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Abstract—The solar panel, which transforms the energy car-
ried by the light in electricity, is a reliable component of a
photovoltaic (PV) system, but its efficiency depends on several
factors, such as its orientation, its working temperature, and its
tidiness. Since maintenance is an expensive activity, a careful
evaluation of the degradation of the panel and the resulting
production loss has to be carried out. Besides, an accurate
estimation of the potential production with respect to the weather
condition requires expensive instruments and skilled operators.
In this paper, we propose an alternative approach based on
the prediction of the potential production based on a public
weather station in the nearby of the considered plant. Several
computational intelligence paradigms as well as several prediction
setups are here challenged and compared.

I. INTRODUCTION

Renewable energy sources play an important role in the
nowadays economy and their relative importance is ever in-
creasing. Among these, photovoltaic (PV) technology, which
allows to obtain electric energy from solar radiation [1],
represents a very interesting solution. In fact, besides large
industrial plants, also small plants for fulfilling local needs are
now quite common.

Among the several parameters that affect the efficiency of
the solar panels (such as latitude, orientation, and inclination)
the environmental conditions (such as, temperature [2], dust
[3][4], snow [5], soiling [6]) are the most subtle to model
and to control [2][7][8]. Due to the exposure in outdoor
field, in fact, the performance of the panels can degrade. A
simple approach for detecting and estimating the effects of
obstructive phenomena (dirt, dust, or soiling) is to compare the
power yielded by the solar panel with the theoretical output
estimated using on-field measurement of the solar radiation
and the other physical quantities (e.g., the air and panel
temperature). However, this approach is not feasible in real
cases. In fact, in order to provide an effective estimation,
reliable measurements are needed, which in turn require an
accurate policy of maintenance of the instrumentation operated
by trained staff. This, especially for small plants, can make the

economical loss due to the degradation of the performances
preferable to the maintenance costs.

Recently, in [6] a direct approach for estimating the loss in
performance has been proposed. It is based on the calibration
of a panel in outdoor conditions with respect to an identical
panel maintained in perfect conditions. Using some knowledge
on the meteorological conditions and on the context (e.g.,
desert or agricultural region), the historical data collected by
the two panels allows to estimate the loss in the generated
power from the output of the unmaintained panel.

In previous work, we studied the effectiveness of au-
toregressive models and computational intelligence models
for short term prediction of illuminance [9][10] and global
radiation [11][12]. In particular, in [12] the data from a public
weather station has been employed to predict, through the use
of computational intelligence paradigms, the solar radiation on
a site ten kilometers away. In this paper we experimented the
use of a similar setup for estimating the power production loss
of a panel due to the maintenance absence. The advantage
of this approach is that the well maintained public weather
station can provide accurate measurements, which can be
exploited for estimating the performance of small solar plants
in the neighborhood. A stable deviance of the real production
from the estimated can be considered for scheduling the
maintenance intervention.

II. THE PREDICTION MODELS

Several models have been challenged for approximating
the power produced by an observed solar panel under several
working conditions (panel’s temperature, irradiance, and length
of the drought period). In particular, we used the Support Vec-
tor Regression (SVR) [13], the Feed-forward Neural network
(FFN) [14], and the k-Nearest Neighbor (k-NN) predictor [15].
All these models allow to approximate a mapping between
an input and an output space, automatically setting up their
parameters, through suitable training algorithms that make use
of only a finite set of input-output pairs (possibly affected by
error), called training set.



A. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [15]. It is used to predict the value of
a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For an
unknown point, x, the value of f(x) is estimated from the value
of its k nearest neighbors, for a given k, using a suitable voting
scheme or an average. The most simple scheme, often used
in classification, estimates f(x) as the most common output
value among its neighbors, while in function approximation
the average output value is often used. More complex schemes,
such as the use of weighted averaging, or a sophisticated norm
for computing the distance can be used as well.

B. Support Vector Regression

Support Vector Machines (SVM) is a powerful method for
classification [16][17] and regression [13]. In the latter do-
main, the method is usually named Support Vector Regression
(SVR). In its original formulation, the regression function is
obtained as the linear combination of some samples, called
Support Vectors (SV), but it can be extended to non-linear
mapping through the use of suitable functions called kernels.
The solution to the regression problem is obtained as the
minimization of a suitable loss function, which can be chosen
such that the optimization problem results to be convex. The
loss function is ruled by three hyperparameters: the accuracy, ε,
that represents the accepted distance between the training data
and the solution; the trade-off, C, that balance the closeness
of the solution to the training data and the robustness of the
solution; and the width of the Gaussians used as kernels, σ,
which in the basic SVR algorithm are constrained to have
the same width. The convexity of the problem guarantees that
the optimal solution (which identifies the SVs, {µi}, and the
corresponding coefficients, {βi}) is unique. The mapping is
modeled as a linear combination of kernel functions (usually
Gaussians):

fSVR(x) =

L∑
i=1

βiG(x; µi, σ) + b (1)

