enjoy the universal approximation property (i.e.,
for every continuous function, exists an RBF network that
approximates the considered function arbitrarily well). Al-
though several basis functions guarantees this property, the
RBF model described in (1), with Gaussian basis functions,
is generally used. The mapping can be expressed as a linear
combination of basis functions:

f(x) =

L∑
i=1

βiG(x; µi, σi) + b (1)

where L is the number of basis functions, G is the Gaussians
function, µi, σi, and βi are respectively the center, the width

and the coefficient of the i-th Gaussian, and b is an optional
bias.

The learning algorithm for a RBF defines a procedure that
allow to obtain the parameters (L, {µi}, {σi}, {βi}, b) from
the training set. In particular, several learning algorithms has
been provided in literature, with different characteristics (e.g.,
hybrid learning [6], incremental learning [12], global opti-
mization [13]) and several extensions (e.g., Hierarchical RBF
[14][15], Extreme Learning Machine [16]). Among them, the
hybrid learning allows to face the estimate of the parameters
in different subsequent steps, reducing the complexity of the
optimization. Given the training set {(xj , yj) |xj ∈ RD, yj ∈
R, j = 1, . . . , N}, firstly the centers of the Gaussians, {µi},
are estimated: this is usually operated through a clustering
algorithm, since the number of the Gaussians, L can be derived
by the given computational budget, and {µi} is a set of RD

points and can be obtained clustering {xj}. Since the width
of the Gaussians determines their influence region, for each
Gaussian it can be set in order to cover at least the region
of the corresponding cluster and allowing a given degree of
overlapping with the neighboring units. Once these parameters
have been set, the weights {βi} can be computed as the
solution of a linear system. In fact, the output of the RBF
network (1) give rise to N equations that can be expressed in
matricial notation as:

Hβ = Ŷ (2)

where H is a N × L matrix such that Hj,i = G(xj ;µi, σi),
β = [β1 · · · βL]T , and Ŷ = [ŷ1 · · · ŷN ]T . Given the training
dataset and the hidden neurons parameters, the weights β are
the only unknown of the linear system described in (2), and,
under mild conditions, they can be computed as:

β̂ = (HTG)−1HT Ŷ = H†Ŷ (3)

where H† = (HTH)−1HT denotes the Moore-Penrose
pseudo-inverse of the matrix H .

C. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [7]. It is used to predict the value of
a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For
an unknown point, x, the value of f(x) is estimated from
the value of its k nearest neighbors, for a given k, using
a suitable voting scheme or an average. The most simple
scheme, often used in classification, estimates f(x) as the most
common output value among its neighbors, while in function
approximation the average output value is commonly used.
More complex schemes, such as the use of weighted averaging,
or a sophisticated norm for computing the distance can be used
as well.

III. EXPERIMENTAL ACTIVITY

The experiments have been carried out on a Linux machine
equipped with an Intel Core i7 vPro CPU and 16 GiB RAM.
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Fig. 1. A typical Voltage vs. Current curve for a solar panel. The sampled
data are reported as red points, while the solid line is the curve resulting by
filtering the data with a lowpass Gaussian filter.

The simulations has been implemented and run on Matlab
2012a.

A. Dataset preprocessing

The solar panel dataset includes a set of measured voltage-
current (I-V ) characteristic curves (the produced power de-
pends also on the applied load), the working temperature
and solar radiation which cover most of the possible working
conditions of the photovoltaic panel. The rated parameters of
the panel are the following: the maximum power, PMAX =
5 W; the voltage and the current at which maximum power
is produced, VPM = 17.5 V and IPM = 0.285 A; the open
circuit voltage, VOC = 21.3 V; and the short circuit current,
ISC = 0.31 A. In order to explore the behavior of the panel
under different working condition, a measurement campaign
has been performed and starting from the I-V curves the
corresponding MPP values have been estimated.

