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Abstract—It is well known that the knowledge of solar radia-
tion represents a key for managing photovoltaic (PV) plants. In
a smart grid scenario to predict the energy production can be
considered a milestone. However, the unsteadiness of the weather
phenomena makes the prediction of the energy produced by
the solar radiation conversion process a difficult task. Starting
from this considerations, the use of the data collected in the
past represents only the first step in order to evaluate the
variability both in a daily and seasonal fashion. In order to have
a stronger dataset a multi-year observation is mandatory. In this
paper, several autoregressive models are challenged on a two-year
ground global horizontal radiation dataset measured in Milan,
and the results are compared with those of simple predictors.

I. INTRODUCTION

The electric power system is mainly composed by units
for energy production i.e. generators, loads and a power grid
that connects them. Actual configuration principally includes
large central generators which, through the transformers, inject
electrical power in the transmission grid. The world energy
infrastructure is nowadays subjected to a important trans-
formation such as the growing number of distributed small
generation units, based on different technologies, directly
connected to the power grid. These small generation units put
side by side to the large and traditional ones are defining a
grid based on the so called distributed generation. This kind
of network architecture implies new problems concerning the
management. In fact in traditional network the stability of the
power system was achieved by means of the direct control
of few large conventional power generators. By introducing
distributed generation this approach cannot be followed, since
the small generation units are basically not controllable by the
network system operator. In particular this scenario is critical
when units based on renewable energy resources are used,
since they can only provide power as long as the source of
energy is available. In many situation the energy production
is mainly utilized directly by the producer or for nearby
buildings. When energy production exceed the necessity the

excess flows into the power grid of the utilities. In order
to implement an electric grid allowing a large amount of
distributed energy sources, different solutions approach to the
problem of the network stability must be followed. It is clear
that in this scenario the possibility to predict the capability of
the plant to generate power during the day, greatly helps the
management of such a power system. Among the renewable
energy sources, a very interesting solution is photovoltaic
(PV) technology, which allows to obtain electric energy from
solar radiation [1]. One of the most important benefits of the
electrical energy production based in photovoltaic technology
is the low environmental impact. On the other end, the main
weakness of this renewable energy source is that its availability
cannot be fully controlled. Many aspects need to be considered
such as geographic position, local climate, weather and global
efficiency of the panel [2], [3], [4]. Among these, the position
and the climate influence on the solar radiation can be easily
obtained from astronomical and statistical data, but the weather
is characterized by a high variability and depends on many
physical factors. According to [5], the forecasts required by the
activity related to the grid management can be divided in two
categories. The first is related to grid stability problem (intra-
hour, hour ahead, and day ahead), while the second concerns
planning and assets optimization on medium and long-term
(monthly and yearly forecasts, respectively). Since the main
factor for solar radiation availability is the local weather,
approaches based on weather forecast have been widely used
in literature. These are based on data obtained from satellite
observations and ground stations. The geographic and time
availability of data are the main aspects that have to be taken
into account. Besides, the sampling rate of the measurement
have to be related to the granularity of the forecast.

The solar radiation prediction can be based on data obtained
by several data sources, characterized by the type of data they
produce, as well the space-time granularity they provide. These
data source are, for example: Numerical Weather Predic-



tion (NWP) models, Satellite-base forecast, All-sky imagers,
Ground measurements.

Several forecasting approaches have been used in literature.
Among these, the most effective in producing hour-ahead
predictions are based on empirical regression, neural networks
[6] and time-series models (e.g., ARMA, ARIMA) [7][8].

In this paper, a two-year hourly dataset of the global
horizontal radiation will be used to feed some autoregressive
models to obtain a one-hour forecast. The dataset has been
collected in two years by the MeteoLab [9][10]. In previous
works [11][12][13], several models have been challenged in
the task of predicting the global horizontal illuminance. In
the present work, instead, data coming from a new parame-
ter, the global horizontal radiation, will be considered. The
performance of the autoregressive models will be compared
with those of a naı̈ve predictor, the persistence model, and
of a simple predictive model, namely the k-Nearest Neighbor
(k-NN) model.

II. THE PREDICTION MODELS

A time series is composed of a sequence of observation {xt}
sampled by a sequence of random variables {Xt}. Usually, the
ordering value is related to the time and the observation are
related to a phenomenon that varies with the time. A practical
assumption is that the observations are taken in equally spaced
instants.

