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Abstract—A reliable forecast of renewable energies production,
like solar radiation, is required for planning, managing, and
operating power grids. Besides, the short-term prediction of the
climatic conditions is very useful for many other purposes (e.g.,
for Climate Sensitive Buildings). Data for the prediction can
be produced by several sources (satellite and ground images,
numerical weather predictions, ground measurement stations)
with different resolution in time and space. However, the un-
steadiness of the weather phenomena and the variability of the
climate make the prediction a difficult task, although the data
collected in the past can be used to capture the daily and seasonal
variability. In this paper, several autoregressive models (namely,
AR, ARMA, and ARIMA) are challenged on a two-year ground
solar illuminance dataset measured in Milan, and the results are
compared with those of simple predictor and results in literature.

I. INTRODUCTION

The exploitation of renewable energies is an important
aspect of the actual and future energy policies. Among the
renewable energy sources, the photovoltaic (PV) technology is
one of the most actively studied, since it allows to obtain elec-
tric energy from solar radiation [1]. Although the efficiency of
the nowadays technology is questionable, the appealing of this
way to produce energy lies in its cost-effectiveness and low
environmental impact.

The main weakness of this renewable energy source is that
its availability cannot be controlled. In fact, the availability
of the solar radiation depends on different factors: geographic
position, local climate, and weather are the most important.
Among these, the position and the climate influence onto the
solar radiation can be easily stated from astronomical and
statistical data, but the weather is characterized by a high
variability and depends on many physical factors. Besides, the
PV energy harvesting is operated by many small plants, geo-
graphically spread out on a large area. The energy production
is often consumed for facing the needs of nearby buildings,
but the excess flows into the power grid. The unpredictability
of the amount of energy available is a problem for the grid
operator, that has to integrate the energy required by the

users with traditional non-renewable energy sources. Hence,
a trustable solar radiation forecasting is a powerful tool for an
efficient grid management.

Depending on their use, the forecasts are required with a
different horizon and with a different granularity. According
to [2], the forecasts required by the activity related to the grid
management can be partitioned in three categories (intra-hour,
hour ahead, and day ahead), while those related to planning
and assets optimization can be categorized in medium and
long-term (monthly and yearly forecasts, respectively).

Since the main factor for solar radiation availability is the
local weather, approaches based on weather forecast have been
widely used in literature. These are based on data obtained
from satellite observations and ground stations. Two main
aspects should be taken into account, namely, geographic and
time availability. Since direct measurement of solar radiation is
not available for all the sites of interest, data from nearby sites
have to be used to obtain the desired data. Although several
approximation techniques and algorithms are largely available
in literature, in this case the local geographical features of
the site has to be carefully considered. For instance, large
variations in elevation or in surface type [3] can produce
micro-climate conditions very different from those of the
available sites. Besides, the sampling rate of the available
measurement have to be related to the granularity of the
forecast.

The solar radiation prediction can be based on data produced
by several data sources. They are characterized by the type
of data they produce, as well the space-time granularity they
provide:

• Numerical Weather Prediction (NWP) models are global
models that provide forecast at 1 to 3 hours granularity,
with a few days horizon, but with a few square kilometers
spatial resolution. They are used to produce predictions
on physical variable that can be related to the solar
radiation.

• Satellite-base forecast are very effective in capturing the
cloudiness of a large geographical area. Since the cloudi-



ness is the main factor that affects the solar radiation,
satellite imagery can provide critical information for the
PV production forecast. The spatial granularity of the
prediction is limited to one square kilometer, although
they can provide better one to six hours ahead predictions
than NWP-based approaches. However, the long refresh
time of the satellite images, as well as the problem
of estimating the cloud altitudes and their projected
shadows, limits the accuracy of the approaches of this
type.

• All-sky imagers allow to capture the image of the hemi-
spherical sky around the ground based observation station
and provide near real-time prediction of the cloud posi-
tion in a region nearby the station site. A sequence of im-
ages, acquired at a high sampling rate, can be processed
with cloud-detecting algorithms and used to predict the
clouds movement and evolution. These approach can be
very effective for short term (minutes) and geographically
local predictions.

• Ground measurements are very useful since they allow
a direct measurement of the solar radiation. Their data
can be used both for producing a local prediction and
for assessing the performance of the models used for the
prediction. Ground measurement are usually available at
a high rate, although the data are valid only in a lim-
ited neighborhood of the site. Besides, the measurement
accuracy can be affected by the presence of dirt or birds.