A typical I-V curve is described in Fig. 1, where the
sampled data are reported as red points. It has been sampled
by increasing the electrical load connected to the panel from
to 0 (short circuit condition) to (virtually) infinite (open circuit
condition). The sampling of each curve has been repeated
every 69 seconds. Since the measurement noise, the data
belonging to each curve sampling have been filtered through
convolution with a Gaussian filter. The resulting I-V data have
been used to compute the power provided for each sample
and the MPP of the curve (as reported in Fig. 2). Each of the
filtered data, joined with the temperature of the panel and the
MPP of the corresponding curve constitutes a sample of the
dataset to be used for the experiments.

The data has been collected from May to June 2013 for a
total of 15862 curves sampled and more than 82 millions of
samples.

The input domain of the resulting dataset is reported in
Fig. 3, where the space of the states is represented. Since it is
a 3D point cloud, several view have been used. In particular,
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Fig. 2. A typical Power vs. Voltage curve for a solar panel. The power
provided by a solar panel depends also on the electrical load applied to the
panel. The working condition which allows to provide the maximum power is
called Maximum Power Point (MPP) and is reported in the figure as a circle.

in panels (a)–(c), the data are projected on a bidimensional
subdomain, while in panel (d) the three-dimensional space
occupied by the samples is rendered as the surface that
encloses the large part of the samples. It can be noticed that
the samples are not uniformly distributed in the input domain,
since some regions are densely populated while others are
empty. Hence, some correlation between the input variables
can be present and can be exploited. The two views in panels
(e) and (f), where the value of the MPP is depicted by the
color, show that the function under study is smooth in almost
all the input space, but in the region close to the open circuit
condition.

Since the size of the dataset is too large, we subsampled it
to obtain a representative training set and randomly distribute
the remaining examples in the validation and in the testing
datasets. The training set is used to set the parameters of the
approximation model. The performance of the trained models
on this dataset are not meaningful to assess the ability of
generalization (a 1-NN always achieves zero error on the
training dataset). For this task, a set of data never used in
the training process have to be used. Besides, since we want
to compare several models, another dataset is needed. So, we
use the validation dataset to choose the best model, and the
testing set to assess the performance.

We experimented several subsampling step to assess the
performance of the predictors on different level of knowledge
of the problem. In particular, we set the sampling step to the
following values:

s = {10000, 5000, 1000} (4)

Depending on the size of the training set, the size of the
validation and the testing sets change. In Table I the dataset
cardinality resulting by the the subsampling step in (4) are
reported. It can be noticed that while the size of the training
set changes considerably, in the experimented set-up the size of



(a) (b) (c)

(d) (e) (f)

Fig. 3. The space of the states of a solar panel. In panels (a)-(c), the data are projected onto the I-T , V -T , and I-V subspaces, respectively. Here the MPP
value is depicted as a color. In panel (d), the surface encloses most of the samples and is used to visualize the region effectively occupied by the data. The
two views in panels (e) and (f), where the value of the MPP is depicted by the color, allow to appreciate the smoothness of the function under study in almost
all the input space, but in the region close to the open circuit condition (i.e., where the voltage is high and the current is low).

TABLE I
CARDINALITY OF THE DATASETS USED IN THE EXPERIMENTS

subsampling step, s training validation testing
10 000 8 268 41 333 235 41 333 235

5 000 16 535 41 329 102 41 329 101
1 000 82 675 41 296 032 41 296 031

the validation and testing sets remains substantially the same.
Since RBF, FCM, and k-NN require to evaluate distances in

the input domain, the input data have been normalized using
the standard deviation of each variable as normalizing factor.
The normalization has been carried out using only the training
data.

B. Performance Evaluation

For the evaluation of the performance, the prediction error
has been measured by means of the average of the absolute
error achieved on the testing set data:

Err(f) = E(|y − f(x)|) (5)

where f(x) is the value predicted by the model for the sample
(x, y), where x is a point in the I × V × T space, while y is
the corresponding measured MPP.

