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Doğuş University
Istanbul, Turkey

Email: asalman@dogus.edu.tr

L. Cristaldi, M. Rossi, and T. Poli
Politecnico di Milano

Milan, Italy
Email: {loredana.cristaldi,

tiziana.poli}@polimi.it,
marco4.rossi@mail.polimi.it

Abstract—Planning, managing, and operating power grids
using mixed traditional and renewable energy sources requires a
reliable forecasting of the contribution of the renewable sources,
due to their variable nature. Besides, the short-term prediction
of the climatic conditions finds application in other fields (e.g.,
Climate Sensitive Buildings). In particular, this work is related
to the solar radiation forecasting, that affects the photovoltaic
production. The variability of the weather phenomena and
climate features make the prediction a difficult task. In fact, the
amount of solar radiation that reaches a particular geographical
location depends not only by its latitude, but also by the
geographical characteristics of the region that can create local
climate conditions. In order to capture such variability, the data
collected in the past can be used. Several sources can provide
the data needed for the prediction (satellite and ground images,
numerical weather predictions, ground measurement stations)
with different resolution in time and space. In this paper, a new
learning paradigm, the Extreme Learning Machine, is used to
train a neural network model for the prediction of the solar
illuminance. The neural networks are challenged on a two-year
ground solar illuminance dataset measured in Milan, and the
results are compared with those of simple predictors and results
in literature.

I. INTRODUCTION

Renewable energies will play a role of increasing impor-
tance due to the evidence of the environmental impact of
the use of traditional fossil materials and decreasing of their
availability, also the general trend of the energy policies which
is going toward a mixed sources policies. In the renewable
energy sources scenario, a major role is played by the pho-
tovoltaic (PV) technology, which allows to obtain electric
energy from solar radiation [1]. Besides, the appealing of this
production technology lies in the possibility of exploiting also
small otherwise-unused production sites, such as the roof of
the buildings; part of the produced energy can be used for
local needs, and the rest can be injected in the grid. The main
weakness of this renewable energy source is its dependency by

astronomical and weather phenomena that make its availability
uncontrollable.

In fact, the solar radiation that reaches a given site is affected
by different factors. The most important are: its geographic
position, which involves the potential total amount of solar
radiation that can be irradiated on the site, with daily and
yearly seasonality; the weather, since the clouds shields part
of the radiation that effectively reaches the ground; and the
local climate, which describes the peculiar attitude to cloud
formation and persistence.

According to [2], the grid operators needs solar radiation
forecasts with different time and space granularity: short-
term (intra-hour, hour ahead, and day ahead) forecasts, for
grid management activities; medium-term (months ahead)
forecasts, for planning and assets optimization; and long-term
(years ahead) for planning activity such as resource assessment
and site selection. Although the long-term availability can
be quite easily estimated for large areas with a satisfiable
accuracy, short-term localized prediction are challenging due
to the high variability of the weather, which depends on many
physical interconnected factors. This type of forecasting is
precious for grid management. In fact, when a renewable
energy source is connected to the grid, the grid operators
have to compensate the power required from the grid (but
not available from renewable sources) with that provided by
traditional energy sources. Hence, an efficient management of
the grid requires a reliable forecasting of the energy provided
by renewable sources.

Since weather is the main cause of the solar radiation
variability, solar radiation prediction algorithms in literature
commonly make use of weather forecast data. Usually, weather
forecasts are carried out using satellite images and data from
the ground stations. The two main aspects for qualifying
weather measurements used for weather forecast are the spatial
and the time resolutions. For instance, satellite images cover



a large area, with a poor resolution (each pixel can cover
several kilometers) and a very poor time resolution (hours of
refresh time). On the contrary, ground stations can provide
direct measurements with a high temporal resolution, but are
representative of a small neighborhood of the measurement
station. Hence, since direct or indirect measurements of the
solar radiation are generally not available for each site of
interest and at each time, approximation using data from
the nearby sites should be carried out. The approximation
algorithm have to consider not only the distance (in time and
space) of the available data, but also the local characteristics,
such as the ground morphology, which can have a direct effect
on the local climate [3].

