© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI: http://dx.doi.org/10.1109/EESMS.2013.6661705

An Android-based Platform for Augmented-Reality
Remote Inspection Systems Prototyping

Stefano Ferrari and Gheorghi B. V. Pentchev
Department of Computer Science
Universita degli Studi di Milano, Milan, Italy
Email: stefano.ferrari@unimi.it

Abstract—A framework for developing prototypes of remote
controlled inspection robots with semi-autonomous behavior and
augmented reality enriched real-time video feedback is presented.
This platform is constituted of very common and reusable
hardware, equipped with open source software. The resulting
system is very flexible and customizable, with a low set-up time,
which provide an affordable fast prototyping framework.

I. INTRODUCTION

Remote visual inspection systems allow to provide mon-
itoring capabilities in dangerous or inaccessible environment
[11[2][3]. In their basic set-up, these systems are composed
of a robotic unit which carries one TV camera to capture a
video stream of the explored environment. This video is then
sent to the human operator which drives the remote unit. More
complex systems can carry other sensors, have actuators for
interacting with the environment (e.g., to repair or rescue), and
have semi-autonomous capabilities.

The design of such systems requires to consider several
issues, encompassing the environmental operational condi-
tions, the activity the robot should realize (with a degree of
autonomy), the interface for the human operator, which usually
results in contrasting specification constraints. Hence, during
the development of such a systems, several design choices
have to be considered, which can imply the realization of
several prototypes, in order to experiment the compliance of
the solution to the specification constraints, and to start testing
the usability of the system. Realizing a prototype and a replica
of the working environment [4][5] can be expensive, both
economically and in terms of time.

In this paper, a framework for developing prototypes of
remote controlled inspection robots is presented. This plat-
form is constituted of very common and reusable hardware,
equipped with open source software. The resulting system is
very flexible and customizable, with a low set-up time, which
provide an affordable fast prototyping framework. Besides, the
real-time video stream captured by the on-board camera can
be enriched by Augmented Reality (AR) contents [6].

AR is commonly used for a plethora of applications,
ranging from didactics (e.g., in museums or archaeological
sites [7]), to maintenance and repair [8]. It has been proven

that enriching the visual feed-back can improve the precision
in remote operation [9]. In the present work, a simple im-
plementation of AR is used. It makes use of fixed geometrical
patterns, an approach often used in literature (e.g., magic cards
[10]), which allow to easily mark special points of interest in
the experimental environment, in order to emulate obstacles or
dangerous objects.

The paper is organized as follows: in Section II, the
overall system architecture is introduced, in Section III the
functionalities of the main modules are presented, and in
Section IV some implementation choices are discussed.

II. THE SYSTEM ARCHITECTURE

The system is structured in three main modules (Fig. 1):

e the robotic module,
e the on-board unit,

e the controller.

The robotic module is composed of the actuators, the basic
sensors, and a low-level processing unit. It is responsible for
the low-level decisions, which can be triggered by the on-
board sensors, and realizes the semi-autonomous behavior. The
robotic module carries the on-board processing unit, which is
responsible to capture the scene and provides some processing
in order to produce and stream the video with the augmented
reality enriched scene. It also communicates with the robotic
module in order to collect the sensor readings and to transmit
the commands for the actuators. The controller provides the
user I/O interface. It receives the video streaming from the
on-board unit and displays it, and collects the user input and
pass it to the on-board unit.

To realize this architecture, we chosen to implement the
system using two Android devices for the on-board unit and
the controller, while the robotic module has been implemented
using the Lego® Mindstorm® NXT set. The communication
between the controller and the on-board unit is realized via
Wi-Fi, while the communication between the on-board unit
and the robotic module is realized through Bluetooth™ (BT)
technology, as described in Fig. 1.



Controller

Fig. 1. High-level view of the system architecture.

Controller

’ Sensors processor

’ AR renderer F

Bluetooth

On-board unit

On-board unit

Robot

’ Webcam interface

i i

Actuators

Sensors readings

’ Video renderer ‘

?

AR bytestream

’ Video decoder Fﬁ

Video streaming

0RLIOIUI LT\

Control commands

’ Controller Wi-Fi ’j

?