In order to have a figure of merit that provides the accuracy
with respect to the order of the measured value, we choose the
average relative error, weighted with the relative importance

of each measure:

Rel(f) =
∑
i

|yi|∑
j |yj |

|yi − f(xi)|
|yi|

=

∑
i |yi − f(xi)|∑

j |yj |
(6)

C. Prediction through FCM models
Since the starting position of the centroids is arbitrary and is

usually chosen randomly, to some extent the FCM algorithm
is subjected to randomness. However, for smooth function and
for a small number of centroid with respect to the number of
points, the effect of the randomness is negligible.

The behavior of the FCM predictor is ruled by the number
of training points and the number of clusters, L. The former
depends by the subsampling step, s, while L has been arbi-
trarily chosen in a wide range of values. In particular
• s, the subsampling step: {1 000, 5 000, 10 000};
• L, the number of clusters:

{100, 200, 500, 1 000, 2 000, 5 000}.
The Euclidean norm has been used to compute the distance in
the input space. For each value of s, the FCM clustering has
been carried out and the average output of resulting clusters
has been associated to the corresponding centroid. The output
of the FCM predictor has been defined as the output of the
cluster which the input point belongs to. For all the training
set-ups the maximum number of iterations has been set to 100.

D. Prediction through RBF models
We choose to train the RBF predictors using the hybrid

learning technique. In order to improve the comparison be-



TABLE II
PERFORMANCE

Model Err (std) [W] Rel
FCM 0.133 (0.209) 0.158
RBF 0.0155 (0.0429) 0.0230
k-NN 0.0323 (0.0737) 0.0438

tween the computational intelligence techniques, the centroids
resulting from the FCM training sessions have been used as
the position of the center of the units, {µi}, and width of
each Gaussian, σi has been set as proportional to the average
distance of the points in the cluster from the centroid, µi. Once
these parameters has been chosen, the weights, {βi} can be
computed as the solution of a linear system.

The hyperparameters challenged are hence:
• s, the subsampling step: {1 000, 5 000, 10 000};
• L, the number of units:

{100, 200, 500, 1 000, 2 000, 5 000};
• r, the width proportionality factor: {1, 2, 3}.

E. Prediction through k-NN Models

The performance of a k-NN predictor depends on several
hyperparameters. Since it does not requires other training
process than just storing the training values, all the hyperpa-
rameters of a k-NN predictor operate in the prediction stage.
In particular, the behavior of the k-NN predictor is ruled by:
• k: the number of neighbors;
• the weighting scheme: the law to assign the weights for

the weighted averaging prediction;
• the norm of the input space.

The following values for the hyperparameter k have been
challenged:

k ∈ [1, 15] (7)

Three weighting schemes have been tried: equal weight,
weight proportional to the inverse of the neighborhood rank,
and weight proportional to the inverse of the distance. Only
the Euclidean norm has been used to compute the distance in
the input space. All the above described training set-ups have
been experimented with the three dataset configurations char-
acterized by s, the subsampling step: {1 000, 5 000, 10 000}.

IV. RESULTS AND DISCUSSION

The test error of the challenged models are reported in Table
II from which can be noted that the best performing model is
the RBF network, both in term of average absolute error, Err,
and relative weighted error, Rel.

In particular, k-NN and RBF outperform the FCM predictor,
which achieve the best performance of 0.133 W (correspond-
ing to a relative error of 15.8%) using L = 5000 centroids
on the smallest set (s = 10 000). The best performing k-
NN makes use of of the largest set, s = 1000, and achieve
the absolute error of 0.0323 W (Rel = 4.38%) combining the
output of k = 10 neighbors using the inverted rank weighting
scheme.

The RBF model that achieved the lowest average validation
error used L = 2000 Gaussians with a width proportionality
r = 4. Using the largest set as training set (s = 1000), it
achieved an error of 0.0155 W and a relative error of 2.30%.