Depending on the application, different forecast granularity
can be required, and different prediction paradigms can be
used. This paper is focused on the one-hour-ahead forecast
of the global horizontal illuminance using a two-year hourly
sampling. The dataset has been acquired from October 2005
to October 2007 by the MeteoLab [3][4]. This dataset has
been previously used in [5], where the forecasting has been
obtained through a Support Vector Machine (SVM) model. In
this paper, the problem is reframed as a time series prediction
problem and a neural network, namely a single layer neural
network with Gaussian neurons, trained using the Extreme
Learning Machine (ELM) learning paradigm, is used to realize
the forecast. Several learning scheme are challenged and
their predictions are compared with a naı̈ve predictor, the
persistence model, a simple predictive model, namely the k-
Nearest Neighbor (k-NN) model, and the SVM model from
[5].

II. TIME-SERIES MODELS

A time series is composed of a sequence of observation xt
sampled by a sequence of random variables Xt. Usually, the
ordering value is related to the time and the observation are
related to a phenomenon that varies with the time. A practical
assumption is that the observations are taken in equally spaced
instants.

A. Extreme Learning Machines

Neural networks are widely used paradigms to realize both
a classifier and an approximator of a function described by
means of a dataset composed of samples from the function
itself [6][7]. The elements of this class of machine learning
paradigms are very variegated, but are characterized by their
architecture and their generalization ability: their behavior
results as the composition of the activity of interconnected
simple processing units (the neurons, or nodes), each com-
puting the same parametric function (with different parameter
values); a suitable algorithm (the learning algorithm) adapts
the value of the network parameters to the given dataset
(the training, or learning dataset), which represents a set of
examples (possibly affected by noise).

The most common neural architecture is the feedforward
neural network, where the neurons of the network are par-
titioned in several groups, called layers, and connected such

that neurons of one layer are connected only to neurons of the
same layer: the information flows from the first layer (called
input layer) to the last (called output layer), passing through
the internal layers (called hidden layers). It can be shown that
Single-hidden Layer Feedforward Networks (SLFNs) enjoy
the universal approximation property (i.e., for every contin-
uous function, exists a neural network that approximates the
considered function arbitrarily well). Radial Basis Function
(RBF) networks are SLFNs where neurons implement a radial
symmetry function. The output function of a RBF network for
approximating RD → R functions is represented by

fRBF(x) =
L∑

i=1

βig

(
||x− ai||

bi

)
(1)

where L is the number of neurons, g is the neuron function,
ai ∈ RD and bi ∈ R+ are respectively the centers and the
width of the neuron, while βi ∈ R are the weight of the
connection of the i-th neuron with the output node.

The Extreme Learning Machine (ELM) is a SLFN with a
fixed architecture and randomly assigned hidden nodes param-
eters [8][9][10][11]. In particular, with the model described
in (1), the parameters {ai} and {bi} are randomly chosen
with a given probability distribution. Given the training set
{(xj , yj) |xj ∈ RD, yj ∈ R, j = 1, . . . , N}, the output of
the ELM network (1) will be:

ŷj = fRBF(xj) =
L∑

i=1

βig

(
||xj − ai||

bi

)
(2)

for j = 1, . . . , N , where ŷj is the network output for xj ,
thus approximating yj . In matricial notation, the N equations
of (2) can be expressed:

Gβ = Ŷ (3)

where G is a N × L matrix such that Gj,i = g(xj ; ai, bi),
β = [β1 · · · βL]T , and Ŷ = [ŷ1 · · · ŷN ]T . Given the training
dataset and the hidden neurons parameters, the weights β are
the only unknown of the linear system described in (3), and,
under mild conditions, they can be computed as:

β̂ = (GTG)−1GT Ŷ = G†Ŷ (4)

where G† = (GTG)−1GT denotes the Moore-Penrose
pseudo-inverse of the matrix G.