C. Feed-forward Neural Networks

The feed-forward neural networks (FFN) [14][18][19] are
composed of processing units (called neurons) organized in
layers. Each neuron computes its output as a function of a
linear combination of the output of the neurons of the previous
layer (this function is often called transfer function or activa-
tion function). The information, hence, flows only from the
input layer to the output layer. It can be proved that a network
with one hidden layer (i.e., a layer between the input and
the output layers) has the universal approximation property. A
FFN is characterized by the number of neurons of the hidden
layer, the activation function, Ψ, (usually sigmoidal), and by
the learning algorithm used (usually gradient descent based,
such as Marquardt algorithm [19]).

More formally, the output, fFNN(·), of a single layer FNN
is

fFNN(x) = β0 +

L∑
j=1

βjΨ(γTj · x) (2)

where L is the number of units of the hidden layer, the βj is the
weight of each neuron (β0 is a bias term), the γj represents
the weight vector of the linear combination of input for the
j-th neuron.

The function Ψ, which can be chosen among different
functions, is often the hyperbolic tangent

Ψ(z) =
1− exp(−2z)

1 + exp(−2z)
. (3)

When more than one hidden layer is used, the approxi-
mation capabilities of the neural model family (i.e., the class
of functions that can be represented by any of the FNN
with the given architecture) do not increase. However, when
only a limited budget of neurons is taken into account, the
approximation performance can change, although in practical
cases it rarely improves considerably. When the FNN has two
hidden layers (with Lk neurons in the k-th layer), its output,
fFNN2(·) is

fFNN2(x) = β0 +

L2∑
i=1

δiΨ

 L1∑
j=1

βijΨ(γTj · x)

 (4)

where the input, x, is weighted by γj before being input to
the j-th neuron of the first layer, which feed the i-th neuron
of the second layer with its output weighted by βij ; the output
of the FNN is then computed weighting by δ the output of the
second layer neurons.

III. THE DATASETS

For this work, we used as reference a dataset collected
by ARPA Lombardia [20]. This dataset contains the hourly
measurement of the global radiance in the site of Lambrate
(Italy) which is separated by about 2 km from the site where
the plant is situated. The ARPA dataset includes the global
radiation, the air temperature and rainfall, measured hourly.

The plant dataset includes a set of measured voltage-current
(V-I) characteristic curves (the produced power depends also
on the applied load), the working temperature and solar ra-
diation which cover most of the possible working condition
of the photovoltaic panel. For this reason a measurement
campaign has been performed and starting from the V-I curves
the Maximum Power Point (MPP) values have been estimated
(with a sampling period of about one minute). The rated
parameters of the panel are the following: the maximum power,
PMAX = 5 W; the voltage and the current at which maximum
power is produced, VPM = 17.5 V and IPM = 0.285 A; the
open circuit voltage, VOC = 21.3 V; and the short circuit
current, ISC = 0.31 A.

In order to match with the ARPA dataset, the data has been
resampled with a sampling period of one hour. The data has
been collected in two different periods, from July to October
2012 (66 samples) and from May to June 2013 (307 samples)
for a total of 373 hourly samples.

For the experiment here described, a dataset composed of:

• the working temperature (in K),

• the global irradiance (in W/m2),
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Fig. 1. The distribution of the samples of the dataset projected onto
the Temperature-Irradiance-Drought subspace. The dataset is composed of
samples measured in two different periods of time (July–October 2012 and
May–June 2013). The two subsets are reported using the circle and the cross
markers, respectively. Although there are two clusters characterized for the
number of days without meaningful rainfall, it can be noticed that they belong
to the same subset and can be ascribed to the normal variability of the
meteorological phenomena. A weak correlation between the temperature and
the solar radiation can also be noticed.

• the drought period length (in days),

• the MPP, (in W)

has been used. The drought period has been defined as the
number of days (or fraction of day) since it rained less than 1
mm/m2 of precipitation per day. Hence, rainfalls for less than
1 mm has been considered, somehow arbitrarily, too light for
cleaning the panel.