Several forecasting approaches have been used in literature.
Among these, the most effective in producing hour-ahead
predictions are based on empirical regression, neural networks
[4] and time-series models (e.g., ARMA, ARIMA) [5][6].

In this paper, a two years hourly dataset will be used to
model the time series of the global horizontal illuminance is
considered. The dataset has been collected by the MeteoLab
[3][7] between October 2005 and October 2007. In a previous
work [8], a Support Vector Machine (SVM) model has been
used for forecasting this dataset through regression. In the
present work, the illuminance values are considered as a
time series and autoregressive models are used to perform a
forecast. The prediction operated by the autoregressive models
will be compared with a naı̈ve predictor, the persistence model,
a simple predictive model, namely the k-Nearest Neighbor (k-
NN) model, and the SVM model from [8].

II. TIME-SERIES MODELS

A time series is composed of a sequence of observation xt
sampled by a sequence of random variables Xt. Usually, the
ordering value is related to the time and the observation are
related to a phenomenon that varies with the time. A practical
assumption is that the observations are taken in equally spaced
instants.

A. Autoregressive Models

An autoregressive model describes the values of a particular
time series in terms of its past values [9]. In particular, the
value of Xt is modeled as a combination of a part that

is determined by the past values of the series and a part
determined by an unpredictable event that happens at the
time t (innovation). More formally, given a time series {Xt},
its autoregressive representation of order p, often denoted by
AR(p), is:

Xt = α0 +

p∑
k=1

αkXt−k + εt (1)

where α0 is a constant and the innovation ε, is assumed to be
white noise (E(ε) = 0, E(ε2) = σ2) and {εt} are supposed
to be normal i.i.d. variables.

A moving average model describes the time series values in
terms of linear combination of (unobserved) innovation values.
A moving average representation of order q, often denoted by
MA(q), of the time series {Xt} is:

Xt = µ+

q∑
h=1

βhεt−h + εt (2)

The autoregressive and moving average models can be com-
bined in the autoregressive moving average model (ARMA).
An ARMA representation of autoregressive order p and mov-
ing average order q, ARMA(p, q) is formally described as:

Xt = α0 +

p∑
k=1

αkXt−k +

q∑
h=1

βhεt−h + εt (3)

When the time series is sampled from a stationary process, it
can be represented by the above mentioned models. However,
when the time series shows a trend or a seasonality, a more
advanced class of models, namely the autoregressive integrated
moving average models (ARIMA), have to be used. The
ARIMA model take into consideration also the difference
series (i.e., the series resulting by computing the difference
of time lagged series). In particular, the notation ARIMA(p,
d, q) is commonly used for indicating the ARIMA model with
p, d, and q order of respectively autoregression, differencing,
and moving average. In order to formalize this model, the
backward shift operator, B, have to be introduced:

Xt−1 = BXt (4)

This allows to express Xt−k as BkXt. The ARIMA(p, d, q)
representation of the time series {Xt} is:(

1−
p∑

k=1

αkB
k

)
(1−B)dXt =

(
1 +

q∑
h=1

βhB
h

)
εt (5)

B. Persistence

In order to assess the performance of model in the short-
term prediction of a time series, the persistence model is often
used. It is a naı̈ve predictor that assumes that the next value
of the time series, xt will be equal to the last known, xt−1.
It is obviously inappropriate for long-term prediction of time-
series of interest in real cases, but it can be used as a baseline
forecast: it is supposed that any other model will perform
better than the persistence model.



C. k-Nearest Neighbor Interpolator

The k-Nearest Neighbor (k-NN) model is a instance-based
or lazy learning paradigm used both for function approxima-
tion and classification [10]. It is used to predict the value of
a function, f , in unknown points, given a sampling of the
function itself (training data), {(xi, yi) | yi = f(xi)}. For
an unknown point, x, the value of f(x) is estimated from
the value of its k nearest neighbors, for a given k, using
a suitable voting scheme or an average. The most simple
scheme, often used in classification, estimates f(x) as the most
common output value among its neighbors, while in function
approximation the average output value is often used. More
complex schemes, such as the use of weighted averaging,
or a sophisticated norm for computing the distance can be
used as well. The k-NN can be used in time series prediction
using some previously observed values for composing the
input vectors. For instance, when using a two-dimensional
feature space, the training dataset will be composed by triples
of the form (xt−2, xt−1, xt), where will be assumed that
xt = f(xt−2, xt−1).