The ELM learning paradigm exploits the robustness of the
solution with respect to the optimal value of the parameters
of the neurons, and instead of wasting computational time for
exploring the parameters’ space, choose them by sampling
a suitable distribution function (which encode the a-priori
knowledge on the problem), and compute the weights as the
solution of the above described linear system. It can be shown
that the solution β̂ in (4) is an optimal solution in the least
square sense, and has the smallest norm among the least square
optimal solutions.

Many variants of the ELM learning schema has been
proposed in literature. Among them, at least the following
worth to be cited. In [9] and [10] incremental versions have



been developed, where the neurons are added one by one,
while in [12] a pruning scheme is introduced to remove those
neurons with low relevance.

The ELM network can be used in time series prediction
using some previously observed values for composing the in-
put vectors. For instance, when using a two-dimensional input
space (D = 2), the training dataset will be composed by triples
of the form (xt−2, xt−1, xt), where x̂t = fRBF(xt−2, xt−1)
will be assumed as an approximation of xt.

B. Persistence

In order to assess the performance of the model in the short-
term prediction of a time series, the persistence predictor is
often used. It is a naı̈ve predictor that assumes that the next
value of the time series, xt will be equal to the last known,
xt−1, i.e., fP(xt) = xt−1. It is obviously inappropriate for
long-term prediction of time-series of interest in real cases,
but it can be used as a baseline forecast: any other model is
supposed to perform better than the persistence model.

C. k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [13]. It is used to predict the value
of a function, f , in unknown points, given a sampling of
the function itself (training data), {(xi, yi) | yi = f(xi)}.
For an unknown point, x, the value of f(x) is estimated
from the value of its k nearest neighbors, for a given k,
using a suitable voting scheme or an average. The most
simple scheme, often used in classification, estimates f(x)
as the most common output value among its neighbors, while
in function approximation the average output value is often
used. More complex schemes, such as the use of weighted
averaging, or a complex norm for computing the distance can
be used. The k-NN can be used in time series prediction
using some previously observed values for composing the
input vectors. For instance, when using a two-dimensional
feature space, the training dataset will be composed by triples
of the form (xt−2, xt−1, xt), where will be assumed that
xt = f(xt−2, xt−1) = w1xt−2 + w2xt−1, for a-priori given
weight w1 and w2.

III. EXPERIMENTS

The dataset used in the experiments described in the present
paper has been collected by the MeteoLab [3][4] between
October 2005 and October 2007. MeteoLab measures:
• air temperature;
• relative humidity;
• global horizontal irradiance;
• diffuse horizontal irradiance;
• global horizontal illuminance.
The station samples the data every ten minutes, but the

dataset used here considers only their hourly average.
The illuminance varies both on daily and seasonal basis.

The surface reported in Figs. 1a–b shows this behavior. It has
been obtained by averaging the illuminance samples measured
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Fig. 1. The illuminance samples belonging to the same day of the year and
to the same hour have been averaged and plotted as a surface. It is evident that
there is a trend, but with an high variability which results in a non-smooth
surface.

in the same hour of the same day of the year. Although there is
a clear trend, the variability of the illuminance (which depends
also by fast changing meteorological phenomena) makes the
resulting surface very rough.

Figure 2, instead shows the relation between the illumina-
tion acquired at two successive hours. In particular, in Fig. 2a
the distribution of the points along the identity line supports
the use of the persistence predictor. However, the maximum
of the prediction error of the persistence can be considerably
high: in fact, it can be estimated as the length of the vertical
section of the cloud of points, which is at least 40 long.

A. Dataset Pre-Processing

For this work, we focused only on the global horizontal
illuminance (i.e., the fraction of the solar radiation that can
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Fig. 2. The persistence predictor makes direct use of the illuminance value
measured one hour before. In panel (a), the relationship between the two
illuminance measurement made at distance of one hour one from the other
is shown. Although the samples populate the region around the identity line,
an evident dispersion is shown. In panel (b), the estimated probability density
function of the variation (which standard deviation is 7.88).

be actually perceived by the human eyes). Since time series
models requires that all the values are equally time spaced, the
few values that are missing are interpolated using a simple rule
that exploits the daily seasonality of the solar radiation. For
each missing value, xt, the set {xt−1, xt+1, xt−24, xt+24},
i.e., the set composed of the illuminance one hour before and
ahead, and one day before and ahead are considered. The
missing value is then replaced with the average of the collected
values. Since the missing data are few, the selected set has
a meaningful number of elements even though some of the
selected elements are missing too.

The resulting dataset is composed of 18096 samples. Since
the dataset covers a period of time of two years, the first

year has been used as training set. In this way, the yearly
variability have a chance of being captured by the models.
The data belonging to the second year has been partitioned
in the validation and training set. Hence, training, validation,
and testing set are composed of, respectively, 9048, 4524, and
4524 samples.

B. Performance evaluation

For the evaluation of the performances, only the daylight
hours data ([8, 19]) has been considered. Besides, since the il-
luminance cannot be negative, all the negative values predicted
by the models are remapped to zero.

The prediction error has been measured by means of the
average of the absolute error achieved on the testing set data:

Err(f) = E(|xt − f(xt)|) (5)

where f(xt) is the value for xt predicted by the model f .
Another performance statistics used in solar radiation pre-

diction is the mean relative error:

Rel(f) = E

(
|xt − f(xt)|
|xt|

)
(6)

C. Prediction through k-NN models

The performance of a k-NN predictor depends on several
hyperparameters. Since it does not requires other training
process than just storing the training values, all the hyperpa-
rameters of a k-NN predictor operate in the prediction stage.
In particular, the behavior of the k-NN predictor is ruled by:
• k: the number of neighbors;
• D: the number of dimension of the input space; it

corresponds to the number of previous values used for
the prediction;

• the weighting scheme: the law to assign the weights for
the weighted averaging prediction;

• the norm of the input space.
The following values for the hyperparameters has been chal-
lenged:

k ∈ [1, 30] (7)

D ∈ [1, 5] (8)

Three weighting schemes have been tried: equal weight,
weight proportional to the inverse of the neighborhood rank,
and weight proportional to the inverse of the distance. Only
the Euclidean norm has been used to compute the distance in
the input space.

For the sake of comparison, the rules for generating the
training, validation and test set will be the same one used for
the ELM models, described in Section III-A.

D. Prediction through ELM models

In order to train an ELM neural network as a time series
predictor, the hyperparameters that regulate the optimization
procedure (i.e., the probability distribution of the neuron
parameters, ai and bi, the input space dimension, D, the
number of the neurons, L, and the neuron function, g), have
to be set to the proper value.



The dimensionality of the input training data, D has been
chosen in [1, 7] (8), while networks of several sizes, L, have
been challenged:

L ∈ {10, 25, 50, 100, 250, 500, 1000} (9)

Since it is the most used in literature, the only neuron function
implemented has been the Gaussian function:

g(x; a, b) = exp

(
−||x− a||

2

b2

)
(10)

while more efforts have been dedicated in exploring the
strategies for assigning proper values to the {ai} and {bi}
parameters. Since the Gaussian has a meaningful output only
in a neighborhood of its center, the distribution of the centers,
here indicated as the random variable A, is usually derived
from the position of the input training data. In particular, three
distributions have been tried for A:
• A1, uniform distribution in the bounding box of the input

training data;
• A2, sampling with replacement from the input training

data;
• A3, sampling without replacement from the input training

data.
The width of the Gaussian, b, regulates the extent of its
influence region (in regions further then 3b from a, the output
is negligible). Since when the dimensionality of the input space
increases the data becomes sparse (a problem often referred to
as curse of dimensionality), a value of b that allows a Gaussian
to cover a significant number of input examples in a given
dimensionality, can be ineffective when the dimensionality of
the space increases. Hence, for fairly comparing the effects of
the dimensionality, we chosen a set of relative values for the
width, r, that are then customized to the actual value of D.
This is realized assigning to b the relative width, r, multiplied
by the diagonal of the bounding box of the input training data.
The value challenged for r are:

r ∈ {0.01, 0.05, 0.1, 0.5, 1} (11)

