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Abstract—In a scenario where renewable energies will play a
foreground role, a reliable forecast of the energy production of
such sources, like solar radiation, is a requirement for managing
smart grids. However, the ability to predict the possibility to
produce sustainable energy in different climatic conditions can
be very useful for many other purposes (e.g., for Climate Sensitive
Buildings). This is particularly true when working with climatic
data that are, as a matter of fact, highly unsteady. Nevertheless,
the use of data collected in the past can help to face the daily
and seasonal variability. An algorithm for illuminance prediction
based on Support Vector Regression (SVR) is here proposed and
the results are presented and discussed.

I. INTRODUCTION

Several renewable energy sources has been studied and used
over the last years. A consequence of this growing interest
is highlighted by an increasing diffusion of power plants
based on renewable power source. The increasing interest
in the scientific community on this kind of approach to
energy production leads to develop more efficient solutions
for renewable power generation and managing. Among the
others, the more interesting renewable energy source is perhaps
the solar radiation. In fact, with nowadays technology and
energy costs, this way to produce energy provides both a cost-
effectively high energy density and low environmental impact.

Starting from this simple consideration, it is very easy to
understand why the photovoltaic (PV) technology, based on
photodiodes that convert radiation into an electric current, is
actively studied and analyzed. The function and the perfor-
mance of the system based on PV technology are influenced
by many factors. In particular, in this paper, the influence of
the solar radiation is considered.

Since the solar radiation is not available in a controlled
mode, it is very interesting to know the solar radiation data
both for evaluating the plant performance and, if possible as
here suggested, for forecasting the energy availability.

In this scenario, solar radiation data can play an important
and sometimes fundamental role in the design and operation,
but also in the economic assessment, of solar power systems.
For tasks such as plant dimensioning or building planning,

a long term prediction of the solar radiation is required [1].
On the other hand, although long term fluctuation of the
solar radiation are possible, short term prediction is usually
sought for tasks related to the managing of power plants or
smart buildings. In this paper, the last kind of prediction is
considered.

Two main aspects should be taken into account:

• Geographic availability: measurements of solar radiation
are not available for all potentially interesting sites. Often,
for a given plant position, when no radiation data have
been collected, data from another site, or, better, a pool
of nearby sites, are utilized. Then, a suitable technique
can combine these data and provide a relationship for the
solar radiation estimate of the site under consideration. A
negative aspect concerning this approach, however, have
to be considered. This method, in fact, does not give sat-
isfying results when the considered area is characterized,
for example, by large variations in elevation or in surface
type [2].

• Time availability: when forecast on energy market have
to be elaborated, data available at the processing time are
not fully useful. Data, in fact, give the past situation but
are not really able to give information on future values.

Depending on the application, short term prediction can
range from few minutes to several hours ahead.

In [3], a comparison of short term prediction statistical
techniques is carried out over different time horizon and dif-
ferent datasets. The techniques used for the comparison spans
from linear regression to Autoregressive Integrated Moving
Average (ARIMA), Unobserved Components models, neural
networks and hybrid models (a combination of neural networks
and statistical models). For all the datasets, the input data
used for the prediction where the values at the past hour and
at the previous day, although for some datasets the pool of
the input data were enriched with additional measurements
such as humidity, cloud cover, and measures of atmospheric
turbulence. The ARIMA model predictions resulted to be the



most robust for almost every datasets.
A similar study has been presented in [4] (using a different

dataset) were the best model resulted to be the linear regression
model which make use of 10 to 15 past data values.

Also the input data used for the prediction can differ. Since,
the solar radiation at the ground is highly related to the meteo-
rological situation, data and methods for weather forecast can
be effectively used (e.g., satellite observations, [5]). However,
while this kind of data covers a large region with a low
resolution, a local measurement station (e.g., MeteoLab [2][6])
can provide a more accurate measurement for a given building.
In this paper, a short term perdiction based on local data
through Support Vector Machines (SVM) is studied. In section
II, the SVM model for regression is introduced, while the data
used in the experiments are explained in section III, along with
the methodological aspects of the experiments. The results are
discussed in section IV, and some conclusions are drawn in
section V.