’ Controller GUI ‘

Marker Video
detector encoder
@ g
3] ] £
& 8 Q
— +~
£ e = Robot
= = <
e = 5 controller
F = 3
A @ -
=3 5]
= I3 =
£ a
@ [aa]

|

’ Controller Bluetooth J

?

Sensors

Controller Wi-Fi ‘

Fig. 2. The architecture of the application.

A. Android Operating System

The Android Operating System is structured in three main
layers, as represented in Fig. 3. The Android OS is built over a
Linux kernel (3.x, from Android 4.0) which provide the device
drivers for interacting with the hardware components and the
typical OS functionalities, such as memory, process, file, and
power management, and networking.

Over this layer there is the Android native libraries layer
and the Android Runtime. The libraries are written in C/C++,
but can be accessed by a Java interface. They provide the
basic functionalities for the applications (such as building
the graphical interfaces, access to the web, record and play
a media content). The Android runtime is composed of the
Dalvik Virtual Machine (a Java Virtual Machine optimized for
embedded systems) and the Core libraries (Core Java APIs
which provide a basic development platform).

Next up there is the Application Framework layer, which
provides the building blocks for the Android applications.
In particular, at this layer level, there are some tools for

recording multimedia data (mainly from microphone and cam-
era) and playing the recorded contribution. These functions
are provided mainly by two components of the multimedia
framework, MediaRecorder and MediaPlayer, which provide
respectively the recording and the playing. These components
can operate on both audio and video data, performing coding
and decoding using the most common multimedia formats.
However, the multimedia application framework has not been
suited for real-time streaming until its more recent versions. In
fact, since buffering several frames is required to optimize the
encoding of the stream, real-time streaming can be provided
using these libraries only forcing the release of short blocks of
frames, e.g., by periodically starting and stopping the coding
and the transmission of the encoded multimedia data. Besides
being very rigid, this way to operate is also inefficient, due
to the overhead required for starting the interaction with the
capturing devices.

Since the version 4.1 of Android (Jellybean, API 16,
released in July 2012), a new set of powerful low-level media
APIs is now available: the MediaCodec library. It provides to



Applications

Dialer, SMS, Browser,
Clock, Camera, Calculator, ...

Application Framework

Activity manager, Window manager,
Hardware services (Bluetooth, Wi-Fi, Sensors),
Media CoDecs, Content provider

Libraries Runtime

Media, Graphics,
SQLite, WebKit

Core libraries
Dalvik Virtual Machine

device drivers

camera, keypad, touchscreen, flash memory,
communication, sensors

Linux kernel

memory, process, file, power management
networking

Fig. 3. The architecture of the Android Operating System.

the applications the possibility of accessing to the hardware
codecs directly from Java. This library allows to set-up the
parameters for the video encoding (e.g., height, width, color
space, frame rate). However, since different devices can have
different hardware, the only guaranteed color space is the YUV
with a 4:2:2 chrominance subsampling schema, which has been
used in this work.

B. The software layers

Several open source AR frameworks are available for
Android. Among them, at least AndAR [11] and NyARToolkit
[12] should be cited. AndAR is a Java wrapper for ARToolKit
[13], which is one of the most known open source AR toolkit
and is coded in C. Since the Android applications are executed
on a Java virtual machine, the ARToolKit library cannot be run
directly, but the Java wrapping of AndAR, ARToolKit based
applications can be run on Android. However, the simplicity
of use of the ARToolKit functionalities provided by AndAR
imposes a certain rigidity in the framework: the acquisition, the
AR enrichment and the visualization have to be operated on the
same device. This is a strong limitation when the application
requires that the processing is distributed on several devices
which have to operate in real-time.

NyARToolkit for Android is a project maintained by the
Japan Android Users Group [14]. Since it is a porting in
Java of the ARToolKit’s main functionalities, it allows the
development of AR applications on the Android platform.

(b)

Fig. 4. The robot module. Its main scope is to provide mobility to the
on-board unit, but it can also realize some basic data collection and low-
level autonomous decision. It is composed of a processing unit, two motors
configured as a differential drive, and some sensors (color and touch) (panel
(a)). In panel (b), it is shown carrying the on-board unit.