Once the proper value of b has been computed for the
considered dimensionality, the width of the neurons, {bi} are
sampled from B ∼ N(b, b/3) (i.e., {bi} are distributed as a
normal with mean b and standard deviation b/3). Since neg-
ative value are possible, but unacceptable, they are discarded
and resampled. It worth noting that if all the neurons had the
same width, the sampling with replacement distribution for
{ai} has the only effect of reducing the number of neurons.

Since the parameters of the network are chosen by chance,
five trials with the same combination of the hyperparameters
has been run and the performance of the parameter combina-
tion has been averaged.

IV. RESULTS

The predictors described in Section II (i.e., the persistence,
the k-NN, and the ELM models) have been coded in Mat-
lab, and their performances evaluated using the prediction
error, Err(f), described in (5). Since the persistence predictor

TABLE I
TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f)
Persistence 6.09

k-NN 3.17
ELM 3.13
SVM 2.89

SVM [5] 2.34

TABLE II
TEST ERROR ACHIEVED BY THE ELM PREDICTOR.

#trial Err (std)) Err(fSVR)
1 3.17 (4.42)

3.13 (4.34)
2 3.11 (4.32)
3 3.09 (4.30)
4 3.14 (4.35)
5 3.12 (4.34)

configuration does not need any hyperparameters, the whole
dataset described in Section III-A has been used to assess
its performances. Instead, the training of the k-NN and the
ELM models are regulated by a pool of hyperparameters.
Hence, the training set has been used to estimate the model’s
parameters for each combination of the hyperparameters, then
the validation dataset has been used to identify the best model
(i.e., the one that achieved the lowest prediction error on the
validation dataset) and the prediction error of that model on
the testing set has been used to measure the performance of
the class of the predictors. The experiments have been carried
out on a PC equipped with an Intel Core 2 Quad CPU at 2.5
GHz and 4 GB of RAM.

As reported in Table I, the persistence predictor has achieved
an error Err(fP) = 6.09, while the k-NN achieved and error
Err(fk-NN) = 3.17, for D = 4, k = 18, and using the
inverted distance weighting scheme. The best ELM model,
which achieved an error of Err(fELM) = 3.13, resulted the
one trained using the following combination of hyperparam-
eters: D = 5 r = 0.5 (b = 77.4), L = 100, and using
the A3 distribution for choosing the centers position. The
performance achieved in each of the five trials for this model
has been reported in II, where also the standard deviation of
the prediction error has been reported. It can be noted that the
figure is quite stable.

In Fig. 3, the structure of the error for the best ELM model is
represented with respect to the period of the year and the hour
of the prediction and as an histogram. From Fig. 3a, it can be
noted that the highest errors belong to the central region, i.e.,
in the period of the year and the day when the illuminance
is higher. However, the distribution seems enough uniform.
This means that the predictor cover all the region of interest.
The histogram in Fig. 3b shows that a large majority of the
prediction has been very close to the true value, although few
large exception are present.

For the sake of comparison, the prediction error obtained
using Support Vector Machines (SVM) as predictor [5] is also
reported. It worth noting that in that work the randomization
of the dataset has been different from the one used in the
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Fig. 3. Test error distribution. In panel (a), the test error computed in all the
trials is reported with respect to the day of the year and the hour. Since the
test set does not include all the possible time combinations, the error have
been reported averaging those of seven consecutive days. The error is almost
uniform on the domain, although it slightly follows the seasonal and daily
variability. In panel (b), the estimated probability density function of the test
error (which standard deviation is 4.31).

present paper. In particular, in the present work the data used
for training and for assessment (validation and testing) belong
to two different time intervals (one year for training, the
following year for assessment), while in [5] the dataset has
been randomly equally partitioned without any consideration
for the time span. Besides, also the information used are
different, since in [5] the input variables were: the day of
the year, the hour, the illuminance of the previous hour, and
the average illuminance of the previous day and the previous
week. Here, instead, only the illuminance values have been
used, in order to make easier the comparison with standard
statistical tools for time series prediction. Hence, the results

are only loosely comparable. In order to provide a proper
comparison, some experiments have been run also with the
SVM (using the LibCVM Toolkit [14]) on the datasets used
for the present paper. The best performing model, as reported
in Table I, achieved an error of Err(fSVM) = 2.89; it is
composed of L = 5325 support vectors, and has been trained
using the following values for the hyperparameters: D = 4,
r = 0.1, ε = 0.1, and C = 10. This figure is more comparable
to the error achieved with the ELM network (and, on the other
hand, it can be seen as a measure of the influence of the dataset
partitioning on the prediction ability).

As supposed, the ELM model achieved an error well below
the persistence. Since the performance obtained by the ELM
network is only slightly lower than that achieved by the k-NN
predictor, the ELM effectiveness can be questioned. However,
it worth noting that the k-NN predictor stores 9048 training
examples (and use them in the prediction), while the ELM
network is composed of 100 neurons (i.e., ELM uses 1.11%
units wrt. k-NN). A similar consideration applies when con-
fronting ELM with SVM. Although the relative difference of
Err(fSVM) = 2.89 and Err(fELM) is quite consistent (0.24,
about 8.86%), it should be put into proportion considering the
span of the illuminance value, [0, 69.2]. Besides, the ELM
network make use of 100 neurons, while the SVM is composed
of 5325 units. Hence, it seems there is room for improvements.

In Fig. 4, the test error achieved with all the models and for
all the trials are reported with respect to the hyperparameter
values used for the training. In order to understand the
influence of the single hyperparameter on the performance of
the ELM network, the graph of the error achieved using the
hyperparameter values that achieved the best validation error
wit respect to the value of the considered hyperparameter is
also plotted. In particular, the Fig. 4b shows the error wrt. the
size of the ELM network. It can be noted that although the
minimum error for each value of L is close to the absolute
minimum, the distribution for the higher value of L (500
and 1000) seems to be more sparse. This means that the
opportunities offered by the large number of units are not
fully exploited by the distribution laws chosen for the neuron
parameters (A and B). Hence, when the number of neurons is
large, a great number of them is wasted. This is more evident
when the SVM results is considered: a large number of units
allow to lower the error.

The optimal value for D, which is the number of previous
data used as input, is always limited to small numbers (4, for
k-NN and SVM, 5 for ELM). It is a reasonable result, since
intuitively, the knowledge of the illuminance too far in the
past is not very useful, since the weather can change more
rapidly. On the other hand, the comparison with the results
obtained in [5], suggests that other information may improve
the performance: the period of the year and the hour of the
prediction may be precious information for the predictor.

V. CONCLUSIONS

In this paper, the ELM neural network model has been
challenged with a problem of time series prediction.
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Fig. 4. Test error (averaged over five trials) wrt. the hyperparameters.

The results shows that it is able to achieve an error slightly
larger than a predictor used in a previous work, the SVM, but
using a fraction of the computational resources required by
the SVM (an error 8.86% larger using 1.88% of the computa-
tional resources). Since larger ELM networks that have been
challenged have achieved a larger error, the effectiveness of
the distribution used to choose the neuron parameters have to
be questioned.

Future works will explore different schemes for choosing
the neuron parameters, also exploiting the use of multiscale
approaches used in the literature for RBF [15]. Another
research direction is the exploitation of the time and date
information to improve the accuracy of the prediction.
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