A. Autoregressive Models
An autoregressive model describes the values of a particular

time series in terms of its past values [14]. In particular,
the value of Xt is modeled as a combination of a part that
is determined by the past values of the series and a part
determined by an unpredictable event that happens at the
time t (innovation). More formally, given a time series {Xt},
its autoregressive representation of order p, often denoted by
AR(p), is:

Xt = α0 +

p∑
k=1

αkXt−k + εt (1)

where α0 is a constant and the innovation ε, is assumed to be
white noise (E(ε) = 0, E(ε2) = σ2) and {εt} are supposed
to be normal independent and identically distributed (i.i.d.)
random variables.

A moving average model describes the time series values in
terms of linear combination of (unobserved) innovation values.
A moving average representation of order q, often denoted by
MA(q), of the time series {Xt} is:

Xt = µ+

q∑
h=1

βhεt−h + εt (2)

The autoregressive and moving average models can be com-
bined in the autoregressive moving average model (ARMA).
An ARMA representation of autoregressive order p and mov-
ing average order q, ARMA(p, q) is formally described as:

Xt = α0 +

p∑
k=1

αkXt−k +

q∑
h=1

βhεt−h + εt (3)

When the time series is sampled from a stationary process, it
can be represented by the above mentioned models. However,
when the time series shows a trend or a seasonality, a more
advanced class of models, namely the autoregressive integrated
moving average models (ARIMA), have to be used. The
ARIMA model take into consideration also the difference
series (i.e., the series resulting by computing the difference of
time lagged series). In particular, the notation ARIMA(p, d, q)
is commonly used for indicating the ARIMA model with p, d,
and q order of respectively autoregression, differencing, and
moving average. The formalization of this model is operated
through the backward shift operator, B: Xt−1 = BXt. This
allows to express Xt−k as BkXt. The ARIMA(p, d, q)
representation of the time series {Xt} is:(

1−
p∑

k=1

αkB
k

)
(1−B)dXt =

(
1 +

q∑
h=1

βhB
h

)
εt (4)

B. Persistence

In order to assess the performance of model in the short-
term prediction of a time series, the persistence model is often
used. It is a naı̈ve predictor that assumes that the next value
of the time series, xt will be equal to the last known, xt−1.
It is obviously inappropriate for long-term prediction of time-
series of interest in real cases, but it can be used as a baseline
forecast: it is supposed that any other model will perform
better than the persistence model.

C. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [15]. It is used to predict the value of
a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For
an unknown point, x, the value of f(x) is estimated from
the value of its k nearest neighbors, for a given k, using
a suitable voting scheme or an average. The most simple
scheme, often used in classification, estimates f(x) as the most
common output value among its neighbors, while in function
approximation the average output value is often used. More
complex schemes, such as the use of weighted averaging,
or a sophisticated norm for computing the distance can be
used as well. The k-NN can be used in time series prediction
using some previously observed values for composing the
input vectors. For instance, when using a two-dimensional
feature space, the training dataset will be composed by triples
of the form (xt−2, xt−1, xt), where will be assumed that
xt = f(xt−2, xt−1).

III. EXPERIMENTAL ACTIVITY

For the experiments here described, a dataset collected by
the MeteoLab [9][10] between October 2005 and October
2007 has been used. The MeteoLab station measures and
collects with a sampling step of ten minutes the following
data: global horizontal irradiance, diffuse horizontal irradiance,
global horizontal illuminance, relative humidity, and air tem-
perature. The released dataset provides their hourly average.
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Fig. 1. One year (a) and one week (b) of the measured global horizontal
radiation. Note the trend in the year and in the day, but also the strong
variability in the intraday values.

For this work, only the global horizontal radiation has been
considered. Subsets of the available samples are reported in
Fig. 1. In particular, Fig. 1a describes the global horizontal
radiation measured in the year 2006, in Fig. 1b only one week
is reported (the first week of June). It can be noticed that
regularities are apparent both in the yearly and in the daily
scale, but also that large deviations from the average behavior
are possible, due to meteorological variability.