II. SUPPORT VECTOR REGRESSION

Support Vector Machines (SVM) is a powerful method for
classification [7][8] and regression [9]. In the latter domain, the
method is usually named Support Vector Regression (SVR).
In its original formulation, the regression function is obtained
as the linear combination of some samples, called Support
Vectors (SV). The solution to the regression problem is hence
the hyperplane that minimize a suitable loss function, which
can be chosen such that the optimization problem results to
be convex. This property guarantees that the optimal solution
(which identifies the SVs and the corresponding coefficients)
is unique. Since most of the real problems exibits a non-linear
relation between the observed and the predicted variables, a
mapping can be applied to the observerved variables. This
transformation maps the variables into a higher dimensional
space (called feature space) where the solution is computed as
linear combination of the mapped SVs. The above mentioned
scheme (known as “kernel trick”) do not increase the compu-
tational cost of the solution, since the explicit mapping is not
required by the optimization procedure. In fact, only the inner
product of (mapped) data pairs is required for computing the
solution, which can be computed as a function called kernel.

The output of a SVR is computed as:

fsvr(x) =
n∑

i=1

βi k(x, xi) + b (1)

where βi and xi are respectively the weight and the position
of each SV, n is the number of SVs, b is the bias and k(·, ·)
is the kernel function.

The Gaussian kernel is one of the most used and its shape
is regulated by the parameter σ, which represents the width
of the Gaussian:

k(x, xi) = G(||x− xi||;σ) = exp

(
−||x− xi||

2

σ2

)
(2)

The optimization procedure for SVR is mainly regulated
by two parameters, ε and C, which are used to estimate the

goodness of the solution and are called hyperparameters. In
fact, the aim of SVR optimization is finding the solution,
fsvr(·), that deviates no more than ε from the target data
and that is as smoother as possible. The solution is hence
computed as the function that minimize a functional that is
composed by two terms: one that measures the closeness of
the function to the data (controlled by ε) and one that measures
the smoothness of the solution. The trade off the two terms
is determined by the constant C > 0. Due to the constraints
that make the problem convex, C is also the maximum of the
magnitude of the coefficients βi. Morever, when non-linear
regression is required, also the choice of the kernel, k(·, ·),
has to be operated.

The choice of the optimal values for the hyperparameters
(ε, C, and k(·, ·)) is usually operated by cross validation.

Several variants of SVM have been studied in literature
(e.g., [10][11]) and commercial (e.g., [12]) as well as free
(e.g., [13][14]) implementations are available.

III. EXPERIMENTS

The dataset used in the experiments described in the present
paper has been collected by the MeteoLab [2][6] between
October 2005 and October 2007. MeteoLab measures:

• air temperature;
• relative humidity;
• global horizontal irradiance;
• diffuse horizontal irradiance;
• global horizontal illuminance.
The station samples the data every ten minutes, but the

dataset used here considers only their hourly average.
The illuminance varies both on daily and seasonal basis. The

surface reported in Figs. 1a–b shows this behaviour. It has been
obtained by averaging the illuminance samples measured in the
same hour of the same day of the year. Although there is a
clear trend, the variability of the illuminance (which depends
also by fast changing meteorological phenomena) make the
resulting surface very rough.

A. Dataset Pre-Processing

For this preliminary work, we focused only on the global
horizontal illuminance. Besides, only the daily hours range
([8, 19]) has been considered. The dataset used for the exper-
iments has been formed by records with the following fields:

• di, day of the year
• hi, hour
• lhi, illuminance of one hour before hi
• ldi, average illuminance of the day before the hour hi of

the day di
• lwi, average illuminance of the week before the hour hi

of the day di
• li, illuminance at hi
We used the first 5 fields as input variables for predicting

the value of the last field. Hence, we have a dataset S =
{(xi, yi) |xi = [di, hi, lhi, ldi, lwi], yi = li, i = 1, . . . , n}
and the prediction problem consists in finding a regression
function, f : R5 → R such that yi ≈ f(xi).
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Fig. 1. The illuminance samples belonging to the same day of the year and
to the same hour have been averaged and plotted as a surface. It is evident that
there is a trend, but with an high variability which results in a non-smooth
surface.

The dataset is composed of 8978 samples. It has been
randomly partitioned in training, validation, and testing set,
which are composed of 33%, 33%, and 34% of the total sam-
ples, respectively (i.e., 2963, 2963, and 3052 samples). Five
different randomizations have been used for the experiments.