In order to appreciate the distribution of the samples values,
a plot of the temperature, solar radiation, and drought period
length is reported in Fig. 1. Since two clusters are apparent
along the drought period axis, the homogeneity of the two
measurements periods can be questioned. However, in Fig. 1
the samples belonging to the two periods are reported using
different markers (circles for July-October 2012 and crosses
for May–June 2013) and it is evident that the long drought
period cluster belongs to the same subset, while the other
samples are quite mixed: this can be considered as evidence
that the two subsets are homogeneous and the two clusters can
be accounted to the normal variability of the meteorological
phenomena.

A plot of MPP value vs. drought period and solar radiation
is reported in Fig. 2. The depicted relationship is a projection
of the one that is object of the study in this work, obtained
not considering the influence of the working temperature on
the power produced by the solar panel. For making easier to
understand the relation between the variables, the best fitting
plane has also been plotted. It is apparent that the MPP is
directly proportional to the irradiance, but also that the length
of the drought period can affect it negatively.

IV. EXPERIMENTS

The prediction models described in Section II have been
applied to the dataset described in the previous Section for
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Fig. 2. The distribution of the samples of the dataset projected onto the MPP-
Irradiance-Drought subspace. For making easier to understand the relation
between the variables, the best fitting plane is also plotted. It is apparent that
the MPP is directly proportional to the irradiance, but also a slight influence
of the length of the drought period can be appreciated.

predicting the produced power (in terms of MPP) given the
working temperature of the panel, the irradiance, and the length
of the drought period. Since the power produced cannot be
negative, all the predictors have been enriched with a post-
processing module that remaps to zero the negative values
eventually output by the original models.

A. Data preprocessing

The dataset has been randomly partitioned in three sets:
the training set, for computing the model parameters; the
validation set, for selecting the best one among the challenged
models; and the testing set, for assessing the final performance.
The available samples have been distributed in the three set in
the proportion of 80-10-10%, respectively. It results in 298, 37,
and 38 samples for, respectively, the training, the validation
and the testing set.

Since the scarcity of the available dataset, 30 trials (with
different randomization of the data) have been carried out with
each configuration of each model, and the average performance
have been considered.

In order to balance the relative importance of the input
features, the data has been normalized by dividing each feature
by its standard deviation before to feed the predictors.

B. Performance Evaluation

For the evaluation of the performance, the prediction error
has been measured by means of the average of the absolute
error achieved on the testing set data:

Err(f) = E(|y − f(x)|) (5)

where f(x) is the value predicted by the model for the sample
(x, y), where x is the vector composed of the temperature, the
irradiance, and the length of the drought period, while y is the
corresponding measured MPP.



C. Prediction through k-NN Models

The performance of a k-NN predictor depends on several
hyperparameters. Since it does not requires other training
process than just storing the training values, all the hyperpa-
rameters of a k-NN predictor operate in the prediction stage.
In particular, the behavior of the k-NN predictor is ruled by:

• k: the number of neighbors;

• the weighting scheme: the law to assign the weights
for the weighted averaging prediction;

• the norm of the input space.

The following values for the hyperparameter k have been
challenged:

k ∈ [1, 15] (6)

Three weighting schemes have been tried: equal weight, weight
proportional to the inverse of the neighborhood rank, and
weight proportional to the inverse of the distance. Only the
Euclidean norm has been used to compute the distance in the
input space.

The k-NN predictors have been coded in GNU Octave,
version 3.2.4.

D. Prediction through SVR

In order to train a SVR predictor, the hyperparameters
that regulate the optimization procedure, have to be set to the
proper value. Since the optimal values cannot be estimated
a-priori, several combinations have to be tried and their effec-
tiveness have to be assessed by cross validation.

The challenged hyperparameter values have been:

• for the accuracy, ε: {0.01, 0.05, 0.1, 0.5, 1};

• for the regularization trade-off, C:
{0.1, 1, 10, 100, 500, 1000}.

Besides, since the Gaussian kernel has been used, the width
of the Gaussian, σ, which regulates the extent of the influence
region of the corresponding SV (in regions further then 3σ
from µ, the output is negligible), has to be set before the
optimization is carried on. The values challenged for σ have
been:

σ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}. (7)

For the simulations, the SVR implementation provided by
SVMlight [21] has been used.

E. Prediction through FFN

Since the FFN are a very variegated class of models, with
different architectures and different learning algorithms, some
a-priori choices are required in order to limit the number of
simulations. For this experiment, two different architectures
have been considered: single hidden layer (as described in (2))
and two hidden layers, (4). The only activation function con-
sidered for the hidden layer neurons has been the hyperbolic
tangent function, (3), while the linear function has been chosen
for the output layer.

