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Abstract—The modeling of solar radiation for forecasting its
availability is a key tool for managing photovoltaic (PV) plants
and, hence, is of primary importance for energy production in
a smart grid scenario. However, the variability of the weather
phenomena is an unavoidable obstacle in the prediction of the
energy produced by the solar radiation conversion. The use of
the data collected in the past can be useful to capture the daily
and seasonal variability, while measurement of the recent past
can be exploited to provide a short term prediction. It is well
known that a good measurement of the solar radiation requires
not only a high class radiometer but even a correct management
of the instrument. In order to reduce the cost related to the
management of the monitoring apparatus, a solution could be
to evaluate the PV plant performance using data collected by
public weather station installed near the plant.

In this paper, two computational intelligence models are
challenged; two different ground global horizontal radiation
dataset have been used: the first one is based on the data collected
by a public weather station located in a site different to that one
of the plant, the second one, used to validate the results, is based
on data collected by a local station.

I. INTRODUCTION

Nowadays, in order to activate actions related to the respect
of Kyoto Protocol, some energetic scenarios are becoming
strategic and are object of study. The rational use of the
energetic resources, the study of the environmental impact
of pollutant emissions and the exhaustion of non-renewable
resources put the accent on sustainable energy production from
renewable sources. Photovoltaic (PV) systems can be consid-
ered one of the most widespread solutions to the generation
from renewable resources that are able to guarantee a low
environmental impact [1].

Today a large variety of photovoltaic generators, from low
power devices to large power plants, are in operation all over
the world. The most common applications of PV systems are
developed in industrial and domestic contexts. For this reason,
the penetration of photovoltaic sources as distributed grid-
connected power generation systems has increased dramati-

cally in the last decades.
The solar radiation is one of the most available energy

resources and the photovoltaic power conversion is an in-
teresting exploitation of this energy. Despite the practically
unlimited availability, the direct conversion in electric energy
is still characterized by a relatively low efficiency and high
cost. For this reason relevant efforts are performed in the
research fields and in the manufacturing processes in order
to achieve efficiency levels as high as possible. Like every
complex system, the efficiency of a photovoltaic plant results
from the combination of the efficiency of each component and
the bottle neck is the low efficiency of the panel.

In order to guarantee the correct level of efficiency, the
knowledge of solar radiation is mandatory. In fact, its knowl-
edge allows to realize two tasks that are very important in
a smart grid scenario. The first one, is represented by the
capability of the model system to predict the energy production
[2] and, the second one is represented by the capability of the
model system to assess the dependability of the plant [3].

It is well known that a good measurement of the solar
radiation requires not only a high class radiometer but even a
correct management of the instrument. In fact, the radiometer
has to be managed following a correct maintenance policy.
In order to reduce the cost related to the management of
the monitoring apparatus devoted to the acquisition of the
solar radiation, a solution could be to evaluate the PV plant
performance using data collected by public weather station
installed near the plant but in a different location. The use of
these data is attractive because they are often free and certified,
if the station belongs to a network of public bodies.

In this paper a novel approach to condition monitoring
technique has been proposed starting from the evaluation of
data collected by public weather stations. In previous works
[4][5], several models have been challenged in the task of
predicting the global horizontal illuminance, while in the
present work, instead the global horizontal radiation, will be



considered. In particular, a 3-year hourly dataset will be used
to model the time series of the global horizontal radiation.
The prediction operated by the two computational intelligence
models, namely the Support Vector Regression (SVR) and the
Extreme Learning Machine (ELM) will be compared with a
naı̈ve predictor, the persistence model, and a simple predictive
model, the k-Nearest Neighbor (k-NN) model.

II. THE PREDICTION MODELS

A time series is composed of a sequence of observation {xt}
sampled by a sequence of random variables {Xt}. Usually,
the ordering value is related to the time, the observation are
related to a phenomenon that varies with the time, and the
observations are taken in equally spaced instants.

Both the SVR and the ELM paradigms can model an
mapping between an input and an output space, from only
a finite set of input-output pairs (possibly affected by error),
called training set. Time series can be modeled as a mapping
between some previously observed values and the value to be
predicted. For instance, when using a two-dimensional input
space, the training dataset will be composed by triples of
the form (xt−2, xt−1, xt), where x̂t = f(xt−2, xt−1) will
be assumed to approximate xt. The two paradigms uses a
linear combination of basis functions (usually Gaussians) to
modeling the mapping:

f(x) =

L∑
i=1

βiG(x; µi, σi) + b (1)

where L is the number of basis functions, G is the Gaussians
function, µi, σi, and βi are respectively the center, the width
and the coefficient of the i-th Gaussian, and b is an optional
bias. Despite the similarity of their mathematical description,
SVR and ELM differ for the learning algorithm, i.e. for the
procedure that allow to obtain the parameters (L, {µi}, {σi},
{βi}, b) from the training set.