The prediction error has been measured by means of the
average of the absolute error achieved on the testing set data:

Err(f) = E(|yi − f(xi)|) (3)

and its relative value:

Rel(f) = E

(
|yi − f(xi)|

yi

)
(4)
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Fig. 2. A naive predictor can make direct use of the illuminance value
measured one hour before. In panel (a), the relationship between the two
illuminance measurement made with one hour one from the other is shown.
Although the samples populate the region around the identity line, an evident
dispersion is shown. In panel (b), the estimated probability density function
of the variation (which standard deviation is 7.88).

B. Simple predictors

In order to assess the effectiveness of the prediction using
SVR based models, we used some naive predictors for esti-
mating the baseline. Since it is reasonable that the illuminance
at a given hour is similar to the illuminance at the previous
hour, the simpler lazy predictor, fh(·), can be formalized as:

fh(h, lh) = lh (5)

where the illuminance at a given hour is estimated as the value
of the illuminance measured one hour before.

The error achieved has been Err(fh) = 6.09, which is in
line with the results reported in Fig. 2. Since no training is
involved, the whole dataset has been used to estimate Err(fh).



TABLE I
TEST ERROR ACHIEVED BY THE SVR PREDICTOR.

#trial Err (std) Err(fSVR) Rel (std) Rel(fSVR)
1 2.26 (3.66)

2.34

0.279 (0.820)

0.297
2 2.34 (3.79) 0.286 (0.770)
3 2.45 (4.02) 0.319 (0.829)
4 2.32 (3.73) 0.309 (0.750)
5 2.31 (3.68) 0.292 (0.602)

Another simple predictor, fincr(h, lh), can estimate, for
each hour, the average increment of illuminance with respect to
one hour before. In this case, the predictor needs of a training
phase for estimating the increments, but, since the training
procedure does not require hyperparameters, the validation
sets has been added to the training sets. The average error
resulting from 5 different randomizations of the data has been
Err(fincr) = 3.98.

C. Prediction through SVR

In order to train a SVR predictor, the hyperparameters that
regulate the optimization procedure, have to be set to the
proper value. Since the optimal values cannot be estimated
a-priori, several combinations have to be tried and their
effectiveness have to be assessed by cross validation.

The hyperparameters values that we challenged are:
• accuracy, ε: we tested the values in {0.01, 0.1, 1};
• regularization trade off, C: we tested the values in
{0.1, 1, 10, 100};

• kernel function, k(·, ·): we tested the linear (i.e., without
mapping the data in the feature space), and the Gaussian
kernel, with the width σ in {0.1, 0.2, 0.4, 0.8, 1.6, 3.2};
it should be noticed that the regression is operated on
normalized data.

The best average validation error has been obtained for ε =
0.01, C = 100, with a Gaussian kernel with σ = 3.2. In
Table I, the test error by SVR models trained with the above
mentioned hyperparameters is reported for all the trials, along
with the standard deviation of the error. On the average, the
test error of the best configuration, Err(fSVR), is 2.34, for a
relative error, Rel(fSVR), of 0.297.

IV. DISCUSSION

The SVR model allows to achieve a prediction error well be-
low that of the simple predictors described in section III-B. It
can exploit the information on context in which the prediction
is required. In this sense, it is able to adapt the prediction to
the trend of the period of time before the prediction time. The
achieved relative error, 0.297 (cfr. Table I), well compares with
the results obtained in [3], where the relative error obtained
by the ARIMA model has been of 0.264, 0.289, and 0.236 for
three datasets composed by data similar to those here used,
although ten times larger in terms of observations.

Since the best hyperparameters combination (ε = 0.01,
C = 100, and σ = 3.2) results to be composed of extremal
values for each hyperparameters, the need of experimenting a
larger set of values for the hyperparameters can be questioned.

50 100 150 200 250 300 350

8

10

12

14

16

18

day of the year

ho
ur

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Test error distribution

 

 

5

10

15

20

25

30

35

40

45

(a)

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

σ = 3.13

test error

pr
ob

ab
ili

ty

Test error distribution

(b)

Fig. 4. Test error distribution. In panel (a), the test error computed in all
the trial is reported with respect to the day of the year and the hour. The
error follows the seasonal and daily variability. In panel (b), the estimated
probability density function of the test error (which standard deviation is
3.13).