Besides, it decomposes the AR processing chain in primitive
operations, giving to the developer the flexibility to use them
to build the application fulfilling the specifications in more
complex scenario than just a single application on a single
device. The NyARToolkit is available also for other languages
(Java, C++, C#), which can be useful for extending the here
presented application on devices based on other software
platforms.

III. THE APPLICATION FRAMEWORK
A. The robot

The robotic module (Fig. 4) has been realized using a Lego
Mindstorm NXT 2.0 set. It is composed of an intelligent brick
(a programmable micro-controller at which can be connected
up to four sensors and three actuators), two motors, and two
sensors (one touch and one color sensor). In order to provide
mobility, the two motors has been configured as a differential
drive, due to its simplicity. In this schema, two wheels are
attached to two motors, independently; the robot trajectory
results from the rotational speed difference of the two motors.
The color sensor provides a RGB reading of the ground under
the robot, while the touch sensor can detect collisions with the
environment and other objects.

The information collected by the sensors can be be passed
to the user controller through the on-board unit, but can also
processed by the intelligent brick for taking some autonomous
decision. For instance, when a collision is detected the robot
can stop itself, avoiding potential damages, and waiting for the
suitable recovering instructions that the user can send to the
robot.

Several firmwares are available for the intelligent brick;
they provides the basic functionalities of an operating system,
such as allowing the execution of programs and managing the
I/0. Programs can be written in several languages (e.g., the
Lego firmware supports NXC, a simplified C, while LeJOS
[15] supports Java) and run in a multitasking environment. In
particular, the Lego firmware provides also a Bluetooth com-
munication protocol that allows some basic interaction with
the connected peripherals: sensor readings can be obtained and
command to the actuators can be forwarded by sending (and
receiving) suitable messages on a Bluetooth channel. Hence,



real image capture

pattern data
L

I

I

I

I

| marker type !
I

| recognition |----= q " i

osition

! data | P |

———————————— | |

! orientation |

1 I

,,,,,,,,,,,,,,,,

pattern 1
pattern recognition

virtual scene processing fe-----------

virtual scene overlay

final image display

Fig. 5. The processing scheme for obtaining an augmented reality scene.
In the application here considered, the first two steps are provided by the
on-board unit, while the last three steps are accomplished by the controller.

for simple applicative contexts, where semi-autonomous be-
havior in not required, there is no need of running programs
on the intelligent brick, and all the commands can come from
the user through the on-board unit. However, for implementing
a more complex behavior, programs that run on the intelligent
brick can take care of auxiliary processing and communicate
in a more proactive fashion with the on-board unit and the
user.

B. The on-board unit

The main scope of the robotic module is to provide mo-
bility to the on-board unit, which has the task of capturing the
scene and sending it to the controller. It has been implemented
using an Android 4.1 smartphone equipped with a camera.

During the start up phase, three channels are opened toward
the controller: one for the video streaming, one for the AR
information, and one (optional) for the sensors readings. One
channel, instead is opened from the controller to the on-board
unit for sending the control commands.

Once the application get access to the camera, the video
encoding starts. For this task, the codec H.264 [16] has been
chosen, since it guarantees a high compression ratio, which
results in a better quality of the transmitted video stream:
compared with other codec, H.264 can perform with a lower
bit-rate. This is an advantage in situations when the network
capacity is reduced, due to the distance or the environmental
topology [17]. The encoding is set on a frame-rate of 20 frame-
per-second (fps).

M-

Speed control

Steering control Remote video feedback

Fig. 6. A screenshot of the controller interface.

The second main task of the on-board unit is the processing
for AR (Fig. 5). This is realized through the NyARToolkit
framework: each frame captured by the camera is converted
in gray-scale, and then in binary format through threshold-
ing. Then, for each marker previously registered in the AR
subsystem, the pattern recognition procedure searches for the
presence of the marker in the scene, and, when found, output
its position and orientation with respect to the coordinate
system of the frame. These are the data required for adding the
virtual object to the scene for the visualization. In the case of
the present application, this task is realized on the controller
module, and hence these information are bytestreamed to that
device. It worth noting that the encoding of the frame and
the AR processing are executed by two different process, and
hence, depending on the hardware equipment of the on-board
device, these two tasks can be accomplished concurrently.