TABLE I. TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f) (std)
k-NN 0.274 (0.248)
SVR 0.247 (0.253)
FFN 0.260 (0.235)
FFN2 0.267 (0.237)

Several values for the number of neurons, L, have been
tried:

L ∈ {10, 20, 40, 100}. (8)

For the models with two hidden layers, the neurons have been
equally distributed in the layers.

The networks have been trained using the Levenberg-
Marquardt backpropagation algorithm.

The simulations have been run in GNU Octave 3.2.4, using
the octave-nnet package (version 0.1.13).

V. RESULTS AND DISCUSSION

The test error of the challenged models are reported in
Table I. The best performance for the k-NN model has been
obtained using k = 5 and the inverted distance weighting
scheme. The best performing SVR used σ = 2, ε = 0.005, and
C = 500. The FFN models that achieved the lowest average
validation error used L = 20 neurons for the single hidden
layer case, and 50 neurons for each layer in the two hidden
layer case (hence a total of L = 100 neurons).

From the data reported, the lowest test error has been
achieved by the SVR (0.247 W), followed by the two neural
models (0.260 and 0.267 W for respectively, the single and the
two hidden layer networks), and then by the k-NN predictor
(0.274 W). Although the SVR error is 5% relatively smaller
than the error of the FFN model, their difference is not very
meaningful, since the standard deviation of each test error is
abundantly larger than their difference. The same consideration
also applies to the comparison of errors of the SVR with
respect to those of FFN2 and k-NN.

In Fig. 3, the approximation of the function that relates
MPP to the considered input features (working temperature,
irradiance, and length of the drought period) is reported for
the four prediction model considered. For each of the models,
the surface has been obtained by sampling regularly the input
space and averaging the output of the best models (i.e.,
those obtained with the parameter above reported) for all the
trials. In order to plot them, the output have been averaged
also along the temperature. All of the surfaces resembles the
orientation and the shape of the best fitting plane reported
in Fig. 2. Subtle differences among the resulting surface can
be observed: the k-NN surface is less smooth than the others
and the SVR surface reaches higher values than the others for
high irradiance and short drought period. It should be remarked
that the surfaces has been obtained under the simplifying hy-
pothesis of uniformly distributed temperatures values. Instead,
as can be noticed from Fig. 1, the temperature is partially
correlated to the irradiance. Hence, the relative importance of
the contribution of a given value in the temperature dimension
could depend also on the corresponding irradiance value.

In order to evaluate the production loss due to the absence
of maintenance, the output of the best models (averaged over
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Fig. 3. The approximation of the MPP as a function of the irradiance and drought period length operated by (a) k-NN, (b) SVR, (c) FNN, and (d) FNN2
predictors.

the trials) has been evaluated for several values of length of
the drought period. The simulation has been computed using
as input those data that has an irradiance value higher than the
average. This limitation is motivated by both the intention of
excluding the data with a potentially high relative error, and
considering only the situation where the productivity of the
panel is potentially high. The resulting curves have been then
normalized with respect to the maximum value of the MPP
and plotted in Fig. 4. It can be noticed that the SVR curve
is the smoothest, followed by the FNN curve. Moreover, the
SVR curve is closest to the average curve, and hence is a good
candidate for modeling the average production lost curve.

Some final remarks should be dedicated to the data. Since
the models are generated from the data, the quality of the
dataset (i.e., its ability to correctly represent the studied
phenomenon) both in terms of accuracy and the coverage of
the possible cases can affect the results.

In particular, it should be noticed that the SVR model uses
a number of SVs close to the number of training examples
(292 vs. 298). This means that almost all the training data are
required to describe the relationship and the generalization is
due to the interference between SVs (σ is equal to the double
of the standard deviation of the data). This consideration is also
supported by the value of ε and C (0.005 and 500, respectively)
that are indicators of a solution close to the data.

VI. CONCLUSION

In this paper, the productivity loss of a solar panel due
to the lack of maintenance has been studied. The energy
production of the panel has been modeled as a function of
its working temperature, the irradiance, and the length of the
drought period.

Several models have been challenged in the task of approx-
imating the relationship on the above mentioned parameters
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from a dataset of samples collected between July 2012 and
June 2013.

The resulting models provide an approximation that well
describes the dataset, although with slightly differences and a
different degree of smoothness. Among them, the SVR model
seems to be the best candidate, although the average model
can also be considered.

This research work can be improved considering more
data which can enrich the working situation considered. For
instance, adding samples from a winter period can add in-
formation on the behavior of the panel for high levels of
irradiance, but with low working temperatures. Besides, the
availability of ground truth data can help in establishing the
best model for the phenomenon.
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