The comparison between the error achieved by FCM and k-
NN shows that, despite the similarity between the operation of
the two paradigms, the k-NN can exploit better the knowledge
of the training set. However, the better performance of the
k-NN is obtained at a higher computational cost. In fact,
while the FCM makes use of only L = 5000 clusters, the
k-NN stores 82 675 training points. This fact affects both the
computational time for obtaining the output (both the models
require to find the nearest centroids or training points) and the
memory requirements to store the model parameters, although
the computational costs can be mitigated by using a suitable
data structure to store the units of the models. Besides, the
computational costs for the FCM training are obviously higher
than that for the k-NN, which need only to store the data.
Since the best FCM model uses the smallest training set,
the limitation on the training iterations can be questioned.
Moreover, as the number of clusters increases. also the initial
position of the centroids can affects the resulting clustering.
However, when both the number of training points and the
number of clusters increase, the computational time required
to allow a slow convergence becomes unfeasible.

The use of the FCM clustering as processing step of the
hybrid learning for the RBF models allows to compare directly
the performance of the models. This perspective can also be
reversed: the RBF can be considered a post-processing of
the FCM clustering in order to improve its performance. In
this sense, the RBF apparently improves the achievements of
the FCM: results reported in Table II clearly shows that the
errors are one order of magnitude smaller for the RBF and
considering also the standard deviation of the absolute error,
Err, it is evident that the distributions of the error are different.
Moreover, the RBF makes use of only 2 000 units vs. the 5 000
of FCM. Similar considerations apply also to the k-NN and
RBF comparison.

Although the RBF approximator achieves a relative
weighted error 2.55%, the distribution of this error in not
uniform in the I-V -T space. In Fig. 5, the distribution of
the current I is studied in two cases: the testing cases are
partitioned depending on their relative error, computed as the
ratio between the error achieved and the measured value. The
threshold of 100% has been arbitrarily chosen for distinguish-
ing the cases where the error is small from those where the
error is considered large. For this two sets, the histogram of
the corresponding values of I are depicted in panels (a) and (b)
respectively. Two considerations can be done: first, the number
of occurrences of the large error is about 100 times smaller
than the small error cases; second, the large errors occur when
the current is very small (open circuit condition).

V. CONCLUSIONS

In this paper, some computational intelligence paradigms
have been challenged in the task of modelling the electrical
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Fig. 4. In panel (a), the relative weighted error with respect to the number of units of the FCM and RBF approximators is reported. Panels (b) and (c),
instead, report the relative weighted error achieved by the RBF approximator with respect to the width factor and the subsampling step, respectively. The
performance achieved by the different set-ups are reported using the circle for the RBF models and the cross for the FCM. The lines traces the performance
of the model when the other parameters of the training are set to their best value. Hence, in panel (a) the continuous line joins the performance of the RBF
approximator when r = 4 and s = 1000, while the dashed line describes the performance of the FCM approximator as a function of the number of clusters
when s = 10 000. Similarly, in panel (b) the continuous line describes the RBF performance for s = 1000 and L = 5000, while in panel (c) the continuous
line refers to the RBF approximators when r = 4 and L = 2000, and the dashed line refers to the FCM approximator when L = 5000.

(a) (b)

Fig. 5. Distribution of the current, I , with respect to the relative error for RBF approximator.

behavior of a solar panel.
Among the challenged paradigms (FCM, RBF, and k-NN)

the RBF model achieve the lowest error, which is 1.72 and 6.12
times smaller than the error of k-NN and FCM respectively.

The analysis of the condition under which the large errors
occur reveals that they are limited to low current regions of
the input space. Although the low current condition can be
scarcely appealing for practical uses, it can be a challenge
from the theoretical point of view. In order to tackle this
problem, a more advanced learning strategy (e.g., in [14]) can
help to improve the accuracy, while preserving the simplicity
of the approach to provide good MPP estimate using basic
measurements.
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