C. The controller

The controller module is the interface between the remote
module of the system and the user (Fig. 6). It collects and
displays the information of sensors and camera (after enriching
it with the AR information) and forward the commands for
moving the robotic platform.

As above described, the controller receives from the on-
board unit both the video stream captured by the on-board cam-
era and the AR information. The video stream is processed by
the H.264 decoder, which decode the frames and render them
in RGB format on an OpenGL texture. The AR information,
instead are used to render the virtual object corresponding to
the recognized marker in the position and with the orientation
previously computed. The rendered model is then composed
with the real scene frame applying an overlay layer to the same
OpenGL surface used for displaying the real scene. Also in this
case, the two main tasks of the visualization of the scene can
be processed concurrently.

The control of the motion of the remote module is realized
through two sliders: one (horizontal) for steering, and one
(vertical) for controlling the speed. The value of these bars
is captured by the controller GUI module (Fig. 6), which
passes these values to another module (the “Controller Wi-
Fi” in Fig. 2) that is responsible for translating these values
to commands that can be processed by the robot controller to
drive the actuators. In fact, depending on the architecture of



the propulsion system, different commands have to be sent to
the robot.

For the present work, since we we chosen the simple
differential drive, the steering is caused by the different rotation
of the wheels, which are directly connected to the motors,
and hence depends on the power supplied to each motor. The
power supplied is computed composing the value of the speed
slider (which provide the power reference value) and that of
steering (which further modulates the power reference value).
In practice, given s € [—1, 1] and d € [—1, 1] the position of
the speed and the direction sliders, respectively, the power of
the right and left motors, p,- and p;, respectively, are computed

as:
_[s(1=2d), d>0 (1
Dr = s, d<0 )
s(14+2d), d<0
Pl—{ s d>0 (2)

The computed p,- and p; values are in [—1, 1] and can be easily
remapped in the [— Prax, — Prin]U[Pumin, Prax)> Where Ppi, and
Prax represents the minimum and the maximum values of the
power the motors can be set.

IV. DISCUSSION

Some design choices can be questioned, the main of which
is the use of marker-based AR: although it can be useful for
other entertainment related applications, does it worth for a
remote inspection? In an operative scenario, since the envi-
ronment is supposed being artificial, some objects or building
details (e.g., signals) can be easily recognized by lightweight
procedure and their position can be visually enhanced for a
better perception of the remote operator. Besides, in case of
exploration of a building already mapped, some additional
information can be added to the operator’s display. The AR
however, can be useful also in the developing phases. For
instance, the characteristics of a hostile environment can be
virtually reproduced, and their effects can be simulated on the
operation of the robotic module (e.g., a marker can represent a
puddle and if the robot travel across it, some loss in gripping
can be simulated by adding a certain drift to the robot’s
motion).

From the implementation point of view, the choice of
deploying the AR recognition subsystem on the on-board unit
can be discussed, since it burden the computational load of
this unit. Typically, in fact, this device would be smaller and,
since it is battery powered, has limited computational power.
From a logical point of view, this processing could instead
be performed on the controller module, which can have less
constraints both in term of weight and portability. Hence, since
it does not have any a-priori constraint about the power source,
it could provide a higher computational performance. However,
the video encoding process can introduce artifacts which can
interfere with the pattern recognition process.

In fact, the video stream is partitioned in small chunks of
successive frames, called groups of pictures (GOPs). The first
frame of each GOP is completely encoded, while the others
are encoded as difference with respect to the previous one (in
particular, they are approximated as a composition of blocks of

pixels of the previous frame, suitably shifted). Hence, encoding
errors can be propagated until the next GOP. Although this
approximation can be acceptable by the human observer, the
artifacts introduced can have disruptive effects on the binary
pattern recognition, while performing this operation directly on
the frames captured by the on-board camera allows to avoid
this problem. The alternative, which consist in transmitting the
video stream without any lossy compression (option allowed
by the MediaCodec library), is unfeasible due to the saturation
of the communication channel, which would force a lower
resolution in time (i.e., a lower frame rate) and hence would
provide a jerky video stream. Besides, this can involve a delay
in the recognition of the marker or also a potential miss in the
marker recognition due to a frame drop.