A. Support Vector Regression

Support Vector Machines (SVM) is a powerful method for
classification [6][7] and regression [8]. In the latter domain, the
method is usually named Support Vector Regression (SVR).
In its original formulation, the regression function is obtained
as the linear combination of some samples, called Support
Vectors (SV), but it can be extended to non-linear mapping
through the use of suitable functions called kernels. The
solution to the regression problem is obtained as the mini-
mization of a suitable loss function, which can be chosen such
that the optimization problem results to be convex. The loss
function is ruled by three hyperparameters: the accuracy, ε,
that represents the accepted distance between the training data
and the solution; the trade-off, C, that balance the closeness
of the solution to the training data and the robustness of the
solution; and the width of the Gaussians used as kernels, σ,
which in the basic SVR algorithm are constrained the have
the same width. The convexity of the problem guarantees that
the optimal solution (which identifies the SVs, {µi}, and the
corresponding coefficients, {βi}) is unique.

B. Extreme Learning Machines

Neural networks constitutes a very variegated class of
models for classification and function approximation [9][10].
Among these, the Radial Basis Function (RBF) networks
are very used, because of their simplicity and approximation
power. In fact, they enjoy the universal approximation property
(i.e., for every continuous function, exists an RBF network
that approximates the considered function arbitrarily well).
The Extreme Learning Machine (ELM) is a RBF with a fixed
architecture and randomly assigned hidden nodes parameters
[11][12]. In particular, with the model described in (1), the
parameters {µi} and {σi} are randomly chosen with a given
probability distribution. Given the training set {(xj , yj) |xj ∈
RD, yj ∈ R, j = 1, . . . , N}, the output of the ELM network
(1) give rise to N equations that can be expressed in matricial
notation as:

Hβ = Ŷ (2)

where H is a N × L matrix such that Hj,i = G(xj ;µi, σi),
β = [β1 · · · βL]T , and Ŷ = [ŷ1 · · · ŷN ]T . Given the training
dataset and the hidden neurons parameters, the weights β are
the only unknown of the linear system described in (2), and,
under mild conditions, they can be computed as:

β̂ = (HTG)−1HT Ŷ = H†Ŷ (3)

where H† = (HTH)−1HT denotes the Moore-Penrose
pseudo-inverse of the matrix H .

The ELM learning paradigm exploits the robustness of the
solution with respect to the optimal value of the parameters
of the neurons, and instead of spending computational time
for exploring the parameters’ space, choose them by sampling
a suitable distribution function (which encode the a-priori
knowledge on the problem), and compute the weights as the
solution of the above described linear system. It can be shown
that the solution β̂ in (3) is an optimal solution in the least
square sense, and has the smallest norm among the least square
optimal solutions.

C. Persistence

The persistence is a naı̈ve predictor that assumes that the
next value of the time series, xt will be equal to the last known,
xt−1, i.e., fP(xt) = xt−1. It is obviously inappropriate for
long-term prediction of time-series of interest in real cases,
but it can be used as a baseline forecast: any other model is
supposed to perform better than the persistence model.

D. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [13]. It is used to predict the value of
a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For
an unknown point, x, the value of f(x) is estimated from
the value of its k nearest neighbors, for a given k, using
a suitable voting scheme or an average. The most simple
scheme, often used in classification, estimates f(x) as the most
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Fig. 1. One year (a) and one week (b) of the measured global horizontal
radiation. Note the trend in the year and in the day, but also the strong
variability in the intraday values.

common output value among its neighbors, while in function
approximation the average output value is often used. More
complex schemes, such as the use of weighted averaging, or
a sophisticated norm for computing the distance can be used
as well. The k-NN can be used in time series prediction using
some previously observed values for composing the input
vectors.

III. EXPERIMENTAL ACTIVITY

For the experiments described in the present paper, two
datasets collected by ARPA Lombardia [14] between October
2005 and September 2008 has been used. The datasets contain
the hourly measurement of the global radiance in two sites
(Lambrate and Rodano, Italy) separated by about 10 km.

Subsets of the available samples are reported in Fig. 1,
where Fig. 1a describes the global radiation measured in the
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Fig. 2. The average global radiation for each day of the year and hour have
been is plotted as a surface. The roughness of the surface is due to variability,
although a clear trend of the phenomenon can be acknowledged.

year 2006, while in Fig. 1b only one week is reported (the first
week of June). Regularities are apparent both in the yearly and
in the daily scale, but also large deviations from the average
behavior are possible, due to meteorological variability.