III. EXPERIMENTS

The dataset used in the experiments described in the present
paper has been collected by the MeteoLab [3][7] between
October 2005 and October 2007. MeteoLab measures:

• air temperature;
• relative humidity;
• global horizontal irradiance;
• diffuse horizontal irradiance;
• global horizontal illuminance.

The station samples the data every ten minutes, but the
dataset used here considers only their hourly average.

The illuminance varies both on daily and seasonal basis.
The surface reported in Fig. 1 shows this behavior. It has been
obtained by averaging the illuminance samples measured in the
same hour of the same day of the year. Although there is a
clear trend, the variability of the illuminance (which depends
also by fast changing meteorological phenomena) makes the
resulting surface very rough.

Figure 2, instead shows the relation between the illumina-
tion acquired at two successive hours. In particular, in Fig. 2a
the distribution of the points along the identity line supports
the use of the persistence predictor. However, the maximum
of the prediction error of the persistence can be considerably
high: in fact, it can be estimated as the length of the vertical
section of the cloud of points, which is at least 40 long.
The histogram in Fig. 2b resembles a mixture of two normal
distributions with the same mean. This is due to the fact that in
the early and the late daylight hours (not to mention the hours
around midday), the illuminance is almost the same (especially
in the winter). Hence, the consecutive samples acquired in
those period of time are quite similar, while the other moments
of the day show a larger variability.
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Fig. 1. The illuminance samples belonging to the same day of the year and
to the same hour have been averaged and plotted as a surface. It is evident that
there is a trend, but with an high variability which results in a non-smooth
surface.

A. Dataset Pre-Processing

For this work, we focused only on the global horizontal
illuminance (i.e., the fraction of the solar radiation that can
be actually perceived by the human eyes). Since time series
models requires that all the values are equally time spaced, the
few values that are missing are interpolated using a simple rule
that exploits the daily seasonality of the solar radiation. For
each missing value, xt, the set {xt−1, xt+1, xt−24, xt+24},
i.e., the set composed of the illuminance one hour before and
ahead, and one day before and ahead are considered. The
missing value is then replaced with the average of the collected
values. Since the missing data are few, the selected set has
a meaningful number of elements even though some of the
selected elements are missing too.
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Fig. 2. The persistence predictor makes direct use of the illuminance value
measured one hour before. In panel (a), the relationship between the two
illuminance measurement made at distance of one hour one from the other
is shown. Although the samples populate the region around the identity line,
an evident dispersion is shown. In panel (b), the estimated probability density
function of the variation (which standard deviation is 7.88).

The resulting dataset is composed of 18096 samples. Since
the dataset covers a period of time of two years, and the
autoregressive models require a training set composed of
consecutive data, the first year has been used as training set. In
this way, the yearly variability have a chance of being captured
by the models. The data belonging to the second year has
been randomly partitioned in the validation and training set.
Hence, training, validation, and testing set are composed of,
respectively, 9048, 4524, and 4524 samples.

B. Performance Evaluation

For the evaluation of the performances, only the daylight
hours data ([8, 19]) has been considered. Besides, since the il-

luminance cannot be negative, all the negative values predicted
by the models are remapped to zero.

The prediction error has been measured by means of the
average of the absolute error achieved on the testing set data:

Err(f) = E(|xt − f(xt)|) (6)

where f(x)t is the value for xt predicted by the model f .
Another performance statistics used in solar radiation pre-

diction is the mean relative error:

Rel(f) = E

(
|xt − f(xt)|
|xt|

)
(7)

C. Prediction through k-NN Models

The performance of a k-NN predictor depends on several
hyperparameters. Since it does not requires other training
process than just storing the training values, all the hyperpa-
rameters of a k-NN predictor operate in the prediction stage.
In particular, the behavior of the k-NN predictor is ruled by:

• k: the number of neighbors;
• D: the number of dimension of the input space; it

corresponds to the number of previous values used for
the prediction;

• the weighting scheme: the law to assign the weights for
the weighted averaging prediction;

• the norm of the input space.
The following values for the hyperparameters has been chal-
lenged:

k ∈ [1, 30] (8)

D ∈ [1, 5] (9)

Three weighting schemes have been tried: equal weight,
weight proportional to the inverse of the neighborhood rank,
and weight proportional to the inverse of the distance. Only
the Euclidean norm has been used to compute the distance in
the input space.

For the sake of comparison, the rules for generating the
training, validation and test set will be the same used for the
autoregressive models, described in III-A.