However, although it is possible that different hyperparameters
values (e.g., ε = 0.005, C = 200) can make the test error
smaller, the improvement cannot worth the effort required. In
fact, the computational time required by the SVR optimization
greatly increases with C and is inversely proportional to ε.
In Fig. 3, the test error achieved with several combination
of values of the hyperparameters is reported. In particular,
Fig. 3a-c depicts the test error with respect to ε and C
values, and to the kernel, respectively. Moreover, for each
hyperparameter, a line that connect the results relative to
the configuration with the optimal values of the other two
hyperparameters is reported. These lines shows a clear trend
for the test error that hardly can decrease for values of ε
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Fig. 3. Test error wrt. the hyperparameters.

smaller than 0.01 or values of C larger than 100.
The distribution of the test error evaluated for the models

trained (for all the five randomizations) with the best combi-
nation of the hyperparameters is reported in Fig. 4a, while its
normalized histogram is shown in Fig. 4b. It clearly exhibits a
better behaviour than the naive predictor based on the hourly
increments (cfr. Fig. 2). However, since it follows the seasonal
and daily variability more information have to be involved
in the learning process. This can be achieved both using the
illuminance measurements over a period of time longer than
that has been used in the presented experiments, and exploiting
also the meteorological data from MeteoLab. For the ARIMA
model in [3], this worth a relative error of 0.197, while [4]
reports an error of 0.151 for a linear regression model that
makes use of 15 past values. Hence, a similar improvement in
the prediction accuracy can be hypotes for our model.

Besides, similar measurements from other sites could be
integrated in order to model the climatic pattern of the region
and forecast the almost random variations which are due to
meteorological phenomena.

V. CONCLUSION

In the present work, the prediction ability of the Support
Vector Regression model has been challenged on a problem of
forecasting the solar radiation quantity that reaches the ground.

In this application, the training database is composed of
measures of environmental data and then they define the
feature space on which the prediction is operated. Although the
regression technique used is a basic machine learning model,
the results are promising and compares well with similar
studies found in the literature. Starting from these preliminary
results, both the selection of a new pool of input data and of
a more complex prediction model can be studied in order to
improve the efficiency of the algorithm.
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[2] T. Poli, L. P. Gattoni, D. Zappalà, and R. Gottardi, “Daylight measure-
ment in milan,” in Proc. of PLEA2006, Conf. on Passive and Low Energy
Architecture, 2006.

[3] G. Reikard, “Predicting solar radiation at high resolutions: A comparison
of time series forecasts,” Solar Energy, vol. 83, pp. 342–349, Mar 2009.

[4] W. Ji, C. K. Chan, J. W. Loh, F. H. Choo, and L. H. Chen, “Solar
radiation prediction using statistical approaches,” in Proceedings of the
7th international conference on Information, communications and signal
processing, ser. ICICS’09. Piscataway, NJ, USA: IEEE Press, 2009,
pp. 646–650.

[5] A. Hammer, D. Heinemann, E. Lorenz, and B. Lckehe, “Short-term
forecasting of solar radiation: a statistical approach using satellite data,”
Solar Energy, vol. 67, pp. 139–150, 1999.

[6] T. Poli, L. P. Gattoni, D. Zappalà, and R. Gottardi, “Daylight measure-
ment in Milan.” in Clever Design, Affordable Comforta Challenge for
Low Energy Architecture and Urban Planning. Geneve - CH: Raphael
Compagnon & Peter Haefeli and Willi Weber, 6 2006, pp. 429–433.

[7] V. N. Vapnik, Statistical Learning Theory. Wiley, 1998.
[8] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

[9] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, pp. 199–222, 2004.

[10] S. Ferrari, F. Bellocchio, V. Piuri, and N. A. Borghese, “Multi-scale
support vector regression,” in Proc. of IJCNN 2010 (IEEE Int. Joint
Conf. on Neural Networks), Jul. 2010, pp. 2159–2164, (IJCNN Runner-
up Best Paper Award for 2010).

[11] M. Gönen and E. Alpaydın, “Localized multiple kernel regression,” in
Proc. of the 20th IAPR Int. Conf. on Pattern Recognition, 2010.

[12] “Mosek,” 2011. [Online]. Available: http://www.mosek.com/
[13] T. Joachims, “Making large-scale SVM learning practical,” in Advances

in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges,
and A. Smola, Eds. Cambridge, MA: MIT Press, 1999, ch. 11, pp.
169–184.

[14] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27,
May 2011.