As shown by surface reported in Fig. 2, the global horizontal
radiation varies both on daily and seasonal basis. The surface
has been obtained by averaging the samples acquired in the
same hour of the same day of the year. A clear trend is
apparent, but the variability of the global horizontal radiation
(which depends also by fast changing meteorological phenom-
ena) makes the surface very wrinkled.

Figure 3, instead shows the relation between the global
horizontal radiation acquired at two consecutive hours at the
two sites. In particular, in Fig. 3a the distribution of the points
along the identity line supports the use of the persistence
predictor. However, the maximum of the prediction error of
the persistence can be considerably high: in fact, it can be
estimated as the length of the vertical section of the cloud
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Fig. 3. The persistence predictor uses the global radiation value measured one
hour earlier as predicted value. Panel (a) shows the relationship between the
two measurements of the global horizontal radiation performed at Lambrate
and that performed at Rodano one hour later. The samples are evidently
distributed along the identity line. In panel (b), the estimated probability
density function of the variation (which standard deviation is 127).

of points, whose thickness is at least 350. The histogram in
Fig. 3b resembles a mixture of two normal distributions with
the same mean. This is due to the fact that in the early and
the late daylight hours, the global radiation is almost the same
(especially in the winter). Hence, the consecutive samples
acquired in those period of time are quite similar, while the
other moments of the day show a larger variability.

A. Dataset Pre-Processing

Since our work require the corresponding values of the two
sites, each database has been purged of the samples that do
not have a matching sample in the other database measured
at the same time of the same day. After this operation, the
datasets are composed of 22961 samples which have been
used for composing the input vectors for the prediction as
described in Sect. II. In particular, we tried to predict the
global radiation in Rodano from measurements in Lambrate.

Hence, each input vector has been composed by D consecutive
samples from Lambrate, for D ∈ {1, . . . , 10}, taken at time
{t−D, . . . , t−1}, which has been related to the sample from
Rodano at the time t. Besides, also the temporal information
of t (hour of the day and day of the year) has been provided
as input. The data has been randomly partitioned in training,
validation, and testing set (using a proportion of 50-25-25%,
respectively). In order to assign the same importance to all
the components, the data have been normalized using the
maximum of the measurement in the training set for the global
radiation components, 23 for the hour of the day, and 364 for
the day of the year.

B. Performance Evaluation

For the evaluation of the performances, only the daylight
hours data (from 8 to 19) has been considered. Besides, since
the solar radiation cannot be negative, all the negative values
predicted by the models are set to zero.

The prediction error has been evaluated as the average of
the absolute error achieved on the testing data:

Err(f) = E(|xt − f(xt)|) (4)

where f(xt) is the value for xt predicted by the model f .

C. Prediction through k-NN Models

Since the k-NN predictor does not requires other training
process than just storing the training values, all the hyperpa-
rameters of a k-NN predictor operate in the prediction stage.
In particular, the behavior of the k-NN predictor is ruled by the
number of neighbors, k; the number of dimension of the input
space, D, which corresponds to the number of previous values
used for the prediction; the weighting scheme, i.e., the law to
assign the weights for the weighted averaging prediction. The
following values for the hyperparameters has been challenged:

k ∈ [1, 30] and D ∈ [1, 10] (5)

Three weighting schemes have been tried: equal weight,
weight proportional to the inverse of the neighborhood rank,
and weight proportional to the inverse of the distance.

D. Prediction through ELM models

In order to train an ELM neural network as a time series
predictor, the hyperparameters that regulate the optimization
procedure (i.e., the probability distribution of the neuron
parameters, µi and σi, the input space dimension, D, and the
number of the neurons, L), have to be set to the proper value.

The dimensionality of the input training data, D has been
chosen in [1, 10] (5), while networks of several sizes, L, have
been challenged:

L ∈ {10, 25, 50, 100, 250, 500, 1000, 2000, 3000} (6)

Since the Gaussian has a meaningful output only in a neigh-
borhood of its center, the distribution of the centers, µi, here
indicated as the random variable A, is usually derived from
the position of the input training data. In particular, three
distributions have been tried for A: A1, uniform distribution



in the bounding box of the input training data; A2 and A3,
respectively sampling with and without replacement from the
input training data. The width of the Gaussian, σ, regulates
the extent of its influence region (in regions further then 3σ
from µ, the output is negligible). Since when the dimension-
ality of the input space increases the data become sparse (a
problem often referred to as curse of dimensionality), for fairly
comparing the effects of the dimensionality, we chosen a set
of relative values for the width, r, that are then customized
to the actual value of D. This is realized assigning to σ the
relative width, r, multiplied by the diagonal of the bounding
box of the input training data. The value challenged for r are:

r ∈ {0.01, 0.05, 0.1, 0.5, 1} (7)

Once the proper value of σ has been computed for the
considered dimensionality, the width of the neurons, {σi} are
sampled from B ∼ N(σ, σ/3) (i.e., {σi} are distributed as a
normal with mean σ and standard deviation σ/3).