The performance of the AR streaming system depends
mainly on the device used for implementing the on-board
unit. We used a Samsung Galaxy Young Duos GT-S6312, with
a single-core Cortex A5 1 GHz processor and GPU Adreno
200, Android 4.1.2 version, kernel 3.4.0, with 768 MB RAM
and a 3 megapixels camera. With this hardware, the estimated
visualization delay has been 0.42 s.

V. CONCLUSION

In this paper, a framework for developing prototypes of
remote controlled inspection robots with semi-autonomous
behavior and augmented reality enriched real-time video feed-
back has been presented.

It requires very common and reusable hardware, equipped
with only open source software.

These properties and its modular design allow to obtain a
very flexible system, with a low set-up time, which provide a
fast prototyping framework which can be also used a didactic
tool.

REFERENCES

[1] H. Roman, B. Pellegrino, and W. Sigrist, “Pipe crawling inspection
robots: an overview,” Energy Conversion, IEEE Transactions on, vol. 8,
no. 3, pp. 576-583, 1993.

[2] J.-B.Izard, L. Gargiulo, D. Keller, and Y. Perrot, “Hardening inspection
devices to ultra-high vacuum, temperature and high magnetic field,”
Applied Superconductivity, IEEE Transactions on, vol. 20, no. 3, pp.
1767-1772, 2010.

[3] M. Friedrich, G. Dobie, C. C. Chan, S. Pierce, W. Galbraith, S. Mar-
shall, and G. Hayward, “Miniature mobile sensor platforms for condi-
tion monitoring of structures,” Sensors Journal, IEEE, vol. 9, no. 11,
pp. 1439-1448, 2009.

[4] O. Netland and A. Skavhaug, “Prototyping and evaluation of a telerobot
for remote inspection of offshore wind farms,” in Applied Robotics for
the Power Industry (CARPI), 2012 2nd International Conference on,
2012, pp. 187-192.

[S] M. Bengel, K. Pfeiffer, B. Graf, A. Bubeck, and A. Verl, “Mobile
robots for offshore inspection and manipulation,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
2009, pp. 3317-3322.

[6] M. Gervautz and D. Schmalstieg, “Anywhere interfaces using handheld
augmented reality,” Computer, vol. 45, no. 7, pp. 26-31, 2012.

[71 V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris,
D. Stricker, T. Gleue, P. Dachne, and L. Almeida, “Archeoguide: an

augmented reality guide for archaeological sites,” Computer Graphics
and Applications, IEEE, vol. 22, no. 5, pp. 52-60, 2002.



[8]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

(17]

S. Henderson and S. Feiner, “Exploring the benefits of augmented
reality documentation for maintenance and repair,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 17, no. 10, pp. 1355-
1368, 2011.

K. Chintamani, A. Cao, R. Ellis, and A. Pandya, “Improved telemanipu-
lator navigation during display-control misalignments using augmented
reality cues,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 40, no. 1, pp. 29-39, 2010.

O. Demuynck and J. Menendez, “Magic cards: A new augmented-reality
approach,” Computer Graphics and Applications, IEEE, vol. 33, no. 1,
pp. 12-19, 2013.

AndAR. [Online]. Available: http://code.google.com/p/andar/
NyARToolkit. [Online]. Available: http://nyatla.jp/nyartoolkit/
ARToolKit. [Online]. Available: http://www.hitl.washington.edu/
artoolkit/

NyARToolkit for Android. [Online]. Available: http://sourceforge.jp/
projects/nyartoolkit-and/

LeJOS, Java for Lego Mindstorms. [Online]. Available: http:
//ejos.sourceforge.net/

T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the h.264/avc video coding standard,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560-576, 2003.
Y. Baguda, N. Fisal, S. Syed, S.-K. Yusof, and R. Rashid, “H264/avc
features and functionalities suitable for wireless video transmission,” in
Wireless and Optical Communications Networks, 2008. WOCN ’08. 5th
IFIP International Conference on, 2008, pp. 1-5.