As shown by surface depicted in Fig. 2, the global horizontal
radiation varies both on daily and seasonal basis. The surface
has been obtained by averaging the samples acquired in the
same hour of the same day of the year. Although a trend is
clearly recognizable, the variability of the global horizontal
radiation (which depends also by fast changing meteorological
phenomena) makes the surface very wrinkled.

Figure 3, instead shows the relation between the global
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Fig. 2. The average global radiation for each day of the year and hour have
been is plotted as a surface. The roughness of the surface is due to variability,
although a clear trend of the phenomenon can be acknowledged.

horizontal radiation acquired at two consecutive hours. In
particular, in Fig. 3a the distribution of the points along the
identity line supports the use of the persistence predictor. How-
ever, the maximum of the prediction error of the persistence
can be considerably high since the length of the vertical section
of the cloud of points is at least 300, where the maximum
value of the radiation is about 900. The histogram in Fig. 3b
resembles a mixture of two normal distributions with the same
mean. This is due to the fact that in the early and the late
daylight hours the global radiation does not change very much
(especially in the winter). Hence, the consecutive samples
acquired in those period of time are quite similar, while the
other moments of the day show a larger variability.

A. Dataset Pre-Processing

Since time series models requires that all the values are
equally time spaced, the few values that are missing are
interpolated using a simple rule that exploits the daily sea-
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Fig. 3. The persistence predictor uses the global radiation value measured
one hour before as predicted value. Panel (a) shows the relationship between
the two measurements of the global horizontal radiation performed at the
distance of one hour. Evidently, the samples distribute along the identity
line. In panel (b), the estimated probability density function of the difference
between subsequent samples (with a standard deviation of 115).

sonality of the solar radiation. For each missing value, xt, the
set {xt−1, xt+1, xt−24, xt+24}, i.e., the set composed of the
global radiation one hour before and ahead, and one day before
and ahead are considered. The missing value is then replaced
with the average of the collected values. Since the missing data
are few, the selected set has a meaningful number of elements
even though some of the selected elements are missing too.

The resulting dataset is composed of 18096 samples. Since
the dataset covers a period of time of two years, and the
autoregressive models require a training set composed of
consecutive data, the first year has been used as training set. In
this way, the yearly variability have a chance of being captured
by the models. The data belonging to the second year has
been randomly partitioned in the validation and training set.
Hence, training, validation, and testing set are composed of,

respectively, 9048, 4524, and 4524 samples.

B. Performance Evaluation

For the evaluation of the performances, only the daylight
hours data ([8, 19]) has been considered. Besides, since the
solar radiation cannot be negative, all the negative values
predicted by the models are set to zero.

The prediction error has been evaluated as the average of
the absolute error achieved on the testing data:

Err(f) = E(|xt − f(xt)|) (5)

where f(xt) is the value for xt predicted by the model f .

C. k-NN Models Prediction

The performance of a k-NN predictor depends on several
hyperparameters, which operate only in the prediction stage,
since the k-NN predictor does not requires other training
process than just storing the training values. In particular, the
behavior of the k-NN predictor is ruled by the number of the
considered neighbors, k; the number of dimension of the input
space, D, which corresponds to the number of previous values
used for the prediction; the weighting scheme, i.e., the law to
assign the weights for the weighted averaging prediction.

The following values for the hyperparameters has been
challenged:

k ∈ [1, 30] and D ∈ [1, 10] (6)

Three weighting schemes have been tried: equal weight,
weight proportional to the inverse of the neighborhood rank,
and weight proportional to the inverse of the distance.

For the sake of comparison, the rules for generating the
training, validation and test set will be the same used for the
autoregressive models, described in III-A.

D. Autoregressive Models Prediction

In order to train an autoregressive predictor, a suitable value
for the hyperparameters that rule the optimization procedure
(i.e., the autoregression order, p, the moving average order,
q, and the differencing order, d), have to be chosen. Several
combination of the hyperparameters values have been tried
and their effectiveness have been estimated through cross
validation. In particular, the AR models have been challenged
with p ∈ {1, . . . , 100}; the ARMA models have been chal-
lenged with the combination of p and q for p ∈ {1, . . . , 50}
and q ∈ {1, . . . , 50}; and the ARIMA model have been
challenged with the combination of the following values of
p, d, and q:

p ∈ {1, . . . , 30}, d ∈ {1, . . . , 3}, q ∈ {1, . . . , 30} (7)

Since the training of the ARMA and ARIMA models requires
consecutive training data, for avoiding of considering two
separated periods of time for evaluating the validation and
training error (which involves the risk of biased estimation
due to the seasonality of the phenomenon under study), the
prediction on the data not used to train the predictor has been
carried out first and then the predicted period has been sampled
for obtaining the validation and testing data.