Since the parameters of the network are chosen by chance,
five trials with the same combination of the hyperparameters
has been run and the performance of the parameter combina-
tion has been averaged.

E. Prediction through SVR

In order to train a SVR predictor, the hyperparameters that
regulate the optimization procedure, have to be set to the
proper value. Since the optimal values cannot be estimated
a-priori, several combinations have to be tried and their
effectiveness have to be assessed by cross validation.

The hyperparameters values that we challenged are:
• the input dimensionality, D: [1, 10], as in (5);
• the accuracy, ε: {0.01, 0.1, 0.5, 1};
• the regularization trade-off, C: {0.1, 1, 10, 100};
• the width, σ: similarly to the ELM case, the proportion-

ality factor r in (7) has been experimented for setting σ
depending on D.

IV. RESULTS AND DISCUSSION

The persistence, k-NN, and ELM predictors have been
coded in Matlab, while for the SVR models we used the
SVMlight [15], and their performances evaluated using the
prediction error, Err(f), described in (4). Since the persistence
predictor configuration does not need any hyperparameters,
the whole dataset described in Section III-A has been used
to assess its performances. Instead, the training of the k-
NN, the ELM and SVR models are regulated by a pool of
hyperparameters. Hence, the training set has been used to
estimate the model’s parameters for each combination of the
hyperparameters, then the validation dataset has been used to
identify the best model (i.e., the one that achieved the lowest
prediction error on the validation dataset) and the prediction
error of that model on the testing set has been used to measure
the performance of the class of the predictors.

As reported in Table I, the persistence predictor has achieved
an error Err(fP) = 95.4. This value should also be compared
to the persistence measured at each site, which is 89.9 for

TABLE I
TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f) (std) Err(f∗)
Persistence 95.4 (84.2) —

k-NN 41.4 (57.0) 53.1
ELM 42.7 (57.0) 58.5
SVR 40.5 (59.3) 57.2

TABLE II
TEST ERROR ACHIEVED BY THE ELM PREDICTOR.

#trial Err(fELM)
1 42.9

42.7 (0.322)
2 42.9
3 42.2
4 43.0
5 42.6

Lambrate and 83.6 for Rodano. The fact that the these three
values are quite similar supports our working hypothesis, i.e.,
the data from one site can be used to predict the measurement
on the other site.

In fact, as shown in Table I, all the models have been able
to halve the prediction error. In particular, the k-NN achieved
an error Err(fk-NN) = 41.4, for D = 2, k = 9, and using the
inverted distance weighting scheme.

The best ELM model, which achieved an error of
Err(fELM) = 42.7, resulted the one trained using the following
combination of hyperparameters: D = 2 r = 0.1, L = 500,
and using the A2 distribution for choosing the centers position.
The performance achieved in each of the five trials for this
model is reported in II, with their average and standard
deviation. This last value witnesses the stability of the learning.

The lowest error has been obtained by the best SVR model,
which achieved an error of Err(fSVR) = 40.5, using L = 3853
support vectors. The training has been realized with D = 2,
r = 0.1, ε = 0.01, and C = 1.

The distribution of the test error with respect to the hour
of the day and the period of the year for the ELM and SVR
models are reported in Fig. 4 and 5, respectively. Since the test
set does not include all the possible time combinations, the
error have been reported averaging those of seven consecutive
days. It can be noticed that both the distribution are very
similar (although the SVR distribution is slightly smoother);
the error is reasonably low in the most of the domain, with
few noticeable exceptions.

For the sake of comparison, we challenged the predictor
on datasets purged of temporal references. The performance
achieved in this situation have been reported in Table I, as
Err(f∗). It can be noticed that the error significantly improves.
Moreover, the dimension of the input space also increases
(D = 7, for all the models).

Although all the models achieve a similar accuracy (espe-
cially if the error is compared with the maximum of the global
radiation that is about 1000), if the computational cost is taken
into consideration, the predictors show different properties:
since the k-NN stores all the training data, it requires 5711
parameters, while the ELM 500, and SVR 3853.
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Fig. 4. ELM test error distribution. In panel (a), the average test error
achieved in all the trials is reported with respect to the day of the year and the
hour. The error is almost uniform on the domain, although it slightly follows
the seasonal and daily variability. In panel (b), the estimated probability
density function of the test error (which standard deviation is 52.0).

V. CONCLUSIONS

All the models challenged (k-NN, ELM, and SVR) have
achieved a similar testing error, with also a similar distribution.
SVR seems to offer the best compromise between the accuracy
and the computational cost in term of space, although the
computational time required for its training has been larger
than the other models.
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