D. Prediction through Autoregressive Models

In order to train an autoregressive predictor, the hyperpa-
rameters that regulate the optimization procedure (i.e., the
autoregression order, p, the moving average order, q, and the
differencing order, d), have to be set to the proper value.
Several values have been tried and their effectiveness have
to be assessed through cross validation. In particular, the AR
models have been challenged with p ∈ {1, . . . , 63}; the
ARMA models have been challenged with the combination
of p and q for p ∈ {1, . . . , 25} and q ∈ {1, . . . , 25}; and the
ARIMA model have been challenged with the combination of
the following values of p, d, and q:

p ∈ {1, . . . , 20} (10)

d ∈ {1, . . . , 3} (11)

q ∈ {1, . . . , 20} (12)



TABLE I
TEST ERROR ACHIEVED BY THE PREDICTORS.

Predictor Err(f)
Persistence 6.09

k-NN 3.17
AR 2.84

ARMA 2.86
ARIMA 2.85

SVM 2.89
SVM [8] 2.34

Since the training of the ARMA and ARIMA models requires
consecutive training data, for avoiding of considering two
separated periods of time for evaluating the validation and
training error (which involves the risk of biased estimation
due to the seasonality of the phenomenon under study), the
prediction on the data not used to train the predictor has been
carried out first and then the predicted period has been sampled
for obtaining the validation and testing data.

IV. RESULTS

The persistence and k-NN predictors, described in Sec-
tion II, have been coded in Matlab, while for the autoregressive
models (AR, ARMA, and ARIMA) their implementation in
R have been used. Their performances have been evaluated
using the prediction error, Err(f), described in (6). Since
the persistence predictor configuration does not need any
hyperparameters, the whole dataset described in Section III-A
has been used to assess its performances. Instead, the training
of the k-NN and the autoregressive models are regulated by
a pool of hyperparameters. Hence, the training set has been
used to estimate the model’s parameters for each combination
of the hyperparameters, then the validation dataset has been
used to identify the best model (i.e., the one that achieved
the lowest prediction error on the validation dataset) and the
prediction error of that model on the testing set has been used
to measure the performance of the class of the predictors.

The experiments have been carried out on a PC equipped
with an Intel Core 2 Quad CPU at 2.5 GHz and 4 GB of
RAM.

As reported in Table I, the persistence predictor has achieved
an error Err(fP) = 6.09, while the k-NN achieved an error
Err(fk-NN) = 3.17, for D = 4, k = 18, and using the inverted
distance weighting scheme.

The AR model that scores the lower validation error has
been trained using p = 54 and achieved Err(fAR) = 2.84;
the best ARMA model has been trained using p = 24 and
q = 19, achieving Err(fARMA) = 2.86; the best ARIMA
model, trained using p = 16, d = 2, and q = 7, achieved a
testing error Err(fARIMA) = 2.85.

For the sake of comparison, the prediction error obtained
using Support Vector Machines (SVM) as predictor in [8]
is also reported. Although based on datasets belonging to
the same source, the experiments are loosely comparable. In
fact, it worth noting that the datasets used differ both for
randomization and composition. In particular, in the present
work the data used for training and for assessment (validation

and testing) belong to two different time intervals (one year
for training, the following year for assessment), while in [8]
the dataset has been randomly equally partitioned without any
consideration for the time span. Besides, also the information
used are different, since in [8] the input variables were: the day
of the year, the hour, the illuminance of the previous hour, and
the average illuminance of the previous day and the previous
week. Here, instead, only the illuminance values have been
used.

In order to provide a proper comparison, some experiments
have been run also with the SVM (using the LibCVM Toolkit
[11]) on the datasets used for the present paper. The best
performing model, as reported in Table I, achieved an error of
Err(fSVM) = 2.89; it is composed of 5325 support vectors
with a Gaussian kernel (σ = 13.8), makes use of four previous
values of the illuminance as input and has been trained using
the following values for the hyperparameters: ε = 0.1 and
C = 10. This figure is more comparable to the error achieved
with the autoregressive models (and, on the other hand, it can
be seen as a measure of the influence of the dataset partitioning
on the prediction ability).

From the comparison of the results reported in Table I, all
the autoregressive models clearly outperform the persistence
and the k-NN predictors and are slightly better than the SVM
predictor. However, it worth noting that both the k-NN and
the SVM make use of only four previous illuminance samples,
while the the AR, ARMA, and ARIMA predictors base their
prediction on respectively 54, 24, and 16 previous samples. On
the other hand, the SVM is composed of 5325 support vectors,
while the k-NN predictor stores the 9048 training samples:
their prediction requires a high computational cost.