TABLE I
TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f) (std)
Persistence 88.3 (74.2)

k-NN 47.7 (59.7)
AR 43.5 (56.9)

ARMA 42.7 (56.5)
ARIMA 43.3 (56.5)

IV. RESULTS AND DISCUSSION

The persistence and k-NN predictors, described in Sec-
tion II, have been coded in Matlab, while for the autoregressive
models (AR, ARMA, and ARIMA) their implementation in
R have been used. Their performances have been evaluated
using the prediction error, Err(f), described in (5). Since
the persistence predictor configuration does not need any
hyperparameters, the whole dataset described in Section III-A
has been used to assess its performances. Instead, the training
of the k-NN and the autoregressive models are regulated by
a pool of hyperparameters. Hence, the training set has been
used to estimate the model’s parameters for each combination
of the hyperparameters, then the validation dataset has been
used to identify the best model (i.e., the one that achieved
the lowest prediction error on the validation dataset) and the
prediction error of that model on the testing set has been used
to measure the performance of the class of the predictors.

As reported in Table I, the persistence predictor has achieved
an error Err(fP) = 88.3, while the k-NN achieved an error
Err(fk-NN) = 47.7, for D = 4, k = 17, and using the inverted
distance weighting scheme.

The AR model that scores the lower validation error has
been trained using p = 97 and achieved Err(fAR) = 43.5; the
best ARMA model has been trained using p = 28 and q = 22,
achieving Err(fARMA) = 42.7; the best ARIMA model, trained
using p = 23, d = 1, and q = 16, achieved a testing error
Err(fARIMA) = 43.3.

Figure 4 shows the distribution of the prediction error of
AR, ARMA and ARIMA models. Hardly some difference can
be spotted in Figs. 4a–c, although Figs 4d–f reveal a slightly
compact histogram for ARMA and ARIMA. In particular, the
error peaks in Figs 4a–c are in the same position, probably
due to some fast changing meteorological events happened in
that period that modified the usual global radiation pattern.

In Figs. 5 and 6, the performance of the autoregressive
models with respect to their hyperparameters are represented.
The continuous line represents the projection of the error onto
the considered parameter when the other parameters are fixed
to the values that achieved the best prediction error. Except
for the AR model, the line rarely touch the lowest error
point. A different randomization of the data could change the
hyperparameters combination that gives the best setup.

V. CONCLUSIONS

Although all the models have achieved a similar testing
error, with also a similar distribution, the training time for
the AR model has been larger than the time required by

the ARMA and ARIMA models (respectively 45 and 49
times larger). A deeper analysis of the results unveil that a
comparable error can be achieved by the AR model using
a smaller number of coefficients, but with a required time
just 2 times larger than the other models (e.g, for p = 51).
The analysis of the behavior of the error with respect to
the hyperparameters of the models shows the tendency of
increasing the performance as the numbers of previous values
of the global radiation considered in the prediction approach
the seasonality of the time series or a multiple of it. However,
since the global radiation has a daily seasonality of 24 hours,
the large number of parameters of the model can give rise to
numerical error in the estimation procedure and in any case,
can slow down the convergence of the estimation procedure.

Since a simpler model is preferable, the ARIMA model,
which requires less parameters than AR and ARMA, can be
considered to best fit the time series here considered.

Future works can consider the exploitation of other infor-
mation (both temporal and meteorological) in order to improve
the robustness of the estimation of the model parameters.
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Fig. 4. Test error distribution. In panels (a)–(c), the test error produced by respectively the AR, the ARMA, and the ARIMA predictor are reported with
respect to the day of the year and the hour.In panel (d)–(f), the estimated probability density function of the test error of the autoregressive models.
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Fig. 5. AR, (a), and ARMA, (b)–(c), test error wrt. the hyperparameters.
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Fig. 6. ARIMA test error wrt. the hyperparameters.
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