Figure 3 shows the distribution of the prediction error of
AR, ARMA and ARIMA models. They are very similar and,
in particular, the peaks in the error in Figs 3a–c are in the same
position, which means that the corresponding values in the
dataset are quite departed from the usual illuminance pattern.

While Fig. 3 shows the substantial equivalence of the
predictors, Figs. 4 and 5, shows the robustness of the optimal
pool of hyperparameters selected through cross validation. In
these figures, the testing error for all the combinations of the
hyperparameters are reported as circles.

In Fig. 4a, the performance of the AR models for each
value of p is represented. It can be noted that the testing error
decreases step-wise as the number of previous values used for
the estimate increases, and, in particular, that local minima can
be found after around multiples of 24 hours. This is intuitively
explained by the 24 hours seasonality of the dataset. Although
the error can possibly decrease for larger values of p, the
search has been stopped because the long time consumed by
the computation of the model parameters for a large values of
p. Besides, for large values of p, numerical errors can arise in
the optimization routine, which results in failure in the estimate
of the model parameters. In fact, it can be noted that in the
graph some testing errors are missing (e.g., for p = 52).

In Fig. 4b–c, the performance of the ARMA models with
respect to the values of p and q are represented. The solid line
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Fig. 3. Test error distribution. In panels (a)–(c), the test error produced by respectively the AR, the ARMA, and the ARIMA predictor are reported with
respect to the day of the year and the hour. Since the test set does not include all the possible time combinations, the error have been reported averaging
those of seven consecutive days. In panel (d)–(f), the estimated probability density function of the test error of the autoregressive models (which have standard
deviations respectively of 3.89, 3.88, and 3.89). It can be noticed that both the distribution and the histogram of the considered predictors are very similar.

connects the error for each value of p and q when, respectively,
q = 19 and p = 24, i.e., the behavior of the error when one
hyperparameter is fixed to the optimal value. It can be noticed
that, although the the variance of the error tends to decrease
with the increase of both p and q, the testing error do not
exhibit a stable trend. This means that the solution is not very
robust: for a different randomization of the validation and the
testing sets, the best model could be characterized by different
values of p and q. In particular, the error tends to decrease
when p increases. Like for the AR model, larger values of
p could be considered, but at large computational cost and
numerical instability of the model parameters estimate.

In Fig. 5a–c, the performance of the ARIMA models with
respect to the values of p, d, and q are represented. In each
graph, the solid line represents the error as a function of the
considered hyperparameter, when the other two are fixed at
their optimal value. Although the error variance appears to be
larger than in the ARMA model, the testing error becomes
closer to the minimum for a large number of combinations
of the parameters. For the p hyperparameter, it is clear from
the graph that for value of p greater than 14, the performance
of the predictor tends to improve (circles are more dense in
the region close to the minimum). Larger values of p has
not been considered in the experiment because the increase
in computational time and the numerical instability of the

optimization procedure. The differencing parameter, d, that
characterize ARIMA with respect to the other models here
considered, shows a slight improvement in the prediction
perform ace when it is assumed to be equal to two instead
of one. This can be an effect of the randomization and the
best value can change for different choices of the assessment
datasets.

V. CONCLUSIONS

In this paper, several autoregressive models (namely the
AR, ARMA and ARIMA models) has been challenged with a
problem of time series prediction.

All the models have been able to reach a similar testing
error, with also a similar distribution. The analysis of the
behavior of the error with respect to the hyperparameters of
the models shows the tendency of increasing the performance
as the numbers of previous values of the illuminance consid-
ered in the prediction approach the seasonality of the time
series. However, since the illuminance has a seasonality of
24 hours, the number of parameters of the model can give
rise to numerical error in the estimation procedure. Besides, a
large number of parameters can slow the convergence of the
estimation procedure.

Since a common approach in the literature is to prefer the
simpler model, that is the model with less parameters, the
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Fig. 4. AR, (a), and ARMA, (b)–(c), test error wrt. the hyperparameters.
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Fig. 5. ARIMA test error wrt. the hyperparameters.

ARIMA model can be considered the best fitting to the time
series studied in this work.

Future works can take into consideration also the other
information available in the original dataset, such as the day
of the year, or the time of the prediction. This should provide
an improvement in the